Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests

Scott Bennett A B I , Thomas Wernberg A , Sean D. Connell C D , Alistair J. Hobday E , Craig R. Johnson F and Elvira S. Poloczanska G H
+ Author Affiliations
- Author Affiliations

A UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, WA 6009, Australia.

B Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia.

C Southern Seas Ecology Laboratories, The University of Adelaide, Adelaide, SA 5005, Australia.

D The Environment Institute and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

E CSIRO Oceans and Atmosphere Flagship, Hobart, Tas. 7000, Australia.

F Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas. 7001, Australia.

G CSIRO Oceans and Atmosphere Flagship, Ecosciences Precinct, Brisbane, Qld 4001, Australia.

H Global Change Institute, The University of Queensland, Brisbane, Qld 4072, Australia.

I Corresponding author. Email: scott.bennett1@curtin.edu.au

Marine and Freshwater Research 67(1) 47-56 https://doi.org/10.1071/MF15232
Submitted: 17 June 2015  Accepted: 31 July 2015   Published: 27 August 2015

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Abstract

Kelp forests define >8000 km of temperate coastline across southern Australia, where ~70% of Australians live, work and recreate. Despite this, public and political awareness of the scale and significance of this marine ecosystem is low, and research investment miniscule (<10%), relative to comparable ecosystems. The absence of an identity for Australia’s temperate reefs as an entity has probably contributed to the current lack of appreciation of this system, which is at odds with its profound ecological, social and economic importance. We define the ‘Great Southern Reef’ (GSR) as Australia’s spatially connected temperate reef system. The GSR covers ~71 000 km2 and represents a global biodiversity hotspot across at least nine phyla. GSR-related fishing and tourism generates at least AU$10 billion year–1, and in this context the GSR is a significant natural asset for Australia and globally. Maintaining the health and ecological functioning of the GSR is critical to the continued sustainability of human livelihoods and wellbeing derived from it. By recognising the GSR as an entity we seek to boost awareness, and take steps towards negotiating the difficult challenges the GSR faces in a future of unprecedented coastal population growth and global change.

Additional keywords: ecosystem services, ecosystem values, temperate reef.


References

ABS (2001). Regional population growth. 3218.0. Australian Bureau of Statistics, Canberra.

Alleway, H. K., and Connell, S. D. (2015). Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory. Conservation Biology 29, 795–804.
Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory.Crossref | GoogleScholarGoogle Scholar | 25588455PubMed |

Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., and Berta, A. (2012). The magnitude of global marine species diversity. Current Biology 22, 2189–2202.
The magnitude of global marine species diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12gtb7K&md5=fc9ae0d150c12546cc684525e8fa6a91CAS | 23159596PubMed |

Barnes, D. K., and Griffiths, H. J. (2008). Biodiversity and biogeography of southern temperate and polar bryozoans. Global Ecology and Biogeography 17, 84–99.

Bellwood, D. R., and Meyer, C. P. (2009). Searching for heat in a marine biodiversity hotspot. Journal of Biogeography 36, 569–576.
Searching for heat in a marine biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Bennett, S., and Wernberg, T. (2014). Canopy facilitates seaweed recruitment on subtidal temperate reefs Journal of Ecology 102, 1462–1470.
Canopy facilitates seaweed recruitment on subtidal temperate reefsCrossref | GoogleScholarGoogle Scholar |

Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J., and Saunders, B. (2015a). Tropical herbivores provide resilience to a climate mediated phase-shift on temperate reefs. Ecology Letters 18, 714–723.
Tropical herbivores provide resilience to a climate mediated phase-shift on temperate reefs.Crossref | GoogleScholarGoogle Scholar | 25994785PubMed |

Bennett, S., Wernberg, T., Anderson, R. J., Bolton, J. J., Bettignies, T. D., Kendrick, G. A., Rodgers, K. L., Shears, N. T., Leclerc, J. C., Lévêque, L., Davoult, D., and Christie, H. C. (2015b). Canopy interactions and physical stress gradients in subtidal communities Ecology Letters 18, 677–686.
Canopy interactions and physical stress gradients in subtidal communitiesCrossref | GoogleScholarGoogle Scholar | 25975532PubMed |

