Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

The value of host and parasite identification for arripid fish

Sarah R. Catalano A G , Kate S. Hutson A B , Rodney M. Ratcliff C D and Ian D. Whittington A E F
+ Author Affiliations
- Author Affiliations

A Marine Parasitology Laboratory, DX 650 418, School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.

B Discipline of Aquaculture, School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.

C Infectious Disease Laboratories, Institute of Medical and Veterinary Science, SA Pathology, Adelaide, SA 5000, Australia.

D School of Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia.

E Parasitology Section, The South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

F Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.

G Corresponding author. Email: sarah.catalano@adelaide.edu.au

Marine and Freshwater Research 62(1) 72-82 https://doi.org/10.1071/MF10193
Submitted: 6 August 2010  Accepted: 6 November 2010   Published: 18 January 2011

Abstract

Accurate identification of fishes and their parasites is fundamental to the development, management and sustainability of fisheries and aquaculture worldwide. We examined three commercially and recreationally exploited Australian arripid species (Pisces: Arripidae), namely Australian herring (Arripis georgianus), eastern Australian salmon (A. trutta) and western Australian salmon (A. truttaceus), to determine their metazoan parasite assemblages and infection parameters. We identified 49 parasite species including 35 new parasite–host records and recognised seven ambiguous parasite–host records in the literature, largely a consequence of unsubstantiated host identifications in previous studies. Morphological and molecular methods confirmed a new western extension for the range of A. trutta, ∼1000 km west of the previous record. Confusion about host identification and the range extension documented here has implications for the management of these economically important arripid species in southern Australian waters. Our examination of an endemic Australian fish family emphasises that accurate identification of fishes and their parasites is a fundamental pre-requisite for efficient and sustainable resource management.

Additional keywords: Arripidae, Australian herring, Australian salmon, fish parasites, fisheries management, molecular techniques, taxonomy.


References

ABARE (2009). Australian fisheries statistics 2008. Australian Bureau of Agricultural and Resource Economics (ABARE), Canberra.

Aken’Ova, T. O., Cribb, T. H., and Bray, R. A. (2009). Seven species of Pseudopecoeloides Yamaguti, 1940 (Digenea, Opecoelidae) from temperate marine fishes of Australia, including five new species. ZooKeys 5, 1–32..

Baker, A. N. (1971). Food and feeding of kahawai (Teleostei: Arripididae). New Zealand Journal of Marine and Freshwater Research 5, 291–299.
Food and feeding of kahawai (Teleostei: Arripididae).Crossref | GoogleScholarGoogle Scholar |

Barber, I., Hoare, D., and Krause, J. (2000). Effects of parasites on fish behaviour: a review and evolutionary perspective. Reviews in Fish Biology and Fisheries 10, 131–165.
Effects of parasites on fish behaviour: a review and evolutionary perspective.Crossref | GoogleScholarGoogle Scholar |

Beveridge, I., and Campbell, R. A. (1996). New records and descriptions of trypanorhynch cestodes from Australian fishes. Records of the South Australian Museum 29, 1–22..

Bolton, T. F., Hayward, C. J., and Turner, A. J. (2005). The piscicolid leech Austrobdella translucens, Badham 1916: a new host record from Australian salmon, Arripis trutta (Forster, 1801), and a new locality record for yellowfin whiting, Sillago schomburgkii, Peters 1864, in South Australia. Australian Zoologist 33, 385–387..

