Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Rapid species identification of eight sympatric northern Australian macropods from faecal-pellet DNA

Jessica J. Wadley A D , Jeremy J. Austin A B and Damien A. Fordham C
+ Author Affiliations
- Author Affiliations

A Australian Centre for Ancient DNA, Environment Institute and School of Earth and Environmental Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.

B Sciences Department, Museum Victoria, Carlton Gardens, Melbourne, Vic. 3001, Australia.

C Environment Institute and School of Earth and Environmental Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.

D Corresponding author. Email: jessica.wadley@adelaide.edu.au

Wildlife Research 40(3) 241-249 https://doi.org/10.1071/WR13005
Submitted: 16 January 2013  Accepted: 23 April 2013   Published: 17 May 2013

Abstract

Context: Conservation of vulnerable and endangered species requires a comprehensive understanding of their distribution and habitat requirements, so as to implement effective management strategies. Visual scat surveys are a common non-invasive method for monitoring populations. However, morphological similarity of scats among sympatric species presents a problem for accurate identification. Visual misidentifications of scats can have major impacts on the accuracy of abundance and distribution surveys of target species, wasting resources and misdirecting management and conservation actions. DNA identification of scats can overcome this issue, while simultaneously providing a rich source of genetic information for population and dietary studies.

Aims: We developed a simple and reliable method to identify morphologically similar macropod scats from eight sympatric species in north-eastern Australia, using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) of a portion of the mtDNA ND2 gene.

Methods: We identified a short (275-bp) polymorphic region of ND2, which is easily amplifiable from degraded DNA, developed a primer set, and identified a set of three restriction endonucleases (AluI, BstNI and HphI) which, in combination, can discriminate among the eight target species. So as to test the effectiveness of this protocol, we collected 914 macropod scats from 53 sites in the north-eastern Australia.

Key results: In total, 406 of these scats were extracted, with 398 (98%) containing amplifiable macropod DNA. All 398 scats were subsequently identified to species by using our RFLP protocol. Sequencing of a subset of these samples confirmed the accuracy of the test. Species identification of scats by using DNA identified eight species of macropods, five of which were outside their documented distributions, one of which was ~400 km.

Conclusions: Our PCR–RFLP method is a simple and efficient means to identify macropod scats to species, eliminating the need for sequencing, which is costly, time-consuming and requires additional laboratory equipment.

Implications: The method allows for rapid and non-invasive assessment of macropod species and is particularly useful for surveying populations across multiple sites.

Additional keywords: distribution, faeces, genetics, kangaroo, macropodidae, molecular, monitoring, non-invasive sampling, PCR–RFLP, restriction fragment length polymorphism, RFLP, scat, survey.


References

Alacs, E., Alpers, D., de Tores, P. J., Dillon, M., and Spencer, P. B. S. (2003). Identifying the presence of quokkas (Setonix brachyurus) and other macropods using cytochrome b analyses from faeces. Wildlife Research 30, 41–47.
Identifying the presence of quokkas (Setonix brachyurus) and other macropods using cytochrome b analyses from faeces.Crossref | GoogleScholarGoogle Scholar |

Arandjelovic, M., Head, J., Rabanal, L. I., Schubert, G., Mettke, E., Boesch, C., Robbins, M. M., and Vigilant, L. (2011). Non-invasive genetic monitoring of wild central chimpanzees. PLoS ONE 6, e14761.
Non-invasive genetic monitoring of wild central chimpanzees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVWjs7g%3D&md5=92d12130a5cc65005f70a1e892666fd0CAS | 21423611PubMed |

Banks, S. C., Hoyle, S. D., Horsup, A., Sunnucks, P., and Taylor, A. C. (2003). Demographic monitoring of an entire species (the northern hairy-nosed wombat, Lasiorhinus krefftii) by genetic analysis of non-invasively collected material. Animal Conservation 6, 101–107.
Demographic monitoring of an entire species (the northern hairy-nosed wombat, Lasiorhinus krefftii) by genetic analysis of non-invasively collected material.Crossref | GoogleScholarGoogle Scholar |

