Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Morphological characters of the tongue skeleton reveal phylogenetic relationships within the Corvidae (Oscines, Passeriformes)

Albrecht Manegold
+ Author Affiliations
- Author Affiliations

A Forschungsinstitut Senckenberg, Sektion Ornithologie, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.

B Present address: Iziko South African Museum, Natural History Department, Cenozoic Palaeontology Collections, Box 61, Cape Town 8000, South Africa. Email: albrecht.manegold@senckenberg.de

Emu 108(4) 321-330 https://doi.org/10.1071/MU08022
Submitted: 2 May 2008  Accepted: 28 October 2008   Published: 27 November 2008

Abstract

Monophyly of the Corvidae is strongly supported by analyses based on DNA sequences, but traditional as well as current hypotheses on their interrelationships are contradictory. Some of these conflicts can be resolved by phylogenetic analysis of morphological characters of the tongue skeleton. The analysis presented here yields a set of derived characters that support a clade of core-group Corvidae comprising all corvid species studied with the exception of Palaearctic choughs (Pyrrhocorax). Additional characters support a clade within the core-group Corvidae comprising the Palaearctic jays (Garrulus and Perisoreus), crows and ravens (Corvus) and nutcrackers (Nucifraga). Dietary shifts are thought to be probable key innovations or ‘pacemakers’ for the observed character transformations.

Additional keywords: apparatus hyobranchialis, basihyale, paraglossalia, urohyale.


Acknowledgements

I thank Gerald Mayr (Forschungsinstitut Senckenberg, Frankfurt am Main, Germany) and Jo Cooper (Natural History Museum, Tring, Great Britain) for providing access to the skeleton collections. I also thank Mark Peck (Royal Ontario Museum, Canada), Mark Blair Robbins (University of Kansas/Museum of Natural History, Lawrence, USA), Paul Sweet and David Willard (Field Museum of Natural History, Chicago, USA) for loans of additional specimens. I also thank Andrzej Elzanowski (University of Wroclaw, Poland) for calling my attention to certain literature, as well as Camilla Myers, John R. Stewart and an anonymous referee for their helpful comments. I am very grateful to J. Tyler Faith and Amy L. Rector for proof-reading the manuscript. This study was supported by a German Research Foundation (DFG) grant (MA 2328/3–2) and by a Leopoldina Research Fellowship (BMBF-LPD 9901/8–183).


References

Amadon, D. (1944). The genera of Corvidae and their relationships. American Museum Novitates 1251, 1–51.
Baumel J. J. , and Witmer L. M. (1993). Osteologica. In ‘Handbook of Avian Anatomy: Nomina Anatomica Avium.’ 2nd edn. Publications of the Nuttall Ornithological Club 23. (Eds J. J. Baumel, A. S. King, J. E. Breazile, H. E. Evans and J. C. Vanden Berge.) pp. 45–132. (Nuttall Ornithological Club: Cambridge, MA.)

Bock, W. J. (1961). Salivary glands in the gray jays (Perisoreus). Auk 78, 355–365.
Dickinson E. C. (Ed.) (2003). ‘The Howard and Moore Complete Checklist of the Birds of the World.’ 3rd edn. (Christopher Helm: London, UK.)

Dow, D. D. (1965). The role of saliva in food storage by the Gray Jay. Auk 82, 139–154.
Frith C. B. , and Beehler B. M. (1998). ‘Birds of Paradise (Paradisaeidae).’ (Oxford University Press: New York.)

Gadow H. , and Selenka E. (1891). ‘Vögel. I. Anatomischer Theil. Bronn’s Klassen und Ordnungen des Thierreichs. 6. Band, 4. Abteilung.’ (C. F. Winter’sche Verlagsbuchhandlung: Leipzig.)

Gebauer, A. , Jacob, J. , Kaiser, M. , and Eck, S. (2004). Chemistry of the uropygial gland secretion of Hume’s ground jay Pseudopodoces humilis and its taxonomic implications. Journal of Ornithology 145, 352–355.
Crossref | GoogleScholarGoogle Scholar | Goodwin D. (1976). ‘Crows of the World.’ (Cornell University Press: Ithaca, NY.)

Harshman J. (2007). Classification and phylogeny of birds. In ‘Reproductive Biology and Phylogeny of Birds. Part A’. (Ed. B. G. M. Jamieson.) pp. 1–35. (Science Publishers: Enfield, NH, USA.)

Helm-Bychowski, K. , and Cracraft, J. (1993). Recovering phylogenetic signal from DNA sequences: relationships within the corvine assemblage (class Aves) as inferred from complete sequences of the mitochondrial DNA cytochrome-b gene. Molecular Biology and Evolution 10, 1196–1214.
CAS | PubMed | Hope S. (1989). Phylogeny of the avian family Corvidae. Ph.D. Thesis, City University, New York.

