Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Human-provoked amphibian decline in central Italy and the efficacy of protected areas

Manuela D’Amen A C , Biancamaria Pietrangeli B and Marco A. Bologna A
+ Author Affiliations
- Author Affiliations

A Department of Environmental Biology, University of Roma Tre, Viale Marconi 446, Rome, Italy.

B Italian National Institute for Occupational Prevention and Safety, Rome, Italy.

C Corresponding author. Email: mdamen@uniroma3.it

Wildlife Research 37(7) 547-557 https://doi.org/10.1071/WR09167
Submitted: 2 December 2009  Accepted: 16 September 2010   Published: 17 December 2010

Abstract

Context: Today, more than 32% of amphibian species are threatened and more than 43% face a steep decline in numbers. Most species are being affected simultaneously by multiple stressors and habitat protection is often inadequate to prevent declines.

Aims: The main goal of the present research was to understand the consequences of alternative human land use in producing landscape disturbance for amphibians. At the same time, we also evaluated the effect of changing climatic conditions as additional potential drivers of population decline. Another goal was to determine whether and to what extent the existing nature reserves have been effective in protecting species in recent decades.

Methods: We used generalised additive models (GAMs) to investigate the association between the state (stable/decline) of amphibian populations in 5 × 5 km cells in central Italy and proxies of different typology of anthropogenic stressors, climatic variables and protection measures.

Key results: We found a significant association between anthropogenic landscape modifications and species decline. This negative relationship was revealed with agricultural predictors for the majority of the species, whereas urban fabrics had a slightly smaller impact. We found significant associations between amphibian declines and climatic variation, particularly the increasing number of dry days. Protected areas protected declines of two species only.

Conclusions: Our results showed that the status of amphibians in this region warrants greater attention than has been given previously. The detrimental effect of agricultural practices, combined with increasing aridity, makes amphibian populations particularly susceptible to extinction, and the conservation measures applied till now are inadequate for species protection in this region.

Implications: Our results should stimulate the implementation of environmental policies that focus not only on the protection of single habitats, but also on ensuring the environmental quality of the surrounding landscapes. Moreover, an adaptive management approach should be applied to take into account future modification of hydrology and climate.

Additional keywords: amphibian extinction, climate change, land cover, natural reserves.


References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Alexander, M. A., and Eischeid, J. K. (2001). Climate variability in regions of amphibian declines. Conservation Biology 15, 930–942.
Climate variability in regions of amphibian declines.Crossref | GoogleScholarGoogle Scholar |

Andreone, F., and Luiselli, L. (2000). The Italian batrachofauna and its conservation status: a statistical assessment. Biological Conservation 96, 197–208.
The Italian batrachofauna and its conservation status: a statistical assessment.Crossref | GoogleScholarGoogle Scholar |

Angilletta, M., Niewiarowski, P. H., and Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology 27, 249–268.

Araújo, M. B., Thuiller, W., and Pearson, R. G. (2006). Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography 33, 1712–1728.
Climate warming and the decline of amphibians and reptiles in Europe.Crossref | GoogleScholarGoogle Scholar |

Atauri, J. A., and de Lucio, J. V. (2001). The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape Ecology 16, 147–159.
The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes.Crossref | GoogleScholarGoogle Scholar |

Beebee, T. J. C. (1997). Changes in dewpond numbers and amphibian diversity over 20 years on chalk downland in Sussex, England. Biological Conservation 81, 215–219.
Changes in dewpond numbers and amphibian diversity over 20 years on chalk downland in Sussex, England.Crossref | GoogleScholarGoogle Scholar |

Beja, P., and Alcazar, R. (2003). Conservation of Mediterranean temporary ponds under agricultural intensification: an evaluation using amphibians. Biological Conservation 114, 317–326.
Conservation of Mediterranean temporary ponds under agricultural intensification: an evaluation using amphibians.Crossref | GoogleScholarGoogle Scholar |

Bergkamp, G., and Orlando, B. (Eds) (1999). ‘Wetlands and Climate Change: Exploring Collaboration between the Convention on Wetlands and the United Nations Framework Convention on Climate Change.’ (IUCN – The World Conservation Union: Washington, DC.)

Blaustein, A. R., and Johnson, P. T. J. (2003). The complexity of deformed amphibians. Frontiers in Ecology and the Environment 1, 87–94.
The complexity of deformed amphibians.Crossref | GoogleScholarGoogle Scholar |

Bologna, M. A., Capula, M., and Carpaneto, G. M. (Eds) (2000). ‘Anfibi e Rettili del Lazio.’ (Fratelli Palombi Editori: Roma.)

Bonin, J., DesGranges, J. L., Rodrigue, J., and Ouellet, M. (1997). Anuran species richness in agricultural landscapes of Quebec: foreseeing long term results of road call surveys. In ‘Amphibians in Decline: Canadian Studies of a Global Problem’. (Ed. D. M. Green.) pp. 141–149. (Society for the Study of Amphibians and Reptiles: St Louis, MI.)

Boone, M. D., and Semlitsch, R. D. (2002). Interactions of an insecticide with competition and pond drying in amphibian communities. Ecological Applications 12, 307–316.
Interactions of an insecticide with competition and pond drying in amphibian communities.Crossref | GoogleScholarGoogle Scholar |

Bosch, J., Carrascal, L. M., Durán, L., Walker, S., and Fisher, M. C. (2007). Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there a link? Proceedings of the Royal Society B: Biological Sciences 274, 253–260.

Brown, G. W., Bennett, A. F., and Potts, J. M. (2008). Regional faunal decline – reptile occurrence in fragmented rural landscapes of south-eastern Australia. Wildlife Research 35, 8–18.

Brunetti, M. (2004). Changes in daily precipitation frequency and distribution in Italy over the last 120 years. Journal of Geophysical Research 109, D05102.
Changes in daily precipitation frequency and distribution in Italy over the last 120 years.Crossref | GoogleScholarGoogle Scholar |

Brunetti, M., Maugeri, M., Monti, F., and Nanni, T. (2006). Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. International Journal of Climatology 26, 345–381.
Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series.Crossref | GoogleScholarGoogle Scholar |

Burgman, M. A., Grimson, R. C., and Ferson, S. (1995). Inferring threat from scientific collections. Conservation Biology 9, 923–928.
Inferring threat from scientific collections.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (Eds) (2002). ‘Model Selection and Multimodel Inference.’ (Springer: New York.)

Carey, C., and Alexander, M. A. (2003). Climate change and amphibian declines: is there a link? Diversity & Distributions 9, 111–121.
Climate change and amphibian declines: is there a link?Crossref | GoogleScholarGoogle Scholar |

Chadwick, E. A., Slater, F. M., and Ormerod, S. J. (2006). Inter- and intraspecific differences in climatically mediated phenological change in coexisting Triturus species. Global Change Biology 12, 1069–1078.
Inter- and intraspecific differences in climatically mediated phenological change in coexisting Triturus species.Crossref | GoogleScholarGoogle Scholar |

Cincotta, R. P., and Engelman, R. (2000). ‘Nature’s Place: Human Population Density and the Future of Biological Diversity.’ (Population Action International: Washington, DC.)

Corn, P. S. (2005). Climate change and amphibians. Animal Biodiversity and Conservation 28, 59–67.

Cushman, S. A. (2006). Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biological Conservation 128, 231–240.
Effects of habitat loss and fragmentation on amphibians: a review and prospectus.Crossref | GoogleScholarGoogle Scholar |

Cushman, S. A., and McGarigal, K. (2002). Hierarchical, multi-scale decomposition of species–environment relationships. Landscape Ecology 17, 637–646.
Hierarchical, multi-scale decomposition of species–environment relationships.Crossref | GoogleScholarGoogle Scholar |

D’Amen, M., and Bombi, P. (2009). Global warming and biodiversity: climate-linked decline of Italian amphibians. Biological Conservation 142, 3060–3067.
Global warming and biodiversity: climate-linked decline of Italian amphibians.Crossref | GoogleScholarGoogle Scholar |

D’Amen, M., Salvi, D., Antoccia, A., Bombi. P., Bordoni, V., Chiesa, S., Gibertini, G., Marino, M., Ruzza, A., Scalici, M., Tanzarella, C., Vignoli, L., and Bologna, M. A. (2008). Studio degli effetti delle emissioni naturali del gas radon su Triturus carnifex (Amphibia, Salamandridae): un approccio multidisciplinare. In ‘Herpetologia sardiniae’. (Ed. C. Corti.) pp. 180–183. (Edizioni Belvedere: Latina, Italy.)