Bidlack, A. L., Reed, S. E., Palsboll, P. J., and Getz, W. M. (2007). Characterization of a western North American carnivore community using PCR–RFLP of cytochrome b obtained from fecal samples. Conservation Genetics 8, 1511–1513.
Characterization of a western North American carnivore community using PCR–RFLP of cytochrome b obtained from fecal samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1amtrrI&md5=4a715aaf46c3a4548295b9c816599c8fCAS |

Bulinski, J., and McArthur, C. (2000). Observer error in counts of macropod scats. Wildlife Research 27, 277–282.
Observer error in counts of macropod scats.Crossref | GoogleScholarGoogle Scholar |

Cairns, S. C., Lollback, G. W., and Payne, N. (2008). Design of aerial surveys for population estimation and the management of macropods in the Northern Tablelands of New South Wales, Australia. Wildlife Research 35, 331–339.
Design of aerial surveys for population estimation and the management of macropods in the Northern Tablelands of New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Caughley, G., and Grigg, G. C. (1981). Surveys of the distribution and density of kangaroos in the pastoral zone of South-Australia, and their bearing on the feasibility of aerial survey in large and remote areas. Australian Wildlife Research 8, 1–11.
Surveys of the distribution and density of kangaroos in the pastoral zone of South-Australia, and their bearing on the feasibility of aerial survey in large and remote areas.Crossref | GoogleScholarGoogle Scholar |

Clarke, C. M., Fangman, J. A., and Wasser, S. K. (2001). Fecal DNA methods for differentiating grizzly bears from American black bears. Ursus 12, 237–240.

Constable, J. L., Ashley, M. V., Goodall, J., and Pusey, A. E. (2001). Noninvasive paternity assignment in Gombe chimpanzees. Molecular Ecology 10, 1279–1300.
Noninvasive paternity assignment in Gombe chimpanzees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFKiurg%3D&md5=c0532b089ce4e34ef73deef5f4669b25CAS | 11380884PubMed |

Cossios, D., and Angers, B. (2006). Identification of Andean felid feces using PCR–RFLP. Mastozoologia Neotropical 13, 239–244.

Coulson, G. M., and Raines, J. A. (1985). Methods for small-scale surveys of grey kangaroo populations. Australian Wildlife Research 12, 119–125.
Methods for small-scale surveys of grey kangaroo populations.Crossref | GoogleScholarGoogle Scholar |

Croft, D. B. (1987). Socio-ecology of the antilopine wallaroo, Macropus-antilopinus, in the Northern Territory, with observations on sympatric Macropus robustus woodwardii and Macropus agilis. Australian Wildlife Research 14, 243–255.
Socio-ecology of the antilopine wallaroo, Macropus-antilopinus, in the Northern Territory, with observations on sympatric Macropus robustus woodwardii and Macropus agilis.Crossref | GoogleScholarGoogle Scholar |

Ebert, C., Kolodziej, K., Schikora, T. F., Schulz, H. K., and Hohmann, U. (2009). Is non-invasive genetic population estimation via faeces sampling feasible for abundant mammals with low defecation rates? A pilot study on free ranging wild boar (Sus scrofa) in south-west Germany. Acta Silvatica & Lignaria Hungarica 5, 167–177.

Fetzner, J. W. (1999). Extracting high-quality DNA from shed reptile skins: a simplified method. Bio Techniques 26, 1052–1054.
| 1:CAS:528:DyaK1MXjvVantLk%3D&md5=e85bf545b30f0217ff405ea1da629c74CAS |

Foran, D. R., Crooks, K. R., and Minta, S. C. (1997). Species identification from scat: an unambiguous genetic method. Wildlife Society Bulletin 25, 835–839.

