Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

A sulfur-stable-isotope-based screening tool for assessing impact of acid sulfate soils on waterways

Kieryn Kilminster A D and Ian Cartwright B C
+ Author Affiliations
- Author Affiliations

A Department of Water, Government of Western Australia, PO Box K822, Perth, WA 6842, Australia.

B School of Geosciences, Monash University, Clayton, Vic. 3800, Australia.

C National Centre for Groundwater Research and Training, Flinders University,Adelaide, SA 5001, Australia.

D Corresponding author. Email: kieryn.kilminster@water.wa.gov.au

Marine and Freshwater Research 62(2) 152-161 https://doi.org/10.1071/MF10190
Submitted: 14 July 2010  Accepted: 25 November 2010   Published: 24 February 2011

Abstract

Early warning indicators for waterways affected by acid sulfate soils (ASS) are valuable tools for water management organisations. Oxidised ASS may discharge high concentrations of metals, acid and sulfur to surrounding water. The origin of sulfate may be determined by δ34S values. δ34S values of dissolved sulfate in ~300 samples of fresh, brackish and estuarine surface water from south-west Western Australia ranged from –6.6 to 31.4‰ (Cañon Diablo Troilite). An indicator was developed based on [SO42–], [Cl] and δ34S that categorised samples into groups with similar isotopic influences (iso-groups). Signals of disturbed ASS were identified in ~4.5% of sites. Multivariate statistical analysis showed that water quality had deteriorated at ASS-influenced sites. Although highly variable, average aluminium concentrations were higher (up to 0.12 mg L–1, compared with <0.05 mg L–1 elsewhere) in samples that are influenced by ASS disturbance. The categorisation of samples into iso-groups provides a simple tool to prioritise sites for further investigation. This study shows that δ34S values provide an early warning indicator for water affected by disturbed ASS, particularly in localities where rainfall is marine dominated with a similar δ34S to seawater.

Additional keywords: acidification, acid sulfate soils, early warning indicator, estuarine water, freