Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Sex determination and sexual size-dimorphism in Southern Giant-Petrels (Macronectes giganteus) from Patagonia, Argentina

S. Copello A D , F. Quintana A B and G. Somoza C
+ Author Affiliations
- Author Affiliations

A Centro Nacional Patagónico (CONICET), (U9120ACF) Puerto Madryn, Argentina.

B Wildlife Conservation Society, New York, NY 10460, USA.

C Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), CONICET-Universidad Nacional de General San Martín, (B7130IWA) Chascomús, Argentina.

D Corresponding author. Email: scopello@cenpat.edu.ar

Emu 106(2) 141-146 https://doi.org/10.1071/MU05033
Submitted: 28 June 2005  Accepted: 28 March 2006   Published: 19 May 2006

Abstract

We used discriminant analysis of a series of external morphometric measurements, together with confirmation by genetic methods, to develop a simple method to determine the sex of fledgling and adult Southern Giant-Petrels (Macronectes giganteus) in colonies in northern Patagonia. We also described morphometric parameters (bill-length, bill-depth, tarsal length, wing-length, and weight) for different classes of age and sex and analysed differences in size between male and female chicks over the growth period. Southern Giant-Petrels showed conspicuous sexual size-dimorphism, with males being significantly larger than females, this difference being apparent within 8 weeks of hatching. In adults, males were 40% heavier than females and consistently larger in all measurements (% sexual size-dimorphism 5–15%). For fledglings, bill-length was the most dimorphic variable (15.2%). The discriminant analysis of four external measurements correctly identified the sex of more than 90% of adults and fledglings. Bill-length alone was sufficient to predict sex of adults and fledglings and can thus serve as a simple and effective tool for sexing Southern Giant-Petrels.


Acknowledgments

Research was part of wider research on the Southern Giant-Petrel on the Patagonian coast of Argentina funded by the Wildlife Conservation Society, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Ecocentro Puerto Madryn. We thank the Dirección de Fauna y Flora Silvestre of Chubut Province for issuing the work permits to capture and handle birds. We would like to thank A. Sapoznikow, N. Suaréz, M. Uhart, A. Sabatini, J. Braun, J. E. Sala, G. Morales, F. Marquez, A. Steinfurth, I. Zimmer and I. Escapa for their help in the field and G.C. López for her technical assistance in the laboratory. Special thanks to J. Owen and R. Vera for logistical help. T. Svagelj, P. Yorio and R. P. Wilson are also acknowledged for their valuable comments on early versions of this manuscript.


References

Berrow, S. D. , Huin, N. , Humpidge, R. , Murray, A. W. A. , and Prince, P. A. (1999). Wing and primary growth of the wandering albatross. Condor 101, 360–368.
Bost C., and Jouventin P. (1990). Evolutionary ecology of Gentoo Penguins (Pygoscelis papua). In ‘Penguin Biology’. (Eds L. S. Davis and J. T. Darby.) pp. 85–109. (Academic Press: San Diego, CA.)

Conroy, J. W. H. (1972). Ecological aspects of the biology of the giant petrel Macronectes giganteus (Gmelin) in the maritime Antarctic. British Antarctic Survey. Scientific Reports 75, 1–74.
González-Solís J., and Croxall J. P. (2005). Differences in foraging behaviour and feeding ecology in giant petrels. In ‘Sexual Segregation in Vertebrates: Ecology of the Two Sexes’. (Eds K. E. Ruckstuhl and P. Neuhaus.) pp. 92–111. (Cambridge University Press: Cambridge, UK.)

González-Solís, J. , Croxall, J. P. , and Wood, A. G. (2000a). Foraging partitioning between giant petrels Macronectes spp and its relationship with breeding population changes at Bird Island, South Georgia. Marine Ecology Progress Series 204, 279–288.
Harrison P. (1983). ‘Seabirds: An Identification Guide.’ (Croom Helm:London.)

Hedd, A. , Gales, R. , and Brothers, N. (1998). Reliability of morphometric measure for determining the sex of adult and fledgling shy albatrosses, Diomedea cauta cauta, in Australia. Wildlife Research 25, 69–79.
Crossref | GoogleScholarGoogle Scholar | Selander R. K. (1972). Sexual selection and dimorphism in birds. In ‘Sexual Selection and the Descent of Man, 1871–1971’. (Ed. B. Campbell.) pp. 180–229. (Heinemann: Chicago, IL.)

Shaffer, S. A. , Weimerskirch, H. , and Costa, D. P. (2001). Functional significance of sexual dimorphism in Wandering Albatrosses, Diomedea exulans. Functional Ecology 15, 203–210.
Crossref | GoogleScholarGoogle Scholar | Sokal R. R., and Rohlf F. J. (1995). ‘Biometry.’ (W. H. Freeman: New York.)

Tabachnick B. G., and Fidell L. S. (1996). ‘Using Multivariate Statistics.’ (Harper Collins Publishers: New York.)

Torlaschi, C. , Gandini, P. , Frere, E. , and Martinez Peck, R. (2000). Predicting the sex of Kelp Gulls by external measurements. Waterbirds 23, 518–520.
Crossref | GoogleScholarGoogle Scholar | Voisin J. F., and Bester M. N. (1981). The specific status of giant petrels Macronectes at Gough Island. In ‘Proceedings of the Symposium on Birds of the Sea and Shore. University of Cape Town, 1979’. (Ed. J. Cooper.) pp. 215–222. (African Seabird Group: Cape Town, South Africa.)

Waugh, S. M. , Prince, P. A. , and Weimerskirch, H. (1999). Geographical variation in morphometry of black-browed and grey-headed albatrosses from four sites. Polar Biology 22, 189–194.
Crossref | GoogleScholarGoogle Scholar |