Gómez-Moliner, B. J., Cabria, M. T., Rubines, J., Garin, I., Madeira, M. J., Elejalde, A., Aihartza, J., Fournier, P., and Palazon, S. (2004). PCR–RFLP identification of mustelid species: European mink (Mustela lutreola), American mink (M-vison) and polecat (M-putorius) by analysis of excremental DNA. Journal of Zoology 262, 311–316.
PCR–RFLP identification of mustelid species: European mink (Mustela lutreola), American mink (M-vison) and polecat (M-putorius) by analysis of excremental DNA.Crossref | GoogleScholarGoogle Scholar |

Haider, N., Nabulsi, I., and Al-Safadi, B. (2012). Identification of meat species by PCR–RFLP of the mitochondrial COI gene. Meat Science 90, 490–493.
Identification of meat species by PCR–RFLP of the mitochondrial COI gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWkt7%2FJ&md5=a9e5aeac5a2befc6116ce1996efc2a75CAS | 21996288PubMed |

Hansen, M. M., and Jacobsen, L. (1999). Identification of mustelid species: otter (Lutra lutra), American mink (Mustela vison) and polecat (Mustela putorius), by analysis of DNA from faecal samples. Journal of Zoology 247, 177–181.
Identification of mustelid species: otter (Lutra lutra), American mink (Mustela vison) and polecat (Mustela putorius), by analysis of DNA from faecal samples.Crossref | GoogleScholarGoogle Scholar |

Harrington, L. A., Harrington, A. L., Hughes, J., Stirling, D., and Macdonald, D. W. (2010). The accuracy of scat identification in distribution surveys: American mink, Neovison vison, in the northern highlands of Scotland. European Journal of Wildlife Research 56, 377–384.
The accuracy of scat identification in distribution surveys: American mink, Neovison vison, in the northern highlands of Scotland.Crossref | GoogleScholarGoogle Scholar |

Hausknecht, R., Gula, R., Pirga, B., and Kuehn, R. (2007). Urine: a source for noninvasive genetic monitoring in wildlife. Molecular Ecology Notes 7, 208–212.
Urine: a source for noninvasive genetic monitoring in wildlife.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVKru7w%3D&md5=a47097d91d4c211354b845c04ceaea75CAS |

IUCN (2012). ‘IUCN red list of threatened species. Version 2012.2.’ Available at www.iucnredlist.org [verified 12 June 2012].

Janečka, J. E., Jackson, R., Yuquang, Z., Diqiang, L., Munkhtsog, B., Buckley-Beason, V., and Murphy, W. J. (2008). Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study. Animal Conservation 11, 401–411.
Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study.Crossref | GoogleScholarGoogle Scholar |

Jiang, W. B., Wang, X. M., Li, M., and Wang, Z. H. (2011). Identification of the Tibetan fox (Vulpes ferrilata) and the red fox (Vulpes vulpes) by copro-DNA diagnosis. Molecular Ecology Resources 11, 206–210.
Identification of the Tibetan fox (Vulpes ferrilata) and the red fox (Vulpes vulpes) by copro-DNA diagnosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1als78%3D&md5=e3fdef211c3395e989f2322ee453315bCAS |

Johnson, C. N., and Jarman, P. J. (1987). Macropod studies at Wallaby Creek. 6. A validation of the use of dung-pellet counts for measuring absolute densities of populations of macropodids. Australian Wildlife Research 14, 139–145.
Macropod studies at Wallaby Creek. 6. A validation of the use of dung-pellet counts for measuring absolute densities of populations of macropodids.Crossref | GoogleScholarGoogle Scholar |

Kaufmann, J. H. (1974). Habitat use and social-organisation of 9 sympatric species of macropodid marsupials. Journal of Mammalogy 55, 66–80.
Habitat use and social-organisation of 9 sympatric species of macropodid marsupials.Crossref | GoogleScholarGoogle Scholar |

Kohn, M. H., and Wayne, R. K. (1997). Facts from feces revisited. Trends in Ecology & Evolution 12, 223–227.
Facts from feces revisited.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFKksg%3D%3D&md5=1788fa0fd898bfb6d4a28ba2dadaed4cCAS |

le Mar, K., Southwell, C., and McArthur, C. (2001). Evaluation of line-transect sampling to estimate nocturnal densities of macropods in open and closed habitats. Wildlife Research 28, 9–16.
Evaluation of line-transect sampling to estimate nocturnal densities of macropods in open and closed habitats.Crossref | GoogleScholarGoogle Scholar |

Lindenmayer, D. B., and Likens, G. E. (2011). Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss. Ecosystems 14, 47–59.
Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOqs7w%3D&md5=45eb6d57c610d4c4d639e9e11ca69d9bCAS |