Davidson, C., and Knapp, R. A. (2007). Multiple stressors and amphibian declines: dual impacts of pesticides and fish on yellow-legged frogs. Ecological Applications 17, 587–597.
Multiple stressors and amphibian declines: dual impacts of pesticides and fish on yellow-legged frogs.Crossref | GoogleScholarGoogle Scholar | 17489262PubMed |

Davidson, C., Shaffer, H. B., and Jennings, M. R. (2001). Declines of the California red-legged frog: climate, UV-B, habitat, and pesticides hypotheses. Ecological Applications 11, 464–479.
Declines of the California red-legged frog: climate, UV-B, habitat, and pesticides hypotheses.Crossref | GoogleScholarGoogle Scholar |

Davidson, C., Shaffer, H. B., and Jennings, M. R. (2002). Spatial tests of the pesticide drift, habitat destruction, UV-B, and climate-change hypotheses for California amphibian declines. Conservation Biology 16, 1588–1601.
Spatial tests of the pesticide drift, habitat destruction, UV-B, and climate-change hypotheses for California amphibian declines.Crossref | GoogleScholarGoogle Scholar |

Delis, P. R., Mushinsky, H. R., and McCoy, E. D. (1996). Decline of some west-central Florida anuran populations in response to habitat degradation. Biodiversity and Conservation 5, 1579–1595.
Decline of some west-central Florida anuran populations in response to habitat degradation.Crossref | GoogleScholarGoogle Scholar |

Duellman, W. E., and Trueb, L. (Eds) (1994). ‘Biology of Amphibians.’ (Johns Hopkins University Press: Baltimore, MD.)

Duffy, K. J., Kingston, N. E., Sayers, B. A., Roberts, D. L., and Stout, J. C. (2009). Inferring national and regional declines of rare orchid species with probabilistic models. Conservation Biology 23, 184–195.
Inferring national and regional declines of rare orchid species with probabilistic models.Crossref | GoogleScholarGoogle Scholar | 18798858PubMed |

Farnsworth, E. J., and Ogurcak, D. E. (2006). Biogeography and decline of rare plants in New England: historical evidence and contemporary monitoring. Ecological Applications 16, 1327–1337.
Biogeography and decline of rare plants in New England: historical evidence and contemporary monitoring.Crossref | GoogleScholarGoogle Scholar | 16937801PubMed |

Gardner, T. A., Barlow, J., and Peres, C. A. (2007). Paradox, presumption and pitfalls in conservation biology: the importance of habitat change for amphibians and reptiles. Biological Conservation 138, 166–179.
Paradox, presumption and pitfalls in conservation biology: the importance of habitat change for amphibians and reptiles.Crossref | GoogleScholarGoogle Scholar |

Gasc, J.-P., Cabela, A., Crnobrnja-Isailovic, J., Dolmen, D., Grossenbacher, K., Haffner, P., Lescure, J., Martens, H., Martinez Rica, J. P., Maurin, H., Oliveira, M. E., Sofianidou, T. S., Veith, M., and Zuiderwijk, A. (Eds) (1997). ‘Atlas of Amphibians and Reptiles in Europe.’ (Societas Europaea Herpetologica & Museum National d’Histoire Naturelle: Paris.)

Gibbons, J. W., Scott, D. E., Ryan, T. J., Buhlmann, K. A., Tuberville, T. D., Metts, B. S., Greene, J. L., Mills, T., Leiden, Y., Poppy, S., and Winne, C. T. (2000). The global decline of reptiles, déjà vu amphibians. BioScience 50, 653–666.

Guarino, F. M., Bellini, L., Mazzarella, G., and Angelini, F. (1998). Reproductive activity of Bombina pachypus from southern Italy. Italian Journal of Zoology 65, 335–342.
Reproductive activity of Bombina pachypus from southern Italy.Crossref | GoogleScholarGoogle Scholar |

Gucinski, H., Furniss, M. J., Ziemer, R. R., and Brookes, M. H. (2001). Forest roads: a synthesis of scientific information. General technical report PNW-GTR-509. (USDA Forest Service, Pacific Northwest Research Station: Portland, OR.)