Braicovich, P. E., and Timi, J. T. (2008). Parasites as biological tags for stock discrimination of the Brazilian flathead Percophis brasiliensis in the south-west Atlantic. Journal of Fish Biology 73, 557–571.
Parasites as biological tags for stock discrimination of the Brazilian flathead Percophis brasiliensis in the south-west Atlantic.Crossref | GoogleScholarGoogle Scholar |

Bray, R. A. (1990). Hemiuridae (Digenea) from marine fishes of the southern Indian Ocean: Dinurinae, Elytrophallinae, Glomericirrinae and Plerurinae. Systematic Parasitology 17, 183–217.
Hemiuridae (Digenea) from marine fishes of the southern Indian Ocean: Dinurinae, Elytrophallinae, Glomericirrinae and Plerurinae.Crossref | GoogleScholarGoogle Scholar |

Bray, R. A., and Cribb, T. H. (2002). Monostephanostomum georgianum n. sp. (Digenea: Acanthocolpidae) from Arripis georgianus (Valenciennes) (Perciformes: Arripidae) off Kangaroo Island, South Australia, with comments on Monostephanostomum Kruse, 1979 and Stephanostomum Looss, 1899. Systematic Parasitology 53, 61–68.
Monostephanostomum georgianum n. sp. (Digenea: Acanthocolpidae) from Arripis georgianus (Valenciennes) (Perciformes: Arripidae) off Kangaroo Island, South Australia, with comments on Monostephanostomum Kruse, 1979 and Stephanostomum Looss, 1899.Crossref | GoogleScholarGoogle Scholar | 12378134PubMed |

Bray, R. A., and Cribb, T. H. (2003). New species of Opechona Looss, 1907 and Cephalolepidapedon Yamaguti, 1970 (Digenea: Lepocreadiidae) from fishes off northern Tasmania. Papers and Proceedings of the Royal Society of Tasmania 137, 1–5..

Bush, A. O., Lafferty, K. D., Lotz, J. M., and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 83, 575–583.
Parasitology meets ecology on its own terms: Margolis et al. revisited.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2svht1OmsA%3D%3D&md5=a6503b27566817ac8d3425d6b4d4e4e8CAS | 9267395PubMed |

Catalano, S. R., and Hutson, K. S. (2010). Harmful parasitic crustaceans infecting wild arripids: a potential threat to southern Australian finfish aquaculture. Aquaculture 303, 101–104.
Harmful parasitic crustaceans infecting wild arripids: a potential threat to southern Australian finfish aquaculture.Crossref | GoogleScholarGoogle Scholar |

Catalano, S. R., Hutson, K. S., Ratcliff, R. M., and Whittington, I. D. (2010). Redescriptions of two species of microcotylid monogeneans from three arripid hosts in southern Australian waters. Systematic Parasitology 76, 211–222.
Redescriptions of two species of microcotylid monogeneans from three arripid hosts in southern Australian waters.Crossref | GoogleScholarGoogle Scholar | 20532853PubMed |

Chambers, C., Cribb, T. H., and Jones, M. K. (2000). Tetraphyllidean metacestodes of teleosts of the Great Barrier Reef, and the use of in vitro cultivation to identify them. Folia Parasitologica 47, 285–292..
| 1:STN:280:DC%2BD3MzitFSmuw%3D%3D&md5=05a7e7e19735340dfbf0e0f1d04965fbCAS | 11151953PubMed |

Crowcroft, P. W. (1948). The anatomy of two new digenetic trematodes from Tasmanian food fishes. Proceedings of the Linnean Society of New South Wales 71, 108–118..

Deagle, B. E., Kirkwood, R., and Jarman, S. N. (2009). Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Molecular Ecology 18, 2022–2038..
| 1:CAS:528:DC%2BD1MXmsVektLY%3D&md5=9a4ae876f0f9dbb3f8764183bbb2a1fbCAS | 19317847PubMed |

Dempster, T., and Kingsford, M. (2004). Drifting objects as habitats for pelagic juvenile fish off New South Wales, Australia. Marine and Freshwater Research 55, 675–687.
Drifting objects as habitats for pelagic juvenile fish off New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Dillon  W. A., and Hargis  W. J. (1965). Monogenean trematodes from the southern Pacific Ocean. 2. Polyopisthocotyleids from New Zealand fishes: the families Discocotylidae, Microcotylidae, Axinidae, and Gastrocotylidae. In ‘Biology of the Antarctic Seas II. Antarctic Research Series: Vol. 5’. (Ed. G. A. Llano.) pp. 251–280. (American Geophysical Union: Washington, DC.)

Doiuchi, R., and Nakabo, T. (2006). Molecular phylogeny of the stromateoid fishes (Teleostei: Perciformes) inferred from mitochondrial DNA sequences and compared with morphology-based hypotheses. Molecular Phylogenetics and Evolution 39, 111–123.
Molecular phylogeny of the stromateoid fishes (Teleostei: Perciformes) inferred from mitochondrial DNA sequences and compared with morphology-based hypotheses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisF2hsrc%3D&md5=81ae64bbb4ebf1f5638253df493c2e9aCAS | 16314116PubMed |

Dulvy, N. K., and Reynolds, J. D. (2009). Skates on thin ice. Nature 462, 417.
Skates on thin ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyls7nF&md5=fc2ca75426c525329a65225ab27f5361CAS | 19940904PubMed |

Fairclough, D. V., Dimmlich, W. F., and Potter, I. C. (2000a). Length and age compositions and growth rates of the Australian herring Arripis georgiana in different regions. Marine and Freshwater Research 51, 631–640.
Length and age compositions and growth rates of the Australian herring Arripis georgiana in different regions.Crossref | GoogleScholarGoogle Scholar |

Fairclough, D. V., Dimmlich, W. F., and Potter, I. C. (2000b). Reproductive biology of the Australian herring Arripis georgiana. Marine and Freshwater Research 51, 619–630.
Reproductive biology of the Australian herring Arripis georgiana.Crossref | GoogleScholarGoogle Scholar |

Gomon  M., Bray  D., and Kuiter  R. (2008). ‘Fishes of Australia’s Southern Coast.’ (Reed New Holland: Sydney.)

Guegan, J. F., Lambert, A., Leveque, C., Combes, C., and Euzet, L. (1992). Can host body size explain the parasite species richness in tropical freshwater fishes? Oecologia 90, 197–204..

Hewitt, G. C. (1978). Abergasilus amplexus gen. et sp. nov. (Ergasilidae; parasitic Copepoda) from fishes in Lake Ellesmere, New Zealand. New Zealand Journal of Marine and Freshwater Research 12, 173–177.
Abergasilus amplexus gen. et sp. nov. (Ergasilidae; parasitic Copepoda) from fishes in Lake Ellesmere, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Hewitt, G. C., and Hine, P. M. (1972). Checklist of parasites of New Zealand fishes and of their hosts. New Zealand Journal of Marine and Freshwater Research 6, 69–114.
Checklist of parasites of New Zealand fishes and of their hosts.Crossref | GoogleScholarGoogle Scholar |

Ho, J. S. (1991). Two species of chondracanthid copepods parasitic on commercial fishes in the Pacific. Publications of the Seto Marine Biological Laboratory 31, 1–10..

Hoedt, F. E., and Dimmlich, W. F. (1994). Diet of subadult Australian salmon, Arripis truttaceus, in Western Port, Victoria. Australian Journal of Marine and Freshwater Research 45, 617–623.
Diet of subadult Australian salmon, Arripis truttaceus, in Western Port, Victoria.Crossref | GoogleScholarGoogle Scholar |

Hutson, K. S., Styan, C. A., Beveridge, I., Keough, M. J., Zhu, X., et al. (2004). Elucidating the ecology of bucephalid parasites using a mutation scanning approach. Molecular and Cellular Probes 18, 139–146.
Elucidating the ecology of bucephalid parasites using a mutation scanning approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFykt78%3D&md5=f7b8e0af1c41ace2cef32149cf9e634bCAS | 15051124PubMed |

Hutson, K. S., Ernst, I., Mooney, A. J., and Whittington, I. D. (2007). Metazoan parasite assemblages of wild Seriola lalandi (Carangidae) from eastern and southern Australia. Parasitology International 56, 95–105.
Metazoan parasite assemblages of wild Seriola lalandi (Carangidae) from eastern and southern Australia.Crossref | GoogleScholarGoogle Scholar | 17267264PubMed |

Jones, J. B. (1988). New Zealand parasitic Copepoda; genus Caligus Muller, 1785 (Siphonostomatoida: Caligidae). New Zealand Journal of Zoology 15, 397–413..

Jones  K. (2008). Australian salmon and herring. In ‘The Natural History of Gulf of Saint Vincent’. (Eds S. Shepherd, S. Byres, I. Kirkegaard, P. Harbison and J. Jennings.) pp. 415–428. (Royal Society of South Australia: Adelaide.)

Jones  K., and Westlake  M. (2003). Marine scalefish and miscellaneous fisheries. Australian salmon (Arripis truttacea and A. georgiana), sand crabs (Ovalipes australiensis), tube worms (Diopatra caciculata) and blood worms (Glycera sp.). Fishery Assessment Report to PIRSA for the MSF Fishery Management Committee, No. 184. South Australian Fisheries Assessment Series 01/18, Adelaide.

Kearn, G. C. (1967). Experiments on host-finding and host-specificity in the monogenean skin parasite Entobdella soleae. Parasitology 57, 585–605.
Experiments on host-finding and host-specificity in the monogenean skin parasite Entobdella soleae.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1c%2FgtFKgsw%3D%3D&md5=11e0e9f533623c663f7f81d7a13479a1CAS | 6069119PubMed |

Kruse, G. O. W. (1979). Trematodes of marine fishes from South Australia. 6. Monostephanostomum manteri gen. et sp. n. (Acanthocolpidae). Journal of Parasitology 65, 921–923.
Trematodes of marine fishes from South Australia. 6. Monostephanostomum manteri gen. et sp. n. (Acanthocolpidae).Crossref | GoogleScholarGoogle Scholar |

Lebedev, B. I. (1968). Trematodes of the family Bucephalidae from commercially important marine fish of New Zealand and Australia. Parasites of Animals and Plants 4, 156–167. [In Russian].

Lebedev, B. I. (1969). The substantiation of a new genus Kahawaia gen. n. for Gonoplasius truttae Dillon and Hargis, 1965 (Monogenoidea: Microcotylidae). Parasitology 3, 69–73. [In Russian].

Lebedev  B. I. (1971). Helminths of fishes from the Tasman Sea. In ‘Parasites of Animals and Plants of the Soviet Far East’. (Ed. Y. L. Mamaev.) pp. 96–97. (Dal’nevostochnoe Knizhnoe Izdatel’stvo: Vladivostok, Russia.) [In Russian]

Lo, C. M., Morand, S., and Galzin, R. (1998). Parasite diversity/host age and size relationship in three coral-reef fishes from French Polynesia. International Journal for Parasitology 28, 1695–1708.
Parasite diversity/host age and size relationship in three coral-reef fishes from French Polynesia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FmtFSlsQ%3D%3D&md5=dc26efd10ad192600b93c07ff0241272CAS | 9846606PubMed |

MacKenzie, K. (2002). Parasites as biological tags in population studies of marine organisms: an update. Parasitology 124, 153–163.
Parasites as biological tags in population studies of marine organisms: an update.Crossref | GoogleScholarGoogle Scholar | 11860033PubMed |

Malcolm, W. B. (1959). The populations of Australian ‘salmon’, Arripis trutta (Bloch & Schneider) in Australian waters. Australian Journal of Marine and Freshwater Research 4, 95–104..

Malcolm, W. B. (1960). Area of distribution, and movement of the western subspecies of the Australian ‘salmon’, Arripis trutta esper Whitley. Australian Journal of Marine and Freshwater Research 11, 282–325.
Area of distribution, and movement of the western subspecies of the Australian ‘salmon’, Arripis trutta esper Whitley.Crossref | GoogleScholarGoogle Scholar |

Manter, H. W. (1954). Some digenetic trematodes from fishes of New Zealand. Transactions of the Royal Society of New Zealand 82, 475–568..

Marcogliese, D. J. (2002). Food webs and the transmission of parasites to marine fish. Parasitology 124, S83–S99.
Food webs and the transmission of parasites to marine fish.Crossref | GoogleScholarGoogle Scholar | 12396218PubMed |

Marcogliese, D. J., and Cone, D. K. (1997). Food webs: a plea for parasites. Trends in Ecology & Evolution 12, 320–325.
Food webs: a plea for parasites.Crossref | GoogleScholarGoogle Scholar |

Meglitsch, P. A. (1960). Some coelozoic myxosporidia from New Zealand fishes I. General, and family Ceratomyxidae. Transactions of the Royal Society of New Zealand 88, 265–356..

Neira, F. J. (2005). Summer and winter plankton fish assemblages around offshore oil and gas platforms in south-eastern Australia. Estuarine, Coastal and Shelf Science 63, 589–604.
Summer and winter plankton fish assemblages around offshore oil and gas platforms in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Paulin, C. (1993). Review of the Australasian fish family Arripididae (Percomorpha), with the description of a new species. Australian Journal of Marine and Freshwater Research 44, 459–471.
Review of the Australasian fish family Arripididae (Percomorpha), with the description of a new species.Crossref | GoogleScholarGoogle Scholar |

Peters, W., Evans, D. A., and Lanham, S. M. (1983). Importance of parasite identification in cases of leishmaniasis. Journal of the Royal Society of Medicine 76, 540–542..
| 1:STN:280:DyaL3s3mvVCqsQ%3D%3D&md5=47c8706c22c57ecfd6c59c8d603c5581CAS | 6876041PubMed |

Poulin, R. (1997). Species richness of parasite assemblages: evolution and patterns. Annual Review of Ecology and Systematics 28, 341–358.
Species richness of parasite assemblages: evolution and patterns.Crossref | GoogleScholarGoogle Scholar |

Poulin  R. (2007). ‘Evolutionary Ecology of Parasites.’ 2nd edn. (Princeton University Press: Princeton, NJ.)

Poulin, R., and Morand, S. (2000). The diversity of parasites. Quarterly Review of Biology 75, 277–293.
The diversity of parasites.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvltleqtQ%3D%3D&md5=08c06706c1c1acae57c76896c0c13247CAS | 11008700PubMed |

Poulin, R., and Rohde, K. (1997). Comparing the richness of metazoan ectoparasite communities of marine fishes: controlling for host phylogeny. Oecologia 110, 278–283.
Comparing the richness of metazoan ectoparasite communities of marine fishes: controlling for host phylogeny.Crossref | GoogleScholarGoogle Scholar |

Price, P. W., and Clancy, K. M. (1983). Patterns in number of helminth parasite species in freshwater fishes. Journal of Parasitology 69, 449–454.
Patterns in number of helminth parasite species in freshwater fishes.Crossref | GoogleScholarGoogle Scholar |

Richardson  A. J., and Poloczanska  E. S. (2009). Australia’s oceans. In ‘A Marine Climate Change Impacts and Adaptation Report Card for Australia 2009’. (Eds E. S. Poloczanska, A. J. Hobday and A. J. Richardson.) pp. 1–6. (National Climate Change Adaptation Research Facility: Gold Coast, Qld.)

Ridgway  K., and Hill  K. (2009). The East Australian Current. In ‘A Marine Climate Change Impacts and Adaptation Report Card for Australia 2009’. (Eds E. S. Poloczanska, A. J. Hobday and A. J. Richardson.) pp. 1–16. (National Climate Change Adaptation Research Facility: Gold Coast, Qld.)

Rohde, K., Roubal, F., and Hewitt, G. C. (1980). Ectoparasitic Monogenea, Digenea, and Copepoda from the gills of some marine fishes of New Caledonia and New Zealand. New Zealand Journal of Marine and Freshwater Research 14, 1–13.
Ectoparasitic Monogenea, Digenea, and Copepoda from the gills of some marine fishes of New Caledonia and New Zealand.Crossref | GoogleScholarGoogle Scholar |

Sandars, D. F. (1945). Five new microcotylids from fish from Western Australian waters. Journal of the Royal Society of Western Australia 29, 107–135..

SARDI (2000). Australian salmon (Arripis truttacea). South Australian Research and Development Institute (SARDI), Fisheries Assessment Series 2000/15, Adelaide.

Secor, D. H. (1999). Specifying divergent migrations in the concept of stock: the contingent hypothesis. Fisheries Research 43, 13–34.
Specifying divergent migrations in the concept of stock: the contingent hypothesis.Crossref | GoogleScholarGoogle Scholar |

Siddall, M. E., Trontelj, P., Utevsky, S. Y., Nkamany, M., and Macdonald, K. S. I. (2007). Diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudo medicinalis. Proceedings. Biological Sciences 274, 1481–1487.
Diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudo medicinalis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1SqsLs%3D&md5=3667432de59a33851daebaceccc5e241CAS |

Smith, W. L., and Wheeler, W. C. (2004). Polyphyly of the mail-cheeked fishes (Teleostei: Scorpaeniformes): evidence from mitochondrial and nuclear sequence data. Molecular Phylogenetics and Evolution 32, 627–646.
Polyphyly of the mail-cheeked fishes (Teleostei: Scorpaeniformes): evidence from mitochondrial and nuclear sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1eks70%3D&md5=748f7dc606775d7b19a975f7f582cf10CAS | 15223043PubMed |

Smith, W. L., and Wheeler, W. C. (2006). Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms. Journal of Heredity 97, 206–217.
Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Wksbo%3D&md5=d08847159de7635ab66d52f55b3f55feCAS | 16740627PubMed |

Smith  P. J., Hartill  B., Hamer  P., and McKenzie  A. (2008). Stock structure of kahawai, Arripis trutta. New Zealand Fisheries Assessment Report 2008/20, Ministry of Fisheries, Wellington, New Zealand.

Su, X., and White, R. W. G. (1994). New myxosporeans (Myxozoa: Myxosporea) from marine fishes of Tasmania, Australia. Acta Parasitologica 33, 251–259..

Ward, R. D., and Holmes, B. H. (2007). An analysis of nucleotide and amino acid variability in the barcode region of cytochrome c oxidase I (cox1) in fishes. Molecular Ecology Notes 7, 899–907.
An analysis of nucleotide and amino acid variability in the barcode region of cytochrome c oxidase I (cox1) in fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12lsg%3D%3D&md5=d169dc90ec7c5fe537a1245530ef026cCAS |

Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., and Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of Biological Sciences 360, 1847–1857.
DNA barcoding Australia’s fish species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjK&md5=e1f0704a3c9093bcd61999b5e90e1aa2CAS |

Yamaguti  S. (1958). ‘Systema Helminthum. Vol I. Digenetic Trematodes of Vertebrates.’ (Interscience Publishers Inc.: New York.)

Young, N. D., Crosbie, P. B. B., Adams, M. D., Nowak, B. F., and Morrison, R. N. (2007). Neoparamoeba perurans n. sp., an agent of amoebic gill disease of Atlantic salmon (Salmo salar). International Journal for Parasitology 37, 1469–1481.
Neoparamoeba perurans n. sp., an agent of amoebic gill disease of Atlantic salmon (Salmo salar).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOlsrfO&md5=174bfe9a0fd8e420c691341c11739b68CAS | 17561022PubMed |