Livia, L., Francesca, V., Antonella, P., Fausto, P., and Bernardino, R. (2007). A PCR–RFLP method on faecal samples to distinguish Martes martes, Martes foina, Mustela putorius and Vulpes vulpes. Conservation Genetics 8, 757–759.
A PCR–RFLP method on faecal samples to distinguish Martes martes, Martes foina, Mustela putorius and Vulpes vulpes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1ynt7o%3D&md5=b45ce599dc673134faefef63a90db5fcCAS |

Lucchini, V., Fabbri, E., Marucco, F., Ricci, S., Boitani, L., and Randi, E. (2002). Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Molecular Ecology 11, 857–868.
Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVKrs7s%3D&md5=67206cacabce61753cfd65a6899eee56CAS | 11975702PubMed |

Lundie-Jenkins, G., Hoolihan, D. W., and Maag, G. W. (1999). An overview of the Queensland macropod monitoring programme. Australian Zoologist 31, 301–305.

Martín-Gálvez, D., Peralta-Sanchez, J. M., Dawson, D. A., Martin-Platero, A. M., Martinez-Bueno, M., Burke, T., and Soler, J. J. (2011). DNA sampling from eggshell swabbing is widely applicable in wild bird populations as demonstrated in 23 species. Molecular Ecology Resources 11, 481–493.
DNA sampling from eggshell swabbing is widely applicable in wild bird populations as demonstrated in 23 species.Crossref | GoogleScholarGoogle Scholar | 21481206PubMed |

McKelvey, K. S., Von Kienast, J., Aubry, K. B., Koehler, G. M., Maletzke, B. T., Squires, J. R., Lindquist, E. L., Loch, S., and Schwartz, M. K. (2006). DNA analysis of hair and scat collected along snow tracks to document the presence of Canada lynx. Wildlife Society Bulletin 34, 451–455.
DNA analysis of hair and scat collected along snow tracks to document the presence of Canada lynx.Crossref | GoogleScholarGoogle Scholar |

Menkhorst, P., and Knight, F. (2010). ‘A field guide to the mammals of Australia.’ 3rd edn. (Oxford University Press: Melbourne)

Mills, L. S., Pilgrim, K. L., Schwartz, M. K., and McKelvey, K. (2000). Identifying lynx and other North American felids based on mtDNA analysis. Conservation Genetics 1, 285–288.
Identifying lynx and other North American felids based on mtDNA analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslSmtr4%3D&md5=e8053c8d33a887686968f1c97b394fadCAS |

Moore, M. K., Bemiss, J. A., Rice, S. M., Quattro, J. M., and Woodley, C. M. (2003). Use of restriction fragment length polymorphisms to identify sea turtle eggs and cooked meats to species. Conservation Genetics 4, 95–103.
Use of restriction fragment length polymorphisms to identify sea turtle eggs and cooked meats to species.Crossref | GoogleScholarGoogle Scholar |

Murphy, B. P., and Bowman, D. M. J. S. (2007). The interdependence of fire, grass, kangaroos and Australian Aborigines: a case study from central Arnhem Land, northern Australia. Journal of Biogeography 34, 237–250.
The interdependence of fire, grass, kangaroos and Australian Aborigines: a case study from central Arnhem Land, northern Australia.Crossref | GoogleScholarGoogle Scholar |

Nagata, J., Aramilev, V. V., Belozor, A., Sugimoto, T., and McCullough, D. R. (2005). Fecal genetic analysis using PCR–RFLP of cytochrome b to identify sympatric carnivores, the tiger Panthera tigris and the leopard Panthera pardus, in far eastern Russia. Conservation Genetics 6, 863–866.
Fecal genetic analysis using PCR–RFLP of cytochrome b to identify sympatric carnivores, the tiger Panthera tigris and the leopard Panthera pardus, in far eastern Russia.Crossref | GoogleScholarGoogle Scholar |

Nicholls, J. A., Double, M. C., Rowell, D. M., and Magrath, R. D. (2000). The evolution of cooperative and pair breeding in thornbills Acanthiza (Pardalotidae). Journal of Avian Biology 31, 165–176.
The evolution of cooperative and pair breeding in thornbills Acanthiza (Pardalotidae).Crossref | GoogleScholarGoogle Scholar |

