Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Gintarasia and Xalocoa, two new genera to accommodate temperate to subtropical species in the predominantly tropical Graphidaceae (Ostropales, Ascomycota)

Ekaphan Kraichak A C , Sittiporn Parnmen A B , Robert Lücking A and H. Thorsten Lumbsch A
+ Author Affiliations
- Author Affiliations

A Science & Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, USA.

B Department of Medical Sciences, Ministry of Public Health, Tivanon Road, Nonthaburi 11000, Thailand.

C Corresponding author. Email: ekraichak@fieldmuseum.org

Australian Systematic Botany 26(6) 466-474 https://doi.org/10.1071/SB13038
Submitted: 31 August 2013  Accepted: 3 February 2014   Published: 27 March 2014

Abstract

The phylogenetic placement of Chapsa lamellifera, C. megalophthalma and Diploschistes ocellatus was studied using a dataset of five genetic markers (mtSSU, nuLSU, RPB1, RPB2 and ITS). As extratropical species occurring in Australasia, C. lamellifera and C. megalophthalma differ from other species in that genus by having relatively large ascomata with muriform ascospores and complex chemistry of either the protocetraric or stictic acids chemosyndrome. D. ocellatus is unique within Diploschistes, in lacking lateral paraphyses and containing the norstictic acid chemosyndrome. Previous phylogenetic analysis gave inconclusive results regarding the phylogenetic position of these taxa, and hence in the present study, a larger sampling of molecular markers was employed. Our results demonstrated that the two Chapsa species and D. ocellatus are not part of their current genera. Consequently, the new genera Gintarasia Kraichak, Lücking & Lumbsch and Xalocoa Kraichak, Lücking & Lumbsch are described to accommodate these species. The new combinations Gintarasia lamellifera (Kantvilas & Vězda) Kraichak, Lücking & Lumbsch, G. lordhowensis (Mangold) Kraichak, Lücking & Lumbsch, G. megalophthalma (Müll. Arg.) Kraichak, Lücking & Lumbsch and Xalocoa ocellata (Vill.) Kraichak, Lücking & Lumbsch are also proposed.


References

Baloch E, Lücking R, Lumbsch HT, Wedin M (2010) Major clades and phylogenetic relationships between lichenized and non-lichenized lineages in Ostropales (Ascomycota: Lecanoromycetes). Taxon 59, 1483–1494.

Buckley T (2002) Model misspecification and probabilistic tests of topology: evidence from empirical data sets. Systematic Biology 51, 509–523.
Model misspecification and probabilistic tests of topology: evidence from empirical data sets.Crossref | GoogleScholarGoogle Scholar | 12079647PubMed |

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 22847109PubMed |

Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer TAW (2011) Geneious. Version 5.5.8. (Biomatters: Auckland New Zealand). Available at http://www.geneious.com [Verified April 2012]

Fernández-Brime S, Llimona X, Molnar K, Stenroos S, Hognabba F, Bjoerk C, Lutzoni F, Gaya E (2011) Expansion of the Stictidaceae by the addition of the saxicolous lichen-forming genus Ingvariella. Mycologia 103, 755–763.
Expansion of the Stictidaceae by the addition of the saxicolous lichen-forming genus Ingvariella.Crossref | GoogleScholarGoogle Scholar | 21471292PubMed |

Fernández-Brime S, Llimona X, Lutzoni F, Gaya E (2013) Phylogenetic study of Diploschistes (lichen-forming Ascomycota: Ostropales: Graphidaceae), based on morphological, chemical, and molecular data. Taxon 62, 267–280.
Phylogenetic study of Diploschistes (lichen-forming Ascomycota: Ostropales: Graphidaceae), based on morphological, chemical, and molecular data.Crossref | GoogleScholarGoogle Scholar |

Frisch A, Kalb K, Grube M (2006) Contributions towards a new systematics of the lichen family Thelotremataceae. Bibliotheca Lichenologica 92, 1–539.

Guderley R, Lumbsch HT (1996) The lichen genus Diploschistes in South Africa (Thelotremataceae). Mycotaxon 58, 269–292.

Guderley R, Lumbsch HT, Feige GB (1997) Ingvariella, a new genus in the Thelotremataceae (lichenized Ascomycotina). Nova Hedwigia 64, 147–154.

Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696–704.
A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood.Crossref | GoogleScholarGoogle Scholar | 14530136PubMed |

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 11524383PubMed |

Kantvilas G, Vezda A (2000) Studies on the lichen family Thelotremataceae in Tasmania. The genus Chroodiscus and its relatives. Lichenologist 32, 325–357.
Studies on the lichen family Thelotremataceae in Tasmania. The genus Chroodiscus and its relatives.Crossref | GoogleScholarGoogle Scholar |

Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16, 1799–1808.
Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit.Crossref | GoogleScholarGoogle Scholar | 10605121PubMed |

Lücking R, Papong K, Thammathaworn A, Boonpragob K (2008) Historical biogeography and phenotype-phylogeny of Chroodiscus (lichenized Ascomycota: Ostropales: Graphidaceae). Journal of Biogeography 35, 2311–2327.
Historical biogeography and phenotype-phylogeny of Chroodiscus (lichenized Ascomycota: Ostropales: Graphidaceae).Crossref | GoogleScholarGoogle Scholar |

Lücking R, Tehler A, Bungartz F, Rivas Plata E, Lumbsch HT (2013) Journey from the West: did tropical Graphidaceae (lichenized Ascomycota: Ostropales) evolve from a saxicolous ancestor along the American Pacific coast? American Journal of Botany 100, 844–856.
Journey from the West: did tropical Graphidaceae (lichenized Ascomycota: Ostropales) evolve from a saxicolous ancestor along the American Pacific coast?Crossref | GoogleScholarGoogle Scholar | 23594913PubMed |

Lumbsch HT (1989) Die holarktischen Vertreter der Flechtengattung Diploschistes (Thelotremataceae). The Journal of the Hattori Botanical Laboratory 66, 133–196.

Lumbsch HT, Elix JA (1989) Taxonomy of some Diploschistes spp. (lichenized Ascomycetes, Thelotremataceae) containing gyrophoric acid. Plant Systematics and Evolution 167, 195–199.
Taxonomy of some Diploschistes spp. (lichenized Ascomycetes, Thelotremataceae) containing gyrophoric acid.Crossref | GoogleScholarGoogle Scholar |

Lumbsch HT, Elix JA (2003) The lichen genus Diploschistes (Thelotremataceae) in Australia. Bibliotheca Lichenologica 86, 119–128.

Lumbsch HT, Tehler A (1998) A cladistic analysis of the genus Diploschistes (Ascomycotina, Thelotremataceae). The Bryologist 101, 398–403.

Lumbsch HT, Divakar PK, Messuti MI, Mangold A, Lucking R (2010) A survey of thelotremoid lichens (Ascomycota: Ostropales) in subantarctic regions excluding Tasmania. Lichenologist 42, 203–224.
A survey of thelotremoid lichens (Ascomycota: Ostropales) in subantarctic regions excluding Tasmania.Crossref | GoogleScholarGoogle Scholar |

Mangold A, Martin MP, Kalb K, Lücking R, Lumbsch HT (2008a) Molecular data show that Topeliopsis (Ascomycota, Thelotremataceae) is polyphyletic. Lichenologist 40, 39–46.
Molecular data show that Topeliopsis (Ascomycota, Thelotremataceae) is polyphyletic.Crossref | GoogleScholarGoogle Scholar |

Mangold A, Martin MP, Lücking R, Lumbsch HT (2008b) Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota: Ostropales). Taxon 57, 476–486.

Mangold A, Elix JA, Lumbsch HT (2009) Thelotremataceae. In ‘Flora of Australia’, Vol. 57. (Ed. PM McCarthy) pp. 195–420. (CSIRO Publishing: Melbourne)

Martín MP, LaGreca S, Lumbsch HT (2003) Molecular phylogeny of Diploschistes inferred from ITS sequence data. Lichenologist 35, 27–32.
Molecular phylogeny of Diploschistes inferred from ITS sequence data.Crossref | GoogleScholarGoogle Scholar |

Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). American Journal of Botany 89, 688–698.
Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales).Crossref | GoogleScholarGoogle Scholar | 21665669PubMed |

Papong K, Corush J, Mangold A, Lücking R, Lumbsch HT (2009) Phylogenetic position of the foliicolous genus Chroodiscus (Ostropales, Ascomycota) inferred from nuclear and mitochondrial ribosomal DNA sequences. Fungal Diversity 38, 147–153.

Parnmen S, Lücking R, Lumbsch HT (2012) Phylogenetic classification at generic level in the absence of distinct phylogenetic patterns of phenotypical variation: a case study in Graphidaceae (Ascomycota). PLoS ONE 7, e51392
Phylogenetic classification at generic level in the absence of distinct phylogenetic patterns of phenotypical variation: a case study in Graphidaceae (Ascomycota).Crossref | GoogleScholarGoogle Scholar | 23251515PubMed |

Parnmen S, Cáceres MES, Lücking R, Lumbsch HT (2013) Myriochapsa and Nitidochapsa, two new genera in Graphidaceae (Ascomycota: Ostropales) for chroodiscoid species in the Ocellularia clade. The Bryologist 116, 127–133.
Myriochapsa and Nitidochapsa, two new genera in Graphidaceae (Ascomycota: Ostropales) for chroodiscoid species in the Ocellularia clade.Crossref | GoogleScholarGoogle Scholar |

Purvis OW, Jørgensen PM, James PW (1995) The lichen genus Thelotrema Ach. in Europe. Bibliotheca Lichenologica 58, 335–360.

Rambaut A (2012) FigTree. Version 1.4. Available at http://tree.bio.ed.ac.uk/software/figtree/ [Verified 5 December 2012]

Rivas Plata E, Lumbsch HT (2011) Parallel evolution and phenotypic divergence in lichenized fungi: a case study in the lichen-forming fungal family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Molecular Phylogenetics and Evolution 61, 45–63.
Parallel evolution and phenotypic divergence in lichenized fungi: a case study in the lichen-forming fungal family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales).Crossref | GoogleScholarGoogle Scholar | 21605691PubMed |

Rivas Plata E, Lücking R, Lumbsch HT (2008) When family matters: an analysis of Thelotremataceae (lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests. Biodiversity and Conservation 17, 1319–1351.
When family matters: an analysis of Thelotremataceae (lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests.Crossref | GoogleScholarGoogle Scholar |

Rivas Plata E, Lücking R, Lumbsch HT (2012a) A new classification for the lichen family Graphidaceae sens. lat. (Ascomycota: Lecanoromycetes: Ostropales). Fungal Diversity 52, 107–121.
A new classification for the lichen family Graphidaceae sens. lat. (Ascomycota: Lecanoromycetes: Ostropales).Crossref | GoogleScholarGoogle Scholar |

Rivas Plata E, Lücking R, Lumbsch HT (2012b) Molecular phylogeny and systematics of the Ocellularia clade (Ascomycota: Ostropales: Graphidaceae). Taxon 61, 1161–1179.

Rivas Plata E, Parnmen S, Staiger B, Mangold A, Frisch A, Weerakoon G, Hernández JE, Cáceres MES, Kalb K, Sipman HJM, Common RS, Lücking R, Lumbsch HT (2013) A molecular phylogeny of Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales) including 437 species. MycoKeys 6, 55–94.
A molecular phylogeny of Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales) including 437 species.Crossref | GoogleScholarGoogle Scholar |

Santesson R (1952) Foliicolous lichens I. A revision of the taxonomy of the obligately foliicolous, lichenized fungi. Symbolae Botanicae Upsalienses 12, 1–590.

Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.

Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247.
CONSEL: for assessing the confidence of phylogenetic tree selection.Crossref | GoogleScholarGoogle Scholar | 11751242PubMed |

Sipman HJM, Harris RC (1989) Lichens. In ‘Tropical Rain Forest Ecosystems’. (Eds H Lieth, MJA Werger) pp. 303–309. (Elsevier Science Publishers: Amsterdam)

Staiger B (2002) Die Flechtenfamilie Graphidaceae: Studien in Richtung einer natürlicheren Gliederung. Bibliotheca Lichenologica 85, 1–526.

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 16928733PubMed |

Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |

Strimmer K, Rambaut A (2002) Inferring confidence sets of possibly misspecified gene tree. Proceedings of the Royal Society of London – B. Biological Sciences 269, 137–142.
Inferring confidence sets of possibly misspecified gene tree.Crossref | GoogleScholarGoogle Scholar |

Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 17654362PubMed |

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172, 4238–4246.

White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR Protocols: A Guide to Methods and Applications’. (Eds MA Innis, DH Gelfand, JJ Sninsky, TJ White) pp. 315–322. (Academic Press: New York)

Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31, 511–516.