A GIS-based decision-making structure for managing the impacts of feral camels in Australia
David S. Lamb A F , William K. Saalfeld B , Murray J. McGregor C D , Glenn P. Edwards B , Benxaing Zeng B and Petronella Vaarzon-Morel EA Charles Darwin University, School for Social and Policy Research, Casuarina Campus, NT 0909, Australia.
B Department of Natural Resources, Environment, the Arts, and Sport, PO Box 1120, Alice Springs, NT 0871, Australia.
C Desert Knowledge Cooperative Research Centre, PO Box 3971, Alice Springs, NT 870, Australia.
D Curtin University of Technology, PO Box 771, Northam, WA 6401, Australia.
E Consulting Anthropologist, Desert Knowledge Cooperative Research Centre, PO Box 3971, Alice Springs, NT 0871, Australia.
F Corresponding author. Email: david.lamb@cdu.edu.au
The Rangeland Journal 32(1) 129-143 https://doi.org/10.1071/RJ09056
Submitted: 13 August 2009 Accepted: 4 January 2010 Published: 23 March 2010
Abstract
Feral camels have severe negative impacts on key environmental economic and social/cultural assets across a wide area in Australia and their population is increasing. In this paper we utilised Multicriteria Evaluation (MCE) within a Geographic Information System (GIS) to create a decision tool for their management. Six management methods which are currently used for managing feral camels and their impacts: aerial culling, ground culling, exclusion fencing, and commercial extraction for live export, pet meat, or human consumption, were considered in the development of the tool. The decision tool used GIS-based MCE to determine the suitability of each of the management methods across the range of feral camels in Australia.
A range of method-dependent criteria and factors served as inputs to the GIS-based MCE, which produced a suitability map or surface for each of the management methods. The broad-scale nature, Australia wide, of the work resulted in the suitability maps generated being of limited value in identifying fine-scale priority locations for management. The suitability maps did serve to identify broad-scale, cross-jurisdictional management zones where one or more of the management methods may be applicable. Geographic Information System-based MCE was concluded to have the potential to identify the appropriate areas for the application of specific feral camel management methods. Four management zones were then defined within the area of Australia in which feral camels are present.
Additional keywords: Analytic Hierarchy Process, fuzzy membership, Multicriteria Evaluation.
Acknowledgements
The work reported in this publication was supported by funding from the Australian Government Natural Heritage Trust through the Desert Knowledge CRC; the views expressed herein do not necessarily represent the views of the Australian Government or the Desert Knowledge CRC or its participants. We would like to acknowledge the assistance of Phil Gee and Andrew Drenen for their contributions in developing the expert criteria tables. Chris Auricht provided valuable comments on early drafts of the manuscript.
Baban S. M. J., Wan-Yusof K.
(2003) Modelling optimum sites for locating reservoirs in tropical environments. Water Resources Management 17(1), 1–17.
| Crossref | GoogleScholarGoogle Scholar |
(accessed 01 January 2010).
Edwards G. P.,
Zeng B.,
Saalfeld W. K., Vaarzon-Morel P.
(2010) Evaluation of the impacts of feral camels. The Rangeland Journal 32, 43–54.
| Crossref |
Fuller D. O.,
Williamson R.,
Jeffe M., James D.
(2003) Multi-criteria evaluation of safety and risks along transportation corridors on the Hopi Reservation. Applied Geography 23(2), 177–188.
| Crossref | GoogleScholarGoogle Scholar |
Gemitzi A.,
Petalas C.,
Tsihrintzis V. A., Pisinaras V.
(2006) Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques. Environmental Geology 49(5), 653–673.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Gemitzi A.,
Tsihrintzis V. A.,
Voudrias E.,
Petalas C., Stravodimos G.
(2007) Combining geographic information system multicriteria evaluation techniques and fuzzy logic in siting MSW landfills. Environmental Geology 51(5), 653–673.
Giordano L. C., Rieder P. S.
(2008) Multi-criteria spatial decision analysis for demarcation of greenway: a case study of the city of Rio Claro, São Paulo, Brazil. Landscape and Urban Planning 84, 301–311.
| Crossref | GoogleScholarGoogle Scholar |
Gkaraveli A.,
Good J. E. G., Williams J. H.
(2004) Determining priority areas for native woodland expansion restoration in Snowdonia National Park, Wales. Biological Conservation 115, 395–402.
| Crossref | GoogleScholarGoogle Scholar |
Henríquez C.,
Azócar G., Romero H.
(2006) Monitoring and modelling the urban growth of two mid-sized Chilean cities. Habitat International 30(4), 945–964.
| Crossref | GoogleScholarGoogle Scholar |
Hu Y.-C., Tsai J.-F.
(2006) Back propagation multi-layer perception for incomplete pairwise comparison matrices in analytic hierarchy process. Applied Mathematics and Computation 180(1), 53–62.
| Crossref | GoogleScholarGoogle Scholar |
Jiang H., Eastman J. R.
(2000) Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science 14(2), 173–184.
| Crossref | GoogleScholarGoogle Scholar |
Kyem P. A. K.
(2001) An application of choice heuristic algorithm for managing land resource allocation problems involving multiple parties and conflicting interests. Transactions in GIS 5(2), 111–129.
| Crossref | GoogleScholarGoogle Scholar |
Kyem P. A. K.
(2004) Of intractable conflicts and participatory GIS applications: the search for consensus amidst competing claims and institutional demands. Annals of the Association of American Geographers 94(1), 37–57.
| Crossref | GoogleScholarGoogle Scholar |
Lapidge S. J.,
Eason C. T., Humphrys S. T.
(2010) A review of chemical, biological and fertility control options for the camel in Australia. The Rangeland Journal 32, 95–115.
Malczewski J.
(2000) On the use of weighted linear combination method in GIS: common and best practice approaches. Transactions in GIS 4(1), 5–22.
| Crossref | GoogleScholarGoogle Scholar |
Malczewski J.
(2006) GIS-based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science 20(7), 703–726.
| Crossref | GoogleScholarGoogle Scholar |
McLeod S. R., Pople A. R.
(2010) Modelling the distribution and relative abundance of feral camels in the Northern Territory using count data. The Rangeland Journal 32, 21–32.
| Crossref |
Oliphant T. E.
(2007) Python for scientific computing. Computing in Science & Engineering 9(3), 10–20.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Pereira J. M. C., Duckstein L.
(1993) A multiple criteria decision-making approach to GIS-based land suitability evaluation. International Journal of Geographical Information Systems 7(5), 407–424.
| Crossref | GoogleScholarGoogle Scholar |
Phua M., Minowa M.
(2005) A GIS-based multi-criteria decision making approach to forest conservation planning at a landscape scale: a case study in the Kinabalu Area, Sabah, Malaysia. Landscape and Urban Planning 71, 207–222.
| Crossref | GoogleScholarGoogle Scholar |
Pople A. R., McLeod S. R.
(2010) Demography of feral camels in central Australia and its relevance to population control. The Rangeland Journal 32, 11–19.
Rakotomanana F.,
Randremanana R. V.,
Rabarijaona L. P.,
Duchemin J. B.,
Ratovonjato J.,
Ariey F.,
Rudant J. P., Jeanne I.
(2007) Determining areas that require indoor insecticide spraying using multi criteria evaluation, a decision-support tool for malaria vector control programmes in the Central Highlands of Madagascar. International Journal of Health Geographics 6(2), 1–11.
| Crossref |
PubMed |
Robinson V. B.
(2003) A perspective on the fundamentals of fuzzy sets and their use in Geographic Information Systems. Transactions in GIS 7(1), 3–30.
| Crossref | GoogleScholarGoogle Scholar |
Robinson T. P.,
Harris R. S.,
Hopkins J. S., Williams B. G.
(2002) An example of decision support for trypanosomiasis control using a geographical information system in eastern Zambia. International Journal of Geographical Information Science 16(4), 345–360.
| Crossref | GoogleScholarGoogle Scholar |
Rodríguez-Freire M., Crecente-Maseda R.
(2008) Directional connectivity of wolf (Canis lupus) populations in Northwest Spain and anthropogenic effects on dispersal patterns. Environmental Modeling and Assessment 13(1), 35–51.
| Crossref | GoogleScholarGoogle Scholar |
Saalfeld W. K., Edwards G. P.
(2010) Distribution and abundance of the feral camel (Camelus dromedarius) in Australia. The Rangeland Journal 32, 1–9.
Saaty T. L.
(1977) A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15, 234–281.
| Crossref | GoogleScholarGoogle Scholar |
Sharifi M. A.,
van den Toorn W.,
Rico A., Emmanuel M.
(2002) Application of GIS and multicriteria evaluation in locating sustainable boundary between the Tunari National Park and Cochabamba City (Bolivia). Journal of Multi-Criteria Decision Analysis 11(3), 151–164.
| Crossref | GoogleScholarGoogle Scholar |
Store R., Jokimäki J.
(2003) A GIS-based multi-scale approach to habitat suitability modeling. Ecological Modelling 169(1), 1–15.
| Crossref | GoogleScholarGoogle Scholar |
Store R., Kangas J.
(2001) Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modelling. Landscape and Urban Planning 55(2), 79–93.
| Crossref | GoogleScholarGoogle Scholar |
Symeonakis E.,
Robinson T., Drake N.
(2007) GIS and multiple-criteria evaluation for the optimisation of tsetse fly eradication programmes. Environmental Monitoring and Assessment 124(1-3), 89–103.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Vaarzon-Morel P.
(2010) Changes in Aboriginal perceptions of feral camels and their impacts and management. The Rangeland Journal 32, 73–85.
Valente R. O. A., Vettorazzi C. A.
(2008) Definition of priority areas for forest conservation through the ordered weighted averaging method. Forest Ecology and Management 256(6), 1408–1417.
| Crossref | GoogleScholarGoogle Scholar |
Villa F.,
Ceroni M., Mazza A.
(1996) A GIS-based method for multi-objective evaluation of park vegetation. Landscape and Urban Planning 35(4), 203–212.
| Crossref | GoogleScholarGoogle Scholar |
Wood L. J., Dragicevic S.
(2007) GIS-based multicriteria evaluation and fuzzy sets to identify priority sites for marine protection. Biodiversity and Conservation 16(9), 2539–2558.
| Crossref | GoogleScholarGoogle Scholar |
Zadeh L. A.
(1965) Fuzzy sets. Information and Control 8(3), 338–353.
| Crossref | GoogleScholarGoogle Scholar |
Zeng B., Edwards G. P.
(2010) Perceptions of pastoralists and conservation reserve managers on managing feral camels and their impacts. The Rangeland Journal 32, 63–72.