Oliveira, R., Castro, D., Godinho, R., Luikart, G., and Alves, P. C. (2010). Species identification using a small nuclear gene fragment: application to sympatric wild carnivores from south-western Europe. Conservation Genetics 11, 1023–1032.
Species identification using a small nuclear gene fragment: application to sympatric wild carnivores from south-western Europe.Crossref | GoogleScholarGoogle Scholar |

Paxinos, E., McIntosh, C., Ralls, K., and Fleischer, R. (1997). A noninvasive method for distinguishing among canid species: amplification and enzyme restriction of DNA from dung. Molecular Ecology 6, 483–486.
A noninvasive method for distinguishing among canid species: amplification and enzyme restriction of DNA from dung.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFOhs78%3D&md5=3163a09072ec0a20b2bdf61c4f6284eaCAS | 9161016PubMed |

Piggott, M. P., and Taylor, A. C. (2003). Extensive evaluation of faecal preservation and DNA extraction methods in Australian native and introduced species. Australian Journal of Zoology 51, 341–355.
Extensive evaluation of faecal preservation and DNA extraction methods in Australian native and introduced species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWqtLo%3D&md5=e4a4f30fd24e33c9014b992b9f252900CAS |

Piggott, M. P., Banks, S. C., and Taylor, A. C. (2006). Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA. Molecular Ecology 15, 93–105.
Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGkt78%3D&md5=e3a1e7e028a0d1d3b1fb4cbe6974fff5CAS | 16367833PubMed |

Pilgrim, K. L., Boyd, D. K., and Forbes, S. H. (1998). Testing for wolf-coyote hybridization in the Rocky Mountains using mitochondrial DNA. The Journal of Wildlife Management 62, 683–689.
Testing for wolf-coyote hybridization in the Rocky Mountains using mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Poetsch, M., Seefeldt, S., Maschke, M., and Lignitz, E. (2001). Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer: possible employment in forensic applications. Forensic Science International 116, 1–8.
Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer: possible employment in forensic applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslKmsr4%3D&md5=053d8bbd92a8d309fea2c03c54a3640dCAS | 11118746PubMed |

Ritchie, E. G. (2010). Ecology and conservation of the antilopine wallaroo: an overview of current knowledge. In ‘Macropods: the biology of kangaroos, wallabies and rat-kangaroos’. (Eds G Coulson and M Eldridge.) (CSIRO Publishing: Melbourne.)

Ritchie, E. G., and Bolitho, E. E. (2008). Australia’s savanna herbivores: bioclimatic distributions and an assessment of the potential impact of regional climate change. Physiological and Biochemical Zoology 81, 880–890.
Australia’s savanna herbivores: bioclimatic distributions and an assessment of the potential impact of regional climate change.Crossref | GoogleScholarGoogle Scholar | 18937565PubMed |

Ritchie, E. G., Martin, J. K., Krockenberger, A. K., Garnett, S., and Johnson, C. N. (2008). Large-herbivore distribution and abundance: intra-and interspecific niche variation in the tropics. Ecological Monographs 78, 105–122.
Large-herbivore distribution and abundance: intra-and interspecific niche variation in the tropics.Crossref | GoogleScholarGoogle Scholar |

Rosellini, S., Osorio, E., Ruiz-González, A., Isabel, A. P., and Barja, I. (2008). Monitoring the small-scale distribution of sympatric European pine martens (Martes martes) and stone martens (Martes foina): A multievidence approach using faecal DNA analysis and camera-traps. Wildlife Research 35, 434–440.
Monitoring the small-scale distribution of sympatric European pine martens (Martes martes) and stone martens (Martes foina): A multievidence approach using faecal DNA analysis and camera-traps.Crossref | GoogleScholarGoogle Scholar |

Rudnick, J. A., Katzner, T. E., Bragin, E. A., Rhodes, O. E., and Dewoody, J. A. (2005). Using naturally shed feathers for individual identification, genetic parentage analyses, and population monitoring in an endangered eastern imperial eagle (Aquila heliaca) population from Kazakhstan. Molecular Ecology 14, 2959–2967.
Using naturally shed feathers for individual identification, genetic parentage analyses, and population monitoring in an endangered eastern imperial eagle (Aquila heliaca) population from Kazakhstan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGltLnL&md5=ad908280886c75b34dad41898346126aCAS | 16101766PubMed |