Hannah, L., Midgley, G., Andelman, S., Araújo, M., Hughes, G., Martinez-Meyer, E., Pearson, R., and Williams, P. (2007). Protected area needs in a changing climate. Frontiers in Ecology and the Environment 5, 131–138.
Protected area needs in a changing climate.Crossref | GoogleScholarGoogle Scholar |

Hastie, T., and Tibshirani, R. (1986). Generalized additive models. Statistical Science 1, 297–310.
Generalized additive models.Crossref | GoogleScholarGoogle Scholar |

Hazell, D. (2003). Frog ecology in modified Australian landscapes: a review. Wildlife Research 30, 193–205.
Frog ecology in modified Australian landscapes: a review.Crossref | GoogleScholarGoogle Scholar |

Hecnar, S. J. (1997). Amphibian pond communities in southwestern Ontario. In ‘Amphibians in decline: Canadian Studies of a Global Problem’. Herpetological Conservation, Number 1. (Ed. D. M. Green.) pp. 1–15. (Society for the Study of Amphibians and Reptiles: St. Louis, MO.)

Herrmann, H. L., Babbitt, K. J., Baber, M. J., and Congalton, R. G. (2005). Effects of landscape characteristics on amphibian distribution in a forest-dominated landscape. Biological Conservation 123, 139–149.
Effects of landscape characteristics on amphibian distribution in a forest-dominated landscape.Crossref | GoogleScholarGoogle Scholar |

Hosmer, D. W., and Lemeshow, S. (Eds) (1989). ‘Applied Logistic Regression.’ (Wiley Interscience: New York.)

Howe, G. E., Gillis, R., and Mowbray, R. C. (1998). Effect of chemical synergy and larval stage on the toxicity of atrazine and alachlor to amphibian larvae. Environmental Toxicology and Chemistry 17, 519–525.
Effect of chemical synergy and larval stage on the toxicity of atrazine and alachlor to amphibian larvae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1yksb4%3D&md5=777f01c1c606b4d3fc1f15d163bf473dCAS |

Intergovernmental Panel on Climate Change (IPCC) (2007). IPCC Fourth assessment report. Working Group 1 Report ‘The Physical Science Basis’. Available at http://www.ipcc.ch/ipccreports/ar4-wg1.htm [verified November 2010].

IUCN (International Union for the Conservation of Nature) (2008). 2008 IUCN Red List of Threatened Species. Available at: http://www.iucnredlist.org [accessed November 2008].

Kiesecker, J. M., Blaustein, A. R., and Belden, L. K. (2001). Complex causes of amphibian population declines. Nature 410, 681–684.
Complex causes of amphibian population declines.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3gtVOhsA%3D%3D&md5=edc8ea38493165ed368aaceae4efb61dCAS | 11287952PubMed |

Knapp, R. A., Matthews, K. R., Preisler, H. K., and Jellison, R. (2003). Developing probabilistic models to predict amphibian site occupancy in a patchy landscape. Ecological Applications 13, 1069–1082.
Developing probabilistic models to predict amphibian site occupancy in a patchy landscape.Crossref | GoogleScholarGoogle Scholar |

Knutson, M. G., Sauer, J. R., Olsen, D. A., Mossman, M. J., Hemesath, L. M., and Lannoo, M. J. (1999). Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness. Conservation Biology 13, 1437–1446.
Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness.Crossref | GoogleScholarGoogle Scholar |

Kriger, K. M., and Hero, J. M. (2007). The chytrid fungus Batrachochytrium dendrobatidis is non-randomly distributed across amphibian breeding habitats. Diversity & Distributions 13, 781–788.
The chytrid fungus Batrachochytrium dendrobatidis is non-randomly distributed across amphibian breeding habitats.Crossref | GoogleScholarGoogle Scholar |

Kusler, J., Brinson, M., Niering, W., Patterson, J., Burkett, V., and Willard, D. (Eds) (1999). ‘Wetlands and Climate Change: Scientific Knowledge and Management Options.’ (Institute for Wetland Science and Public Policy, Association of Wetland Managers: Berne, NY.)

Linder, G., Krest, S. K., and Sparling, D. W. (Eds) (2003). ‘Amphibian Decline: an Integrated Analysis of Multiple Stressor Effects.’ (Society of Environmental Toxicology and Chemistry: Pensacola, FL.)

Lips, K. R. (1998). Decline of a tropical mountain amphibian fauna. Conservation Biology 12, 106–117.
Decline of a tropical mountain amphibian fauna.Crossref | GoogleScholarGoogle Scholar |

McCarthy, M. A. (1998). Identifying declining and threatened species with museum data. Biological Conservation 83, 9–17.
Identifying declining and threatened species with museum data.Crossref | GoogleScholarGoogle Scholar |

McMenamin, S. K., Hadly, E. A., and Wright, C. K. (2008). Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proceedings of the National Academy of Sciences, USA 105, 16 988–16 993.
Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKmu7fM&md5=2aacbb59ae3e0e35e42bb8bda571390dCAS |

McPherson, J. M., and Jetz, W. (2007). Effects of species’ ecology on the accuracy of distribution models. Ecography 30, 135–151.

Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Måge, F., Mestre, A., Nordli, Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifinger, H., Striz, M., Susnik, A., Van Vliet, A. J., Wielgolaski, F., Zach, S., and Zust, A. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology 12, 1969–1976.
European phenological response to climate change matches the warming pattern.Crossref | GoogleScholarGoogle Scholar |

Pounds, J. A. (2001). Climate and amphibian declines. Nature 410, 639–640.
| 1:CAS:528:DC%2BD3MXivFSgtbY%3D&md5=0c1ffd231d45ba035b796cafd3b68cb7CAS | 11287931PubMed |

Pounds, J. A., and Crump, M. L. (1994). Amphibian decline and climate disturbance: the case of the golden toad and the harlequin frog. Conservation Biology 8, 72–85.
Amphibian decline and climate disturbance: the case of the golden toad and the harlequin frog.Crossref | GoogleScholarGoogle Scholar |

Pounds, J. A., Fogden, M. P. L., and Campbell, J. H. (1999). Biological response to climate change on a tropical mountain. Nature 398, 611–615.
Biological response to climate change on a tropical mountain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislyrs78%3D&md5=89ff9c412857653a44947bc9193a42b6CAS |

Pounds, J. A., Bustamante, M. R., Coloma, L. A., Consuegra, J. A., Fogden, M. P. L., Foster, P. N., La Marca, E., Masters, K. L., Merino-Viteri, A., Puschendorf, R., Ron, S. R., Sánchez-Azofeifa, A. G., Still, C. J., and Young, B. E. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167.
Widespread amphibian extinctions from epidemic disease driven by global warming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislKiug%3D%3D&md5=cb1d0d9fbd1a5e87d1c1e0b9826eddf5CAS | 16407945PubMed |

Randa, L. A., and Yunger, J. A. (2006). Carnivore occurrence along an urban–rural gradient: a landscape-level analysis. Journal of Mammalogy 87, 1154–1164.
Carnivore occurrence along an urban–rural gradient: a landscape-level analysis.Crossref | GoogleScholarGoogle Scholar |

Reading, C. J. (1998). The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo. Oecologia 117, 469–475.
The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo.Crossref | GoogleScholarGoogle Scholar |

Relyea, R. A. (2003). Predator cues and pesticides: a double dose of danger for amphibians. Ecological Applications 13, 1515–1521.
Predator cues and pesticides: a double dose of danger for amphibians.Crossref | GoogleScholarGoogle Scholar |

Relyea, R. A., and Mills, N. (2001). Predator-induced stress makes the pesticide carbaryl more deadly to grey treefrog tadpoles (Hyla versicolor). Proceedings of the National Academy of Sciences of the United States of America 98, 2491–2496.
Predator-induced stress makes the pesticide carbaryl more deadly to grey treefrog tadpoles (Hyla versicolor).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslKmsrY%3D&md5=4a29feb19b104ef056ef65cce386aa21CAS | 11226266PubMed |

Rivadeneira, M. M., Hunt, G., and Roy, K. (2009). The use of sighting records to infer species extinctions: an evaluation of different methods. Ecology 90, 1291–1300.
The use of sighting records to infer species extinctions: an evaluation of different methods.Crossref | GoogleScholarGoogle Scholar | 19537549PubMed |

Ron, S. R., Duellman, W. E., Coloma, L. A., and Bustamante, M. R. (2003). Population decline of the jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. Journal of Herpetology 37, 116–126.
Population decline of the jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador.Crossref | GoogleScholarGoogle Scholar |

Sala, O. E., Chapin, F. S. I., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., and Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science 287, 1770–1774.
| 1:CAS:528:DC%2BD3cXhvVWltLk%3D&md5=82e058e940be47c133edf9aa27cf671eCAS | 10710299PubMed |

Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., and Woolmer, G. (2002). The human footprint and the last of the wild. Bioscience 52, 891–904.
The human footprint and the last of the wild.Crossref | GoogleScholarGoogle Scholar |

Semlitsch, R. D. (2000). Principles for management of aquatic breeding amphibians. The Journal of Wildlife Management 64, 615–631.
Principles for management of aquatic breeding amphibians.Crossref | GoogleScholarGoogle Scholar |

Sih, A., Bell, M. A., and Kerby, J. L. (2004). Two stressors are far deadlier than one. Trends in Ecology & Evolution 19, 274–276.
Two stressors are far deadlier than one.Crossref | GoogleScholarGoogle Scholar |

Simoncelli, F., Fagotti, A., Dall’Olio, R., Vagnetti, D., Pascolini, R., and Di Rosa, I. (2005). Evidence of Batrachochytrium dendrobatidis infection in water frogs of the Rana esculenta complex in central Italy. EcoHealth 2, 307–312.
Evidence of Batrachochytrium dendrobatidis infection in water frogs of the Rana esculenta complex in central Italy.Crossref | GoogleScholarGoogle Scholar |

Solow, A. R. (1993a). Inferring extinction from sighting data. Ecology 74, 962–964.
Inferring extinction from sighting data.Crossref | GoogleScholarGoogle Scholar |

Solow, A. R. (1993b). Inferring extinction in a declining population. Journal of Mathematical Biology 32, 79–82.
Inferring extinction in a declining population.Crossref | GoogleScholarGoogle Scholar |

Solow, A. R. (2005). Inferring extinction from a sighting record. Mathematical Biosciences 195, 47–55.
Inferring extinction from a sighting record.Crossref | GoogleScholarGoogle Scholar | 15922004PubMed |

Solow, A. R., and Roberts, D. L. (2003). A nonparametric test for extinction based on a sighting record. Ecology 84, 1329–1332.
A nonparametric test for extinction based on a sighting record.Crossref | GoogleScholarGoogle Scholar |

Stewart, M. M. (1995). Climate driven population fluctuations in rain forest frogs. Journal of Herpetology 29, 437–446.
Climate driven population fluctuations in rain forest frogs.Crossref | GoogleScholarGoogle Scholar |

Stuart, S., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S. L., Fishman, D. L., and Waller, R. W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786.
Status and trends of amphibian declines and extinctions worldwide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKitb7E&md5=7980b51010f6309660cec4c556deb59eCAS | 15486254PubMed |

Temple, H. J., and Cox, N. A. (Eds) (2009). ‘European Red List of Amphibians.’ (Office for Official Publications of the European Communities: Luxembourg.)

Toreti, A., and Desiato, F. (2008). Temperature trend over Italy from 1961 to 2004. Theoretical and Applied Climatology 91, 51–58.
Temperature trend over Italy from 1961 to 2004.Crossref | GoogleScholarGoogle Scholar |

van Der Ree, R., and McCarthy, M. A. (2005). Inferring persistence of indigenous mammals in response to urbanisation. Animal Conservation 8, 309–319.
Inferring persistence of indigenous mammals in response to urbanisation.Crossref | GoogleScholarGoogle Scholar |

Vitousek, P. M. (1997). Human domination of Earth’s ecosystems. Science 277, 494–499.
Human domination of Earth’s ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvVektLs%3D&md5=19845dd90805922fa82cc6c4c2611775CAS |

Wake, D. B., and Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences, USA 105, 11 466–11 473.
Are we in the midst of the sixth mass extinction? A view from the world of amphibians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSjtr7J&md5=135ed24d45037f0b4c98ddc6d558949fCAS |

Young, B. E., Lips, K. R., Reaser, J. K., Ibáñez, R., Salas, A. W., Cedeño, J. R., Coloma, L. A., Ron, S., La Marca, E., Meyer, J. R., Muñoz, A., Bolaños, F., Chaves, G., and Romo, D. (2001). Population declines and priorities for amphibian conservation in Latin America. Conservation Biology 15, 1213–1223.
Population declines and priorities for amphibian conservation in Latin America.Crossref | GoogleScholarGoogle Scholar |