Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Otolith shape variation provides a marker of stock origin for north Atlantic bluefin tuna (Thunnus thynnus)

Deirdre Brophy A N , Paula Haynes A , Haritz Arrizabalaga B , Igaratza Fraile B , Jean Marc Fromentin C , Fulvio Garibaldi D , Ivan Katavic E , Fausto Tinti F , F. Saadet Karakulak G , David Macías H , Dheeraj Busawon I , Alex Hanke I , Ai Kimoto J , Osamu Sakai J , Simeon Deguara K , Nouredinne Abid L and Miguel Neves Santos M
+ Author Affiliations
- Author Affiliations

A Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, H91 T8NW, Ireland.

B AZTI Tecnalia, Marine Research Division, Herrea Kaia, Portualdea z/g, E-20110 Pasaia, Gipuzkoa, Spain.

C Ifremer, UMR MARBEC/Marine Biodiversity, Exploitation and Conservation (IRD, Ifremer, Université de Montpellier, CNRS), Avenue Jean Monnet, BP 171, F-34203, Sète cedex, France.

D University of Genova, Department of Earth, Environment and Life Sciences, Corso Europa 26, I-16132 Genova, Italy.

E Institute of Oceanography and Fisheries, Šetalište I, Meštrovića 63, HR-21000 Split, Croatia.

F University of Bologna, Department of Biological, Geological and Environmental Sciences, School of Sciences, Via Selmi 3, I-40126, Bologna, Italy.

G Istanbul University, Faculty of Fisheries, Ordu Street 200, TR-34470 Laleli, Istanbul, Turkey.

H Spanish Institute of Oceanography, Pesquero Pesquero s/n, E-29640, Fuengirola, Málaga, Spain.

I Fisheries and Oceans Canada/Pêches et Océans Canada, St Andrews Biological Station, 531 Brandy Cove Road, St Andrews, NB, E5B 2L9, Canada.

J National Research Institute of Far Seas Fisheries, 5-7-1 Orido, Shimizu, Shizuoka, 424-8633 Japan.

K Federation of Maltese Aquaculture Producers (FMAP), St Christopher Street, 54 VLT 1462, Valletta, Malta.

L Institut National de la Recherche Halieutique (INRH), Regional Centre of Tangier, BP 5268, Dradeb, Tangier, Morocco.

M IPMA–Portuguese Institute for the Ocean and Atmosphere, Avenida 5 de Outubro s/n, PT-8700-305 Olhão, Portugal.

N Corresponding author. Email: deirdre.brophy@gmit.ie

Marine and Freshwater Research 67(7) 1023-1036 https://doi.org/10.1071/MF15086
Submitted: 1 March 2015  Accepted: 23 July 2015   Published: 21 October 2015

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Abstract

Two stocks of bluefin tuna (Thunnus thynnus) inhabit the north Atlantic; the western and eastern stocks spawn in the Gulf of Mexico and the Mediterranean Sea respectively. Trans-Atlantic movements occur outside spawning time whereas natal homing maintains stock structure. Commercial fisheries may exploit a mixed assemblage of both stocks. The incorporation of mixing rates into stock assessment is precluded by uncertainties surrounding stock discrimination. Otolith shape descriptors were used to characterise western and eastern stocks of Atlantic bluefin tuna in the present study and to estimate stock composition in catches of unknown origin. Otolith shape varied with length and between locations and years. Within a restricted size range (200–297-cm fork length (FL)) the two stocks were distinguished with an accuracy of 83%. Bayesian stock mixture analysis indicated that samples from the east Atlantic and Mediterranean were predominantly of eastern origin. The proportion assigned to the eastern stock showed slight spatial variation; however, overlapping 95% credible intervals indicated no significant difference (200–297 cm FL: central Atlantic, 73–100%; Straits of Gibraltar, 73–100%; Morocco, 50–99%; Portugal 64–100%). Otolith shape could be used in combination with other population markers to improve the accuracy of mixing rate estimates for Atlantic bluefin tuna.

Additional keywords: elliptical Fourier analysis, population structure, stock mixture analysis.


References

Abaunza, P., Murta, A. G., Campbell, N., Cimmaruta, R., Comesaña, A. S., Dahle, G., Gallo, E., García Santamaría, M. T., Gordo, L. S., Iversen, S. A., MacKenzie, K., Magoulas, A., Mattiucci, S., Molloy, J., Nascetti, G., Pinto, A. L., Quinta, R., Ramos, P., Ruggi, A., Sanjuan, A., Santos, A. T., Stransky, C., and Zimmermann, C. (2008). Considerations on sampling strategies for an holistic approach to stock identification: The example of the HOMSIR project. Fisheries Research 89, 104–113.
Considerations on sampling strategies for an holistic approach to stock identification: The example of the HOMSIR project.Crossref | GoogleScholarGoogle Scholar |

Albaina, A., Iriondo, M., Velado, I., Laconcha, U., Zarraonaindia, I., Arrizabalaga, H., Pardo, M. A., Lutcavage, M., Grant, W. S., and Estonba, A. (2013). Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Animal Genetics 44, 678–692.
Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12mtbzL&md5=54233ec848e469bbc5cc9da88c54fee7CAS | 23668670PubMed |

Baldwin, R., Banks, M., and Jacobson, K. (2012). Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax). Reviews in Fish Biology and Fisheries 22, 137–156.
Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OqsrbF&md5=9d3b90d8c6d1b8265a47fee6d74f9adfCAS |

Begg, G. A., and Waldman, J. R. (1999). An holistic approach to fish stock identification. Fisheries Research 43, 35–44.
An holistic approach to fish stock identification.Crossref | GoogleScholarGoogle Scholar |

Begg, G. A., Overholtz, W. J., and Munroe, N. J. (2001). The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on Georges Bank. Fishery Bulletin 99, 1–14.

Block, B. A., Teo, S. L. H., Walli, A., Boustany, A., Stokesbury, M. J. W., Farwell, C. J., Weng, K. C., Dewar, H., and Williams, T. D. (2005). Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434, 1121–1127.
Electronic tagging and population structure of Atlantic bluefin tuna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsF2ltLs%3D&md5=b63d7b740d54d5b15dc558f3f7827ab9CAS | 15858572PubMed |

Bolker, B. O. T., Bjorndal, K., and Bolten, A. (2003). Sea turtle stock estimation using genetic markers: accounting for sampling error of rare genotypes. Ecological Applications 13, 763–775.
Sea turtle stock estimation using genetic markers: accounting for sampling error of rare genotypes.Crossref | GoogleScholarGoogle Scholar |

Bolles, K. L., and Begg, G. A. (2000). Distinctions between silver hake (Merluccius bilinearis) stocks in U.S. waters of the northwest Atlantic based on whole otolith morphometrics. Fish Bulletin 98, 451–462.

Booth, A. J. (2000). Incorporating the spatial component of fisheries data into stock assessment models. ICES Journal of Marine Science 57, 858–865.
Incorporating the spatial component of fisheries data into stock assessment models.Crossref | GoogleScholarGoogle Scholar |

Boustany, A. M., Reeb, C. A., and Block, B. A. (2008). Mitochondrial DNA and electronic tracking reveal population structure of Atlantic bluefin tuna (Thunnus thynnus). Marine Biology 156, 13–24.
Mitochondrial DNA and electronic tracking reveal population structure of Atlantic bluefin tuna (Thunnus thynnus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrsrzI&md5=c8df408f2579bd8b5c5070d0a78ccab2CAS |

Cadrin, S. X., Bernreuther, M., Danielsdottir, A. K., Hjorleifsson, E., Johansen, T., Kerr, L., Kristinsson, K., Mariani, S., Nedreaas, K., Pampoulie, C., Planque, B., Reinert, J., Saborido-Rey, F., Sigurosson, T., and Stransky, C. (2010). Population structure of beaked redfish, Sebastes mentella: evidence of divergence associated with different habitats. ICES Journal of Marine Science 67, 1617–1630.
Population structure of beaked redfish, Sebastes mentella: evidence of divergence associated with different habitats.Crossref | GoogleScholarGoogle Scholar |

Cadrin, S. X., Kerr, L. A., and Mariani, S. (2014). Stock identification methods: an overview. In ‘Stock Identification Methods: Applications in Fishery Science’. (Eds S. X. Cadrin, L. A. Kerr and S. Mariani.) pp. 1–6. (Academic Press: San Diego, CA, USA.)

Campana, S. E., and Casselman, J. M. (1993). Stock discrimination using otolith shape-analysis. Canadian Journal of Fisheries and Aquatic Sciences 50, 1062–1083.
Stock discrimination using otolith shape-analysis.Crossref | GoogleScholarGoogle Scholar |

Capoccioni, F., Costa, C., Aguzzi, J., Menesatti, P., Lombarte, A., and Ciccotti, E. (2011). Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (Anguilla anguilla, L.) local stocks. Journal of Experimental Marine Biology and Ecology 397, 1–7.
Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (Anguilla anguilla, L.) local stocks.Crossref | GoogleScholarGoogle Scholar |

Carlsson, J., McDowell, J. R., Diaz-Jaimes, P., Carlsson, J. E. L., Boles, S. B., Gold, J. R., and Graves, J. E. (2004). Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Molecular Ecology 13, 3345–3356.
Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWkurjM&md5=dde0d84446268ad2076e8b3ac1937e14CAS | 15487994PubMed |

Carlsson, J., McDowell, J. R., Carlsson, J. E. L., and Olasdottir, D. (2006). Genetic heterogeneity of Atlantic bluefin tuna caught in the eastern north Atlantic Ocean south of Iceland. ICES Journal of Marine Science 63, 1111–1117.
| 1:CAS:528:DC%2BD28Xnt1Gkt7c%3D&md5=3eea4589c70744ddf9f2a514c28ce5eaCAS |

Carlsson, J., McDowell, J. R., Carlsson, J. E. L., and Graves, J. E. (2007). Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. The Journal of Heredity 98, 23–28.
Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Wnt7s%3D&md5=0fca70cab9a37370024368bb4e2c92edCAS | 17158466PubMed |

Cermeño, P., Quílez-Badia, G., Ospina-Alvarez, A., Sainz-Trápaga, S., Boustany, A. M., Seitz, A. C., Tudela, S., and Block, B. A. (2015). Electronic tagging of Atlantic bluefin tuna (Thunnus Thynnus, L.) reveals habitat use and behaviors in the Mediterranean Sea. PLoS One 10, e0116638.
Electronic tagging of Atlantic bluefin tuna (Thunnus Thynnus, L.) reveals habitat use and behaviors in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 25671316PubMed |

Corriero, A., Desantis, S., Deflorio, M., Acone, F., Bridges, C. R., De la Serna, J. M., Megalofonou, P., and De Metrio, G. (2003). Histological investigation on the ovarian cycle of the bluefin tuna in the western and central Mediterranean. Journal of Fish Biology 63, 108–119.
Histological investigation on the ovarian cycle of the bluefin tuna in the western and central Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Crampton, J. S. (1995). Elliptic Fourier shape-analysis of fossil bivalves – some practical considerations. Lethaia 28, 179–186.
Elliptic Fourier shape-analysis of fossil bivalves – some practical considerations.Crossref | GoogleScholarGoogle Scholar |

Dickhut, R. M., Deshpande, A. D., Cincinelli, A., Cochran, M. A., Corsolini, S., Brill, R. W., Secor, D. H., and Graves, J. E. (2009). Atlantic bluefin tuna (Thunnus thynnus) population dynamics delineated by organochlorine tracers. Environmental Science & Technology 43, 8522–8527.
Atlantic bluefin tuna (Thunnus thynnus) population dynamics delineated by organochlorine tracers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhtb7K&md5=5d927eed4a79a13547dbf03f6f3a5602CAS |

Fraile, I., Arrizabalaga, H., and Rooker, J. R. (2014). Origin of Atlantic bluefin tuna (Thunnus thynnus) in the Bay of Biscay. ICES Journal of Marine Science , .
Origin of Atlantic bluefin tuna (Thunnus thynnus) in the Bay of Biscay.Crossref | GoogleScholarGoogle Scholar |

Fromentin, J.-M., and Kell, L. T. (2007). Consequences of variations in carrying capacity or migration for the perception of Atlantic bluefin tuna (Thunnus thynnus) population dynamics. Canadian Journal of Fisheries and Aquatic Sciences 64, 827–836.
Consequences of variations in carrying capacity or migration for the perception of Atlantic bluefin tuna (Thunnus thynnus) population dynamics.Crossref | GoogleScholarGoogle Scholar |

Fromentin, J.-M., and Lopuszanski, D. (2013). Migration, residency, and homing of bluefin tuna in the western Mediterranean Sea. ICES Journal of Marine Science: Journal du Conseil , .

Fromentin, J. M., and Powers, J. E. (2005). Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish and Fisheries 6, 281–306.
Atlantic bluefin tuna: population dynamics, ecology, fisheries and management.Crossref | GoogleScholarGoogle Scholar |

Fromentin, J.-M., Bonhommeau, S., Arrizabalaga, H., and Kell, L. T. (2014a). The spectre of uncertainty in management of exploited fish stocks: the illustrative case of Atlantic bluefin tuna. Marine Policy 47, 8–14.
The spectre of uncertainty in management of exploited fish stocks: the illustrative case of Atlantic bluefin tuna.Crossref | GoogleScholarGoogle Scholar |

Fromentin, J.-M., Reygondeau, G., Bonhommeau, S., and Beaugrand, G. (2014b). Oceanographic changes and exploitation drive the spatio-temporal dynamics of Atlantic bluefin tuna (Thunnus thynnus). Fisheries Oceanography 23, 147–156.
Oceanographic changes and exploitation drive the spatio-temporal dynamics of Atlantic bluefin tuna (Thunnus thynnus).Crossref | GoogleScholarGoogle Scholar |

Fu, C. H., and Fanning, L. P. (2004). Spatial considerations in the management of Atlantic cod off Nova Scotia, Canada. North American Journal of Fisheries Management 24, 775–784.
Spatial considerations in the management of Atlantic cod off Nova Scotia, Canada.Crossref | GoogleScholarGoogle Scholar |

Galuardi, B., Royer, F., Golet, W., Logan, J., Neilson, J., and Lutcavage, M. (2010). Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm. Canadian Journal of Fisheries and Aquatic Sciences 67, 966–976.
Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm.Crossref | GoogleScholarGoogle Scholar |

Gauldie, R. W., and Nelson, D. G. A. (1990). Otolith growth in fishes. Comparative Biochemistry and Physiology. Part A, Physiology 97, 119–135.
Otolith growth in fishes.Crossref | GoogleScholarGoogle Scholar |

Graves, J. E., Wozniak, A. S., Dickhut, R. M., Cochran, M. A., MacDonald, E. H., Bush, E., Arrizabalaga, H., and Goni, N. (2015). Transatlantic movements of juvenile Atlantic bluefin tuna inferred from analyses of organochlorine tracers. Canadian Journal of Fisheries and Aquatic Sciences 72, 625–633.
Transatlantic movements of juvenile Atlantic bluefin tuna inferred from analyses of organochlorine tracers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksF2lsbs%3D&md5=18d943c01fa9c4b4c8b312ee14e846b8CAS |

Guan, W., Cao, J., Chen, Y., and Cieri, M. (2013). Impacts of population and fishery spatial structures on fishery stock assessment. Canadian Journal of Fisheries and Aquatic Sciences 70, 1178–1189.
Impacts of population and fishery spatial structures on fishery stock assessment.Crossref | GoogleScholarGoogle Scholar |

Hüssy, K. (2008). Otolith shape in juvenile cod (Gadus morhua): ontogenetic and environmental effects. Journal of Experimental Marine Biology and Ecology 364, 35–41.
Otolith shape in juvenile cod (Gadus morhua): ontogenetic and environmental effects.Crossref | GoogleScholarGoogle Scholar |

ICCAT (2006). Length–weight relationships adopted by the SCRS for major species. (International Commission for the Conservation of Atlantic Tunas.) Available at http://iccat.int/Documents/SCRS/Manual/Appendices/Appendix%204%20III%20Length-weight.pdf [Verified 12 August 2015].

ICCAT (2008). Resolution by ICCAT Concerning Atlantic Bluefin Tuna Scientific Research on Stock Origin and Mixing. Resolution number 08–06, International Commission for the Conservation of Atlantic Tunas, Madrid.

ICCAT (2013). Recommendation by ICCAT Amending the Supplemental Recommendation by ICCAT Concerning the Western Atlantic Bluefin Tuna Rebuilding Program. Recommendation number 13–09, International Commission for the Conservation of Atlantic Tunas, Madrid.

ICCAT (2014). Report of the 2014 Atlantic Bluefin Tuna Stock Assessment Session, 2014, Madrid. International Commission for the Conservation of Atlantic Tunas, Madrid.

Keating, J. P., Brophy, D., Officer, R. A., and Mullins, E. (2014). Otolith shape analysis of blue whiting suggests a complex stock structure at their spawning grounds in the northeast Atlantic. Fisheries Research 157, 1–6.
Otolith shape analysis of blue whiting suggests a complex stock structure at their spawning grounds in the northeast Atlantic.Crossref | GoogleScholarGoogle Scholar |

Kell, L. T., and Fromentin, J.-M. (2007). Evaluation of the robustness of maximum sustainable yield based management strategies to variations in carrying capacity or migration pattern of Atlantic bluefin tuna (Thunnus thynnus). Canadian Journal of Fisheries and Aquatic Sciences 64, 837–847.
Evaluation of the robustness of maximum sustainable yield based management strategies to variations in carrying capacity or migration pattern of Atlantic bluefin tuna (Thunnus thynnus).Crossref | GoogleScholarGoogle Scholar |

Kerr, L. A., Cadrin, S. X., and Secor, D. H. (2010). Simulation modelling as a tool for examining the consequences of spatial structure and connectivity on local and regional population dynamics. ICES Journal of Marine Science 67, 1631–1639.
Simulation modelling as a tool for examining the consequences of spatial structure and connectivity on local and regional population dynamics.Crossref | GoogleScholarGoogle Scholar |

Kishida, M., Kanaji, Y., Xie, S. G., Watanabe, Y., Kawamura, T., Masuda, R., and Yamashita, Y. (2011). Ecomorphological dimorphism of juvenile Trachurus japonicus in Wakasa Bay, Japan. Environmental Biology of Fishes 90, 301–315.
Ecomorphological dimorphism of juvenile Trachurus japonicus in Wakasa Bay, Japan.Crossref | GoogleScholarGoogle Scholar |

Lombarte, A., and Castellon, A. (1991). Interspecific and intraspecific otolith variability in the genus Merluccius as determined by image-analysis. Canadian Journal of Zoology 69, 2442–2449.
Interspecific and intraspecific otolith variability in the genus Merluccius as determined by image-analysis.Crossref | GoogleScholarGoogle Scholar |

Lombarte, A., Palmer, M., Matallanas, J., Gomez-Zurita, J., and Morales-Nin, B. (2010). Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental Biology of Fishes 89, 607–618.
Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, B. R., Mosegaard, H., and Rosenberg, A. A. (2009). Impending collapse of bluefin tuna in the northeast Atlantic and Mediterranean. Conservation Letters 2, 25–34.
Impending collapse of bluefin tuna in the northeast Atlantic and Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Mérigot, B., Letourneur, Y., and Lecomte-Finiger, R. (2007). Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Marine Biology 151, 997–1008.
Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis.Crossref | GoogleScholarGoogle Scholar |

Paul, K., Oeberst, R., and Hammer, C. (2013). Evaluation of otolith shape analysis as a tool for discriminating adults of Baltic cod stocks. Journal of Applied Ichthyology 29, 743–750.
Evaluation of otolith shape analysis as a tool for discriminating adults of Baltic cod stocks.Crossref | GoogleScholarGoogle Scholar |

Petitgas, P., Secor, D. H., McQuinn, I., Huse, G., and Lo, N. (2010). Stock collapses and their recovery: mechanisms that establish and maintain life-cycle closure in space and time. ICES Journal of Marine Science 67, 1841–1848.
Stock collapses and their recovery: mechanisms that establish and maintain life-cycle closure in space and time.Crossref | GoogleScholarGoogle Scholar |

Reichenbacher, B., Feulner, G. R., and Schulz-Mirbach, T. (2009). Geographic variation in otolith morphology among freshwater populations of Aphanius dispar (Teleostei, Cyprinodontiformes) from the southeastern Arabian Peninsula. Journal of Morphology 270, 469–484.
Geographic variation in otolith morphology among freshwater populations of Aphanius dispar (Teleostei, Cyprinodontiformes) from the southeastern Arabian Peninsula.Crossref | GoogleScholarGoogle Scholar | 19117063PubMed |

Riccioni, G., Landi, M., Ferrara, G., Milano, I., Cariani, A., Zane, L., Sella, M., Barbujani, G., and Tinti, F. (2010). Spatio-temporal population structuring and genetic diversity retention in depleted Atlantic bluefin tuna of the Mediterranean Sea. Proceedings of the National Academy of Sciences of the United States of America 107, 2102–2107.
Spatio-temporal population structuring and genetic diversity retention in depleted Atlantic bluefin tuna of the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFCitLY%3D&md5=56a07354e46f893f751fb6fc506a4cbeCAS | 20080643PubMed |

Rooker, J. R., Secor, D. H., Zdanowicz, V. S., De Metrio, G., and Relini, L. O. (2003). Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fisheries Oceanography 12, 75–84.
Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry.Crossref | GoogleScholarGoogle Scholar |

Rooker, J. R., Bremer, J. R. A., Block, B. A., Dewar, H., De Metrio, G., Corriero, A., Kraus, R. T., Prince, E. D., Rodriguez-Marin, E., and Secor, D. H. (2007). Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Reviews in Fisheries Science 15, 265–310.
Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus).Crossref | GoogleScholarGoogle Scholar |

Rooker, J. R., Secor, D. H., DeMetrio, G., Kaufman, A. J., Rios, A. B., and Ticina, V. (2008). Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Marine Ecology Progress Series 368, 231–239.
Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths.Crossref | GoogleScholarGoogle Scholar |

Rooker, J. R., Arrizabalaga, H., Fraile, I., Secor, D. H., Dettman, D. L., Abid, N., Addis, P., Deguara, S., Karakulak, F. S., Kimoto, A., Sakai, O., Macias, D., and Santos, M. N. (2014). Crossing the line: migratory and homing behaviors of Atlantic bluefin tuna. Marine Ecology Progress Series 504, 265–276.
Crossing the line: migratory and homing behaviors of Atlantic bluefin tuna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKju7rI&md5=66ad9f2f0b1c33b492bba66d76578fb3CAS |

Safina, C., and Klinger, D. H. (2008). Collapse of bluefin tuna in the western Atlantic. Conservation Biology 22, 243–246.
Collapse of bluefin tuna in the western Atlantic.Crossref | GoogleScholarGoogle Scholar | 18402578PubMed |

Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. A., and Webster, M. S. (2010). Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612.
Population diversity and the portfolio effect in an exploited species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFWlurw%3D&md5=9514b4358437968330c3e25c58d8de0bCAS | 20520713PubMed |

Schloesser, R. W., Neilson, J. D., Secor, D. H., and Rooker, J. R. (2010). Natal origin of Atlantic bluefin tuna (Thunnus thynnus) from Canadian waters based on otolith delta C-13 and delta O-18. Canadian Journal of Fisheries and Aquatic Sciences 67, 563–569.
Natal origin of Atlantic bluefin tuna (Thunnus thynnus) from Canadian waters based on otolith delta C-13 and delta O-18.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFOksrc%3D&md5=e0fefd577f7161fa0a3bb330ecaf0114CAS |

Secor, D. H. (2014). The unit stock concept: bounded fish and fisheries. In ‘Stock Identification Methods: Applications in Fishery Science’, 2nd edn. (Eds S. X. Cadrin, L. A. Kerr and S. Mariani.) pp. 7–28. (Academic Press: San Diego, CA, USA.)

Secor, D. H., Busawon, D. S., Gahagan, B., Golet, W., Koob, E., Neilson, J. D., and Siskey, M. (2014). Conversion factors for Atlantic bluefin tuna fork length from measures of snout length and otolith mass. ICCAT Collected Volume of Scientific Papers 70, 364–367.

Smith, M. K. (1992). Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus. Canadian Journal of Fisheries and Aquatic Sciences 49, 795–804.
Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus.Crossref | GoogleScholarGoogle Scholar |

Smith, S. J., and Campana, S. E. (2010). Integrated stock mixture analysis for continous and categorical data, with application to genetic–otolith combinations. Canadian Journal of Fisheries and Aquatic Sciences 67, 1533–1548.
Integrated stock mixture analysis for continous and categorical data, with application to genetic–otolith combinations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCqs7%2FE&md5=c1898cd1dfc20b3b66362df9e1fb5032CAS |

Stransky, C. (2014). Morphometric outlines. In ‘Stock Identification Methods: Applications in Fishery Science’, 2nd edn. (Eds S. X. Cadrin, L. A. Kerr and S. Mariani.) pp. 129–140. (Academic Press: San Diego, CA, USA.)

Taylor, N. G., McAllister, M. K., Lawson, G. L., Carruthers, T., and Block, B. A. (2011). Atlantic bluefin tuna: a novel multistock spatial model for assessing population biomass. PLoS One 6, e27693.
Atlantic bluefin tuna: a novel multistock spatial model for assessing population biomass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOi&md5=c4b0345f34082a12a29170b5e96fc75bCAS | 22174745PubMed |

Vignon, M. (2012). Ontogenetic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment. Journal of Experimental Marine Biology and Ecology 420–421, 26–32.
Ontogenetic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment.Crossref | GoogleScholarGoogle Scholar |

Vignon, M., and Morat, F. (2010). Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series 411, 231–241.
Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish.Crossref | GoogleScholarGoogle Scholar |

Volpedo, A., and Echeverria, D. D. (2003). Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fisheries Research 60, 551–560.
Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine.Crossref | GoogleScholarGoogle Scholar |

Volpedo, A. V., and Fuchs, D. V. (2010). Ecomorphological patterns of the lapilli of Paranoplatense siluriforms (South America). Fisheries Research 102, 160–165.
Ecomorphological patterns of the lapilli of Paranoplatense siluriforms (South America).Crossref | GoogleScholarGoogle Scholar |

Volpedo, A. V., Tombari, A. D., and Echeverria, D. D. (2008). Eco-morphological patterns of the sagitta of Antarctic fish. Polar Biology 31, 635–640.
Eco-morphological patterns of the sagitta of Antarctic fish.Crossref | GoogleScholarGoogle Scholar |

Ying, Y., Chen, Y., Lin, L., and Gao, T. (2011). Risks of ignoring fish population spatial structure in fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 68, 2101–2120.
Risks of ignoring fish population spatial structure in fisheries management.Crossref | GoogleScholarGoogle Scholar |