Ruiz-González, A., Rubines, J., Berdion, O., and Gómez-Moliner, B. J. (2008). A non-invasive genetic method to identify the sympatric mustelids pine marten (Martes martes) and stone marten (Martes foina): Preliminary distribution survey on the northern Iberian Peninsula. European Journal of Wildlife Research 54, 253–261.
A non-invasive genetic method to identify the sympatric mustelids pine marten (Martes martes) and stone marten (Martes foina): Preliminary distribution survey on the northern Iberian Peninsula.Crossref | GoogleScholarGoogle Scholar |

Scandura, M. (2005). Individual sexing and genotyping from blood spots on the snow: a reliable source of DNA for non-invasive genetic surveys. Conservation Genetics 6, 871–874.
Individual sexing and genotyping from blood spots on the snow: a reliable source of DNA for non-invasive genetic surveys.Crossref | GoogleScholarGoogle Scholar |

Sigg, D. P., Goldizen, A. W., and Pople, A. R. (2005). The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies. Biological Conservation 123, 289–300.
The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies.Crossref | GoogleScholarGoogle Scholar |

Southwell, C. (1989). Techniques for monitoring the abundance of kangaroo and wallaby populations. In ‘Kangaroos, wallabies and rat-kangaroos. Vol. 2’. (Eds G Grigg, P Jarman and I Hume.) pp. 659–693. (Surrey: Sydney.)

Southwell, C. (1994). Evaluation of walked line transect counts for estimating macropod density. The Journal of Wildlife Management 58, 348–356.
Evaluation of walked line transect counts for estimating macropod density.Crossref | GoogleScholarGoogle Scholar |

Southwell, C. J., and Jarman, P. J. (1987). Macropod studies at Wallaby Creek. 3. The effect of fire on pasture utilization by macropodids and cattle. Australian Wildlife Research 14, 117–124.
Macropod studies at Wallaby Creek. 3. The effect of fire on pasture utilization by macropodids and cattle.Crossref | GoogleScholarGoogle Scholar |

Southwell, C. J., and Sheppard, N. (2000). Assessing harvested populations of the euro (Macropus robustus erubescens) in the Barrier Ranges of western NSW. Australian Mammalogy 21, 165–171.

Southwell, C., Fletcher, M., McRae, P., Porter, B., and Broers, R. (1995a). Abundance and harvest rate of the whiptail wallaby in southeastern Queensland, Australia. Wildlife Society Bulletin 23, 726–732.

Southwell, C. J., Weaver, K. E., Cairns, S. C., Pople, A. R., Gordon, A. N., Shepard, N. W., and Broers, R. (1995b). Abundance of macropods in north-eastern New South Wales, and the logistics of broad-scale ground surveys. Wildlife Research 22, 757–766.
Abundance of macropods in north-eastern New South Wales, and the logistics of broad-scale ground surveys.Crossref | GoogleScholarGoogle Scholar |

Southwell, C. J., Cairns, S. C., Palmer, R., Delaney, R., and Broers, R. (1997). Abundance of large macropods in the eastern highlands of Australia. Wildlife Society Bulletin 25, 125–132.

Southwell, C. J., Cairns, S. C., Pople, A. R., and Delaney, R. (1999). Gradient analysis of macropod distribution in open forest and woodland of eastern Australia. Australian Journal of Ecology 24, 132–143.
Gradient analysis of macropod distribution in open forest and woodland of eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Styger, J. K., Kirkpatrick, J. B., Marsden-Smedley, J. O. N., and Leonard, S. W. J. (2011). Fire incidence, but not fire size, affects macropod densities. Austral Ecology 36, 679–686.

Taberlet, P., and Fumagalli, L. (1996). Owl pellets as a source of DNA for genetic studies of small mammals. Molecular Ecology 5, 301–305.
| 1:CAS:528:DyaK28XjvVSmt7Y%3D&md5=fa9c8cce4bfa9a21e169c36016b0ba13CAS | 8673276PubMed |

Taberlet, P., Waits, L. P., and Luikart, G. (1999). Noninvasive genetic sampling: look before you leap. Trends in Ecology & Evolution 14, 323–327.
Noninvasive genetic sampling: look before you leap.Crossref | GoogleScholarGoogle Scholar |

Telfer, W. R., Griffiths, A. D., and Bowman, D. (2006). Scats can reveal the presence and habitat use of cryptic rock-dwelling macropods. Australian Journal of Zoology 54, 325–334.
Scats can reveal the presence and habitat use of cryptic rock-dwelling macropods.Crossref | GoogleScholarGoogle Scholar |

Telfer, W. R., Griffiths, A. D., and Bowman, D. (2008). The habitat requirements of four sympatric rock-dwelling macropods of the Australian monsoon tropics. Austral Ecology 33, 1033–1044.
The habitat requirements of four sympatric rock-dwelling macropods of the Australian monsoon tropics.Crossref | GoogleScholarGoogle Scholar |

Tobe, S. S., and Linacre, A. M. T. (2008). A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome b gene. Electrophoresis 29, 340–347.
A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome b gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVOmtLw%3D&md5=dde9222c8ecc658d36aa1bc2cdc8eadfCAS | 18080254PubMed |

Trigg, B. (2005). ‘Tracks, scats, and other traces: a field guide to Australian mammals.’ 2 revised edn. (Oxford University Press: Melbourne.)

Waits, L. P., and Paetkau, D. (2005). Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. The Journal of Wildlife Management 69, 1419–1433.
Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection.Crossref | GoogleScholarGoogle Scholar |

Walker, F. M., Horsup, A., and Taylor, A. C. (2009). Leader of the pack: faecal pellet deposition order impacts PCR amplification in wombats. Molecular Ecology Resources 9, 720–724.
Leader of the pack: faecal pellet deposition order impacts PCR amplification in wombats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Ggtb0%3D&md5=becc4516a13adc0cad72954b52523d9fCAS | 21564730PubMed |

Wiggins, N. L., and Bowman, D. (2011). Macropod habitat use and response to management interventions in an agricultural-forest mosaic in north-eastern Tasmania as inferred by scat surveys. Wildlife Research 38, 103–113.
Macropod habitat use and response to management interventions in an agricultural-forest mosaic in north-eastern Tasmania as inferred by scat surveys.Crossref | GoogleScholarGoogle Scholar |

Williams, R. J., Carter, J., Duff, G. A., Woinarski, J. C. Z., Cook, G. D., and Farrer, S. L. (2005). Carbon accounting, land management, science and policy uncertainty in Australian savanna landscapes: Introduction and overview. Australian Journal of Botany 53, 583–588.
Carbon accounting, land management, science and policy uncertainty in Australian savanna landscapes: Introduction and overview.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., and Ash, A. J. (2002). Responses of vertebrates to pastoralism, military land use and landscape position in an Australian tropical savanna. Austral Ecology 27, 311–323.
Responses of vertebrates to pastoralism, military land use and landscape position in an Australian tropical savanna.Crossref | GoogleScholarGoogle Scholar |

Zapata, M. A., Cienfuegos, A. V., Quiros, O. I., Quinones, M. L., Luckhart, S., and Correa, M. M. (2007). Discrimination of seven Anopheles species from San Pedro De Uraba, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of its sequences. The American Journal of Tropical Medicine and Hygiene 77, 67–72.
| 1:CAS:528:DC%2BD2sXptVSrsLo%3D&md5=e91b258bc79d51502ec0143e131f4f30CAS | 17620632PubMed |

Zenger, K. R., Eldridge, M. D. B., and Cooper, D. W. (2003). Intraspecific variation, sex-biased dispersal and phylogeography of the eastern grey kangaroo (Macropus giganteus). Heredity 91, 153–162.
Intraspecific variation, sex-biased dispersal and phylogeography of the eastern grey kangaroo (Macropus giganteus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslKju74%3D&md5=6ec62e57061e173ff427bce6155e2d7eCAS | 12886282PubMed |