James, H. F. , Ericson, P. G. P. , Slikas, B. , Lei, F. M. , Gill, F. B. , and Olson, S. L. (2003). Pseudopodoces humilis, a misclassified terrestrial tit (Paridae) of the Tibetan Plateau: evolutionary consequences of shifting adaptive zones. Ibis 145, 185–202.
Crossref | GoogleScholarGoogle Scholar | Madge S. , and Burn H. (1994). ‘Crows and Jays.’ (Cristopher Helm Publications: London.)

Manegold, A. (2008). Composition and phylogenetic affinities of vangas (Vangidae, Oscines, Passeriformes) based on morphological characters. Journal of Zoological Systematics and Evolutionary Research 46, 267–277.
Crossref | GoogleScholarGoogle Scholar | Mayr E. (1963). ‘Animal Species and Evolution.’ (Harvard University Press: Cambridge, MA.)

Nunn, G. B. , and Cracraft, J. (1996). Phylogenetic relationships among the major lineages of the birds-of-paradise (Paradisaeidae) using mitochondrial DNA gene sequences. Molecular Phylogenetics and Evolution 5, 445–459.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Oelhafen, M. G. (1981). Vergleichend morphologische Untersuchungen am Verdauungstrakt einheimischer Rabenvögel (Corvidae). Der Ornithologische Beobachter 78, 17–40.


Oelhafen-Gandolla, M. , and Ziswiler, V. (1981). Adaptations and modification potential of the gizzard in some European corvid species. Revue Suisse de Zoologie 88, 847–853.[In German with English summary]


Price, D. T. , Qvarnström, A. , and Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 1433–1440.
Crossref | GoogleScholarGoogle Scholar |

Puniamoorthy, N. , Su, K. F. Y. , and Meier, R. (2008). Bending for love: losses and gains of sexual dimorphisms are strictly correlated with changes in the mounting position of sepsid flies (Sepsidae : Diptera). BMC Evolutionary Biology 8, 155.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Saunders, M. A. , and Edwards, S. V. (2000). Dynamics and phylogenetic implications of mt-DNA control region sequences in New World jays (Aves : Corvidae). Journal of Molecular Evolution 51, 97–109.
CAS | PubMed |

von Wahlert, G. (1965). The role of ecological factors in the origin of higher levels of organization. Systematic Zoology 14, 288–300.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Ziswiler, V. (1965). Zur Kenntnis des Samenöffnens und der Struktur des hörnernen Gaumens bei körnerfressenden Oscines. Journal für Ornithologie 106, 1–48.
Crossref | GoogleScholarGoogle Scholar |

Ziswiler, V. (1979). Stiffening devices in the tongue of granivorous songbirds. Revue Suisse de Zoologie 86, 823–831. [In German with English summary]


Zusi, R. (1987). Feeding adaptation of the jaw articulation in New World Jays (Corvidae). Auk 104, 665–680.




Appendix 1. List of characters used in the phylogenetic analysis

1. Paraglossalia: (0) rostral tips pointed, symphysis paraglossalis rostralis extended, (1) rostral tips blunt and truncated, symphysis paraglossalis rostralis short (Fig. 2a, g ).

2. Paraglossalia, proc. articulares paraglossales: (0) meet medially, (1) do not meet medially, more or less triangular in outline and reduced in size (Fig. 2a, g ).

3. Paraglossalia, ventral surface: (0) smooth, (1) equipped with cone-shaped proc. paraglossalis ventralis (Fig. 2c, i ).

4. Paraglossalia, dorso-ventrally concave: (0) no, (1) yes (Fig. 3f, g ).

5. Basihyale, rostro-ventral margin of facies articularis paraglosso-basihyalis: (0) pointed, projects farther rostrally than its rostro-dorsal margin, (1) truncated, (2) greatly reduced (Figs 2b, h, 3d, g ).

6. Basihyale, rostral end distinctly broadened: (0) no, (1) yes (Fig. 3e, f ).

7. Basihyale, elongated and with sagittal crest: (0) no, (1) yes (Fig. 3d, g ).

8. Urohyale: (0) ossified, spoon-shaped and dorso-ventrally flattened, (1) unossified, cartilaginous (Fig. 2a, g ) (Giebel 1858; James et al. 2003).

9. Quadrate with additional condyle articulating with rostral cotyla of the lower jaw (buttress complex): (0) absent, (1) present (Zusi 1987).


Appendix 2. Character matrix. For details of characters, see Appendix 1



Click to zoom