Bertocci, I., Araújo, R., Oliveira, P., and Sousa-Pinto, I. (2015). Potential effects of kelp species on local fisheries. Journal of Applied Ecology 52, 1216–1226.
Potential effects of kelp species on local fisheries.Crossref | GoogleScholarGoogle Scholar |

Bolton, J. (1994). Global seaweed diversity: patterns and anomalies. Botanica Marina 37, 241–246.
Global seaweed diversity: patterns and anomalies.Crossref | GoogleScholarGoogle Scholar |

Bolton, J. J. (2010). The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgoland Marine Research 64, 263–279.
The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Bustamante, R. H., and Branch, G. M. (1996). The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa. Journal of Experimental Marine Biology and Ecology 196, 1–28.
The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa.Crossref | GoogleScholarGoogle Scholar |

Butler, A. J., Rees, T., Beesley, P., and Bax, N. J. (2010). Marine biodiversity in the Australian region. PLoS One 5, e11831.
Marine biodiversity in the Australian region.Crossref | GoogleScholarGoogle Scholar | 20689847PubMed |

Chung, I. K., Beardall, J., Mehta, S., Sahoo, D., and Stojkovic, S. (2011). Using marine macroalgae for carbon sequestration: a critical appraisal. Journal of Applied Phycology 23, 877–886.
Using marine macroalgae for carbon sequestration: a critical appraisal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFymtbzJ&md5=8d76d2024e4ba924d8019c49c9d11448CAS |

Coleman, M. A., Kelaher, B. P., Steinberg, P. D., and Millar, A. J. K. (2008). Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline. Journal of Phycology 44, 897–901.
Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline.Crossref | GoogleScholarGoogle Scholar |

Coleman, M. A., Roughan, M., MacDonald, H. S., Connell, S. D., Gillanders, B. M., Kelaher, B. P., and Steinberg, P. D. (2011). Variation in the strength of continental boundary currents determines continent-wide connectivity in kelp. Journal of Ecology 99, 1026–1032.
Variation in the strength of continental boundary currents determines continent-wide connectivity in kelp.Crossref | GoogleScholarGoogle Scholar |

Coleman, M., Feng, M., Roughan, M., Cetina-Heredia, P., and Connell, S. D. (2013). Temperate shelf water dispersal by Australian boundary currents: implications for population connectivity. Limnology and Oceanography: Fluids and Environments 3, 295–309.

Condie, S. A., and Dunn, J. R. (2006). Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary production regimes and biogeography. Marine and Freshwater Research 57, 569–590.
Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary production regimes and biogeography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVeksr8%3D&md5=fed7a0ec478203fe663fd95cb9163ce8CAS |

Condie, S. A., Waring, J., Mansbridge, J. V., and Cahill, M. L. (2005). Marine connectivity patterns around the Australian continent. Environmental Modelling & Software 20, 1149–1157.
Marine connectivity patterns around the Australian continent.Crossref | GoogleScholarGoogle Scholar |

Connell, S. D. (2007). Water quality and loss of coral reefs and kelp forests: alternative states and the influence of fishing. In ‘Marine Ecology’. (Eds S. D. Connell and B. M. Gillanders.) pp. 556–568. (Oxford University Press: Melbourne.)

Connell, S. D., and Ghedini, G. (2015). Resisting regime-shifts: the stabilising effect of compensatory processes. Trends in Ecology & Evolution 30, 513–515.
Resisting regime-shifts: the stabilising effect of compensatory processes.Crossref | GoogleScholarGoogle Scholar |

Connell, S. D., and Irving, A. D. (2008). Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. Journal of Biogeography 35, 1608–1621.
Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia.Crossref | GoogleScholarGoogle Scholar |

Connell, S. D., and Irving, A. D. (2009). The subtidal ecology of rocky coasts: local–regional–biogeographic patterns and their experiental analysis. In ‘Marine Macroecology’. (Eds J. D. Witman, R. Roy.) pp. 392–424. (University of Chicago Press: Chicago, IL.)

Connell, S. D., Russell, B. D., Turner, D. J., Shepherd, A. J. S., Kildea, T. N., Miller, D., Airoldi, L., and Cheshire, A. (2008). Recovering a lost baseline: missing kelp forests from a metropolitan coast. Marine Ecology Progress Series 360, 63–72.
Recovering a lost baseline: missing kelp forests from a metropolitan coast.Crossref | GoogleScholarGoogle Scholar |

Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., and Russell, B. D. (2013). The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368, 20120442.
The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance.Crossref | GoogleScholarGoogle Scholar | 23980244PubMed |

Connell, S., Foster, M., and Airoldi, L. (2014). What are algal turfs? Towards a better description of turfs. Marine Ecology Progress Series 495, 299–307.
What are algal turfs? Towards a better description of turfs.Crossref | GoogleScholarGoogle Scholar |

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., and van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature 387, 253–260.
The value of the world’s ecosystem services and natural capital.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlShtbs%3D&md5=25828f5b7a831e14a9c671e6ca22d945CAS |

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., and Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change 26, 152–158.
Changes in the global value of ecosystem services.Crossref | GoogleScholarGoogle Scholar |

Day, J. C. (2002). Zoning – lessons from the Great Barrier Reef Marine Park. Ocean and Coastal Management 45, 139–156.
Zoning – lessons from the Great Barrier Reef Marine Park.Crossref | GoogleScholarGoogle Scholar |

Day, J., Fernandes, L., Lewis, A., and Innes, J. (2003). RAP – an ecosystem level approach to biodiversity protection planning. In ‘Proceedings of the Second International Tropical Marine Ecosystems Management Symposium. Great Barrier Reef Marine Park Authority’, Townsville, Qld, Australia. pp. 251–265. (Great Barrier Reef Marine Park Authority: Townsville, Qld.)

de Bettignies, T., Wernberg, T., Lavery, P. S., Vanderklift, M. A., and Mohring, M. B. (2013). Contrasting mechanisms of dislodgement and erosion contribute to production of kelp detritus. Limnology and Oceanography 58, 1680–1688.
Contrasting mechanisms of dislodgement and erosion contribute to production of kelp detritus.Crossref | GoogleScholarGoogle Scholar |

de Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., and Hein, L. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services 1, 50–61.
Global estimates of the value of ecosystems and their services in monetary units.Crossref | GoogleScholarGoogle Scholar |

Deloitte Access Economics (2013). Economic contribution of the Great Barrier Reef, Great Barrier Reef Marine Park Authority, Townsville.

Department of Sustainability, Environment, Water, Population and Communities (2011). State of the Environment 2011 – Marine Environment. Independent report to the Australian Government Minister for Sustainability, Environment, Water, Population and Communities. Department of Sustainability, Environment, Water, Population and Communities, Canberra.

Duarte, C. M., Dennison, W. C., Orth, R. J., and Carruthers, T. J. (2008). The charisma of coastal ecosystems: addressing the imbalance. Estuaries and Coasts 31, 233–238.
The charisma of coastal ecosystems: addressing the imbalance.Crossref | GoogleScholarGoogle Scholar |

Falkenberg, L. J., Connell, S. D., and Russell, B. D. (2013). Disrupting the effects of synergies between stressors: improved water quality dampens the effects of future CO2 on a marine habitat. Journal of Applied Ecology 50, 51–58.
Disrupting the effects of synergies between stressors: improved water quality dampens the effects of future CO2 on a marine habitat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslWju7s%3D&md5=78ce3227390f5d05129f329c9b23287eCAS |

Ghedini, G., Russell, B. D., and Connell, S. D. (2015). Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecology Letters 18, 182–187.
Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances.Crossref | GoogleScholarGoogle Scholar | 25581377PubMed |

Gorman, D., Russell, B. D., and Connell, S. D. (2009). Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecological Applications 19, 1114–1126.
Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts.Crossref | GoogleScholarGoogle Scholar | 19688920PubMed |

Graham, M. H., Kinlan, B. P., Druehl, L. D., Garske, L. E., and Banks, S. (2007). Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proceedings of the National Academy of Sciences of the United States of America 104, 16576–16580.
Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WgsrnK&md5=3e34620606480dac72dfd62eec31e8bcCAS | 17913882PubMed |

Henry, G. W., and Lyle, J. M. (2003). The national recreational and Indigenous fishing survey. Fisheries Research and Development Corporation Project 1999/158. Australian Government Department of Agriculture, Fisheries and Forestry, Canberra.

Hobday, A. J., and Lough, J. M. (2011). Projected climate change in Australian marine and freshwater environments. Marine and Freshwater Research 62, 1000–1014.
Projected climate change in Australian marine and freshwater environments.Crossref | GoogleScholarGoogle Scholar |

Hobday, A. J., and Pecl, G. T. (2014). Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Reviews in Fish Biology and Fisheries 24, 415–425.
Identification of global marine hotspots: sentinels for change and vanguards for adaptation action.Crossref | GoogleScholarGoogle Scholar |

Hommersand, M. (1986). The biogeography of the South African marine red algae: a model. Botanica Marina 29, 257–270.
The biogeography of the South African marine red algae: a model.Crossref | GoogleScholarGoogle Scholar |

Irving, A. D., and Connell, S. D. (2006). Predicting understorey structure from the presence and composition of canopies: an assembly rule for marine algae. Oecologia 148, 491–502.
Predicting understorey structure from the presence and composition of canopies: an assembly rule for marine algae.Crossref | GoogleScholarGoogle Scholar | 16502000PubMed |

Jenkins, G. P., and Wheatley, M. J. (1998). The influence of habitat structure on nearshore fish assemblages in a southern Australian embayment: comparison of shallow seagrass, reef-algal and unvegetated sand habitats, with emphasis on their importance to recruitment. Journal of Experimental Marine Biology and Ecology 221, 147–172.
The influence of habitat structure on nearshore fish assemblages in a southern Australian embayment: comparison of shallow seagrass, reef-algal and unvegetated sand habitats, with emphasis on their importance to recruitment.Crossref | GoogleScholarGoogle Scholar |

Johnson, C. R., Banks, S. C., Barrett, N. S., Cazassus, F., Dunstan, P. K., Edgar, G. J., Frusher, S. D., Gardner, C., Haddon, M., Helidoniotis, F., Hill, K. L., Holbrook, N. J., Hosie, G. W., Last, P. R., Ling, S. D., Melbourne-Thomas, J., Miller, K., Pecl, G. T., Richardson, A. J., Ridgway, K. R., Rintoul, S. R., Ritz, D. A., Ross, D. J., Sanderson, J. C., Shepherd, S. A., Slotwinski, A., Swadling, K. M., and Taw, N. (2011). Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. Journal of Experimental Marine Biology and Ecology 400, 17–32.
Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania.Crossref | GoogleScholarGoogle Scholar |

Kerswell, A. P. (2006). Global biodiversity patterns of benthic marine algae. Ecology 87, 2479–2488.
Global biodiversity patterns of benthic marine algae.Crossref | GoogleScholarGoogle Scholar | 17089657PubMed |

Knudsen, S. W., and Clements, K. D. (2013). Kyphosus gladius, a new species of sea chub from Western Australia (Teleostei: Kyphosidae), with comments on Segutilum klunzingeri Whitley. Zootaxa 3599, 1–18.
Kyphosus gladius, a new species of sea chub from Western Australia (Teleostei: Kyphosidae), with comments on Segutilum klunzingeri Whitley.Crossref | GoogleScholarGoogle Scholar | 24583811PubMed |

Krumhansl, K., and Scheibling, R. (2012). Production and fate of kelp detritus. Marine Ecology Progress Series 467, 281–302.
Production and fate of kelp detritus.Crossref | GoogleScholarGoogle Scholar |

Laffoley, D., and Grimsditch, G. D. (2009). ‘The Management of Natural Coastal Carbon Sinks.’ (IUCN: Gland, Switzerland.)

Langlois, T. J., Radford, B. T., Van Niel, K. P., Meeuwig, J. J., Pearce, A. F., Rousseaux, C. S., Kendrick, G. A., and Harvey, E. S. (2012). Consistent abundance distributions of marine fishes in an old, climatically buffered, infertile seascape. Global Ecology and Biogeography 21, 886–897.
Consistent abundance distributions of marine fishes in an old, climatically buffered, infertile seascape.Crossref | GoogleScholarGoogle Scholar |

Last, P. R., White, W. T., Gledhill, D. C., Hobday, A. J., Brown, R., Edgar, G. J., and Pecl, G. (2011). Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography 20, 58–72.
Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices.Crossref | GoogleScholarGoogle Scholar |

Ling, S., Johnson, C., Ridgway, K., Hobday, A., and Haddon, M. (2009). Climate‐driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biology 15, 719–731.
Climate‐driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics.Crossref | GoogleScholarGoogle Scholar |

Lough, J. M., and Hobday, A. J. (2011). Observed climate change in Australian marine and freshwater environments. Marine and Freshwater Research 62, 984–999.
Observed climate change in Australian marine and freshwater environments.Crossref | GoogleScholarGoogle Scholar |

Lourie, S. A., and Vincent, A. C. (2004). Using biogeography to help set priorities in marine conservation. Conservation Biology 18, 1004–1020.
Using biogeography to help set priorities in marine conservation.Crossref | GoogleScholarGoogle Scholar |

MacDonald, D. H., Ardeshiri, A., Rose, J. M., Russell, B. D., and Connell, S. D. (2015). Valuing coastal water quality: Adelaide, South Australia metropolitan area. Marine Policy 52, 116–124.
Valuing coastal water quality: Adelaide, South Australia metropolitan area.Crossref | GoogleScholarGoogle Scholar |

Magris, R. A., Pressey, R. L., Weeks, R., and Ban, N. C. (2014). Integrating connectivity and climate change into marine conservation planning. Biological Conservation 170, 207–221.
Integrating connectivity and climate change into marine conservation planning.Crossref | GoogleScholarGoogle Scholar |

Mann, K. H. (1973). Seaweeds – their productivity and strategy for growth. Science 182, 975–981.
Seaweeds – their productivity and strategy for growth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvlsFymtg%3D%3D&md5=be6d7c29d012db786f437fb78c02fc81CAS | 17833778PubMed |

Marzinelli, E. M., Williams, S. B., Babcock, R. C., Barrett, N. S., Johnson, C. R., Jordan, A., Kendrick, G. A., Pizarro, O. R., Smale, D. A., and Steinberg, P. D. (2015). Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS One 10, e0118390.
Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.Crossref | GoogleScholarGoogle Scholar | 25693066PubMed |

McGowran, B., Li, Q., Cann, J., Padley, D., McKirdy, D. M., and Shafik, S. (1997). Biogeographic impact of the Leeuwin Current in southern Australia since the late middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 19–40.
Biogeographic impact of the Leeuwin Current in southern Australia since the late middle Eocene.Crossref | GoogleScholarGoogle Scholar |

Metcalf, S., van Putten, E., Frusher, S., Tull, M., and Marshall, N. (2014). Adaptation options for marine industries and coastal communities using community structure and dynamics. Sustainability Science 9, 247–261.

O’Hara, T. D., and Poore, G. C. (2000). Patterns of distribution for southern Australian marine echinoderms and decapods. Journal of Biogeography 27, 1321–1335.
Patterns of distribution for southern Australian marine echinoderms and decapods.Crossref | GoogleScholarGoogle Scholar |

Oliver, E. C. J., Wotherspoon, S. J., Chamberlain, M. A., and Holbrook, N. J. (2014). Projected Tasman Sea extremes in sea surface temperature through the twenty-first century. Journal of Climate 27, 1980–1998.
Projected Tasman Sea extremes in sea surface temperature through the twenty-first century.Crossref | GoogleScholarGoogle Scholar |

Pearce, A., and Feng, M. (2007). Observations of warming on the Western Australian continental shelf. Marine and Freshwater Research 58, 914–920.
Observations of warming on the Western Australian continental shelf.Crossref | GoogleScholarGoogle Scholar |

Pearce, A. F., and Feng, M. (2013). The rise and fall of the ‘marine heat wave’ off Western Australia during the summer of 2010/2011. Journal of Marine Systems 111–112, 139–156.
The rise and fall of the ‘marine heat wave’ off Western Australia during the summer of 2010/2011.Crossref | GoogleScholarGoogle Scholar |

Phillips, J. A. (2001). Marine macroalgal biodiversity hotspots: why is there high species richness and endemism in southern Australian marine benthic flora? Biodiversity and Conservation 10, 1555–1577.
Marine macroalgal biodiversity hotspots: why is there high species richness and endemism in southern Australian marine benthic flora?Crossref | GoogleScholarGoogle Scholar |

Pink, B. (2013). Population projections, Australia, 2012 to 2101. 3222.0. Australian Bureau of Statistics, Canberra.

Pitt, N. R., Poloczanska, E. S., and Hobday, A. J. (2010). Climate-driven range changes in Tasmanian intertidal fauna. Marine and Freshwater Research 61, 963–970.
Climate-driven range changes in Tasmanian intertidal fauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Snt7nO&md5=b56be911853651737c6ea021d3b0c74cCAS |

Poore, G. C., and Bruce, N. L. (2012). Global diversity of marine isopods (except Asellota and crustacean symbionts). PLoS One 7, e43529.
Global diversity of marine isopods (except Asellota and crustacean symbionts).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSltrzN&md5=3b61f21068b8776b9157088df911465dCAS | 22952700PubMed |

Ridgway, K. (2007). Long‐term trend and decadal variability of the southward penetration of the East Australian Current. Geophysical Research Letters 34, L13613.
Long‐term trend and decadal variability of the southward penetration of the East Australian Current.Crossref | GoogleScholarGoogle Scholar |

Robinson, L. M., Gledhill, D. C., Moltschaniwskyj, N. A., Hobday, A. J., Frusher, S., Barrett, N., Stuart-Smith, J., and Pecl, G. T. (2015). Rapid assessment of an ocean warming hotspot reveals ‘high’ confidence in potential species’ range extensions. Global Environmental Change 31, 28–37.
Rapid assessment of an ocean warming hotspot reveals ‘high’ confidence in potential species’ range extensions.Crossref | GoogleScholarGoogle Scholar |

Shenkar, N., and Swalla, B. J. (2011). Global diversity of Ascidiacea. PLoS One 6, e20657.
Global diversity of Ascidiacea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVKlu7k%3D&md5=b40950188117d4b0e3485ddeb6d5f3f6CAS | 21701684PubMed |

Smale, D. A., and Wernberg, T. (2013). Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society of London – B. Biological Sciences 280, 20122829.
Extreme climatic event drives range contraction of a habitat-forming species.Crossref | GoogleScholarGoogle Scholar |

Steneck, R. S., and Johnson, C. R. (2013). Kelp forests: dynamic patterns, processes, and feedbacks. In ‘Marine Community Ecology’. (Eds M. D. Bertness, J. Bruno, B. R. Silliman and J. J. Stachowicz.) pp. 315–336. (Sinauer Associates: Sunderland, MA.)

Stöhr, S., O’Hara, T. D., and Thuy, B. (2012). Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS One 7, e31940.
Global diversity of brittle stars (Echinodermata: Ophiuroidea).Crossref | GoogleScholarGoogle Scholar | 22396744PubMed |

Thompson, P., Bonham, P., Waite, A., Clementson, L., Cherukuru, N., Hassler, C., and Doblin, M. (2011). Contrasting oceanographic conditions and phytoplankton communities on the east and west coasts of Australia. Deep-sea Research. Part II, Topical Studies in Oceanography 58, 645–663.
Contrasting oceanographic conditions and phytoplankton communities on the east and west coasts of Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1aqsbo%3D&md5=f4efec35c0f96c2462c266075207f17bCAS |

Tourism Research Australia (2011). The economic importance of tourism in Australia’s regions. Tourism Research Australia, Canberra.

Underwood, A. J., Kingsford, M. J., and Andrew, N. L. (1991). Patterns in shallow subtidal marine assemblages along the coast of New South Wales Australia. Australian Journal of Ecology 16, 231–249.
Patterns in shallow subtidal marine assemblages along the coast of New South Wales Australia.Crossref | GoogleScholarGoogle Scholar |

Van Soest, R. W., Boury-Esnault, N., Vacelet, J., Dohrmann, M., Erpenbeck, D., De Voogd, N. J., Santodomingo, N., Vanhoorne, B., Kelly, M., and Hooper, J. N. (2012). Global diversity of sponges (Porifera). PLoS One 7, e35105.
Global diversity of sponges (Porifera).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVemtrs%3D&md5=c144b5ad4272fe65cd39164224160a28CAS | 22558119PubMed |

Vanderklift, M. A., and Wernberg, T. (2008). Detached kelps from distant sources are a food subsidy for sea urchins. Oecologia 157, 327–335.
Detached kelps from distant sources are a food subsidy for sea urchins.Crossref | GoogleScholarGoogle Scholar | 18491144PubMed |

Vanderklift, M., and Wernberg, T. (2010). Stable isotopes reveal a consistent consumer–diet relationship across hundreds of kilometres. Marine Ecology Progress Series 403, 53–61.
Stable isotopes reveal a consistent consumer–diet relationship across hundreds of kilometres.Crossref | GoogleScholarGoogle Scholar |

Vergés, A., Steinberg, P. D., Hay, M. E., Poore, A. G. B., Campbell, A. H., Ballesteros, E., Heck, K. L., Booth, D. J., Coleman, M. A., Feary, D. A., Figueira, W., Langlois, T., Marzinelli, E. M., Mizerek, T., Mumby, P. J., Nakamura, Y., Roughan, M., van Sebille, E., Gupta, A. S., Smale, D. A., Tomas, F., Wernberg, T., and Wilson, S. K. (2014). The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society of London – B. Biological Sciences 281, 20140846.
The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts.Crossref | GoogleScholarGoogle Scholar |

Waters, J. M. (2008). Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both? Diversity & Distributions 14, 692–700.
Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both?Crossref | GoogleScholarGoogle Scholar |

Waters, J. M., Wernberg, T., Connell, S. D., Thomsen, M. S., Zuccarello, G. C., Kraft, G. T., Sanderson, J. C., West, J. A., and Gurgel, C. F. D. (2010). Australia’s marine biogeography revisited: Back to the future? Austral Ecology 35, 988–992.
Australia’s marine biogeography revisited: Back to the future?Crossref | GoogleScholarGoogle Scholar |

Wernberg, T., Vanderklift, M. A., How, J., and Lavery, P. S. (2006). Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia 147, 692–701.
Export of detached macroalgae from reefs to adjacent seagrass beds.Crossref | GoogleScholarGoogle Scholar | 16323014PubMed |

Wernberg, T., Thomsen, M. S., Tuya, F., Kendrick, G. A., Staehr, P. A., and Toohey, B. D. (2010). Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecology Letters 13, 685–694.
Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future.Crossref | GoogleScholarGoogle Scholar | 20412279PubMed |

Wernberg, T., Thomsen, M. S., Tuya, F., and Kendrick, G. A. (2011). Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature. Journal of Experimental Marine Biology and Ecology 400, 264–271.
Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature.Crossref | GoogleScholarGoogle Scholar |

Wernberg, T., Russell, B., Thomsen, M., Gurgel, C., Bradshaw, C., Poloczanska, E., and Connell, S. (2011a). Seaweed communities in retreat from ocean warming. Current Biology 21, 1828–1832.
Seaweed communities in retreat from ocean warming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKmurjF&md5=c7a4f1c8d8670d08e27174c98c63b3a0CAS | 22036178PubMed |

Wernberg, T., Russell, B. D., Moore, P. J., Ling, S. D., Smale, D. A., Campbell, A., Coleman, M. A., Steinberg, P. D., Kendrick, G. A., and Connell, S. D. (2011b). Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology 400, 7–16.
Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming.Crossref | GoogleScholarGoogle Scholar |

Wernberg, T., Thomsen, M. S., Connell, S. D., Russell, B. D., Waters, J. M., Zuccarello, G. C., Kraft, G. T., Sanderson, C., West, J. A., and Gurgel, C. F. D. (2013a). The footprint of continental-scale ocean currents on the biogeography of seaweeds. PLoS One 8, e80168.
The footprint of continental-scale ocean currents on the biogeography of seaweeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOrtbrO&md5=1618555ec79b3f61ca5c1d08ab4b9b96CAS | 24260352PubMed |

Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., de Bettignies, T., Bennett, S., and Rousseaux, C. S. (2013b). An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change 3, 78–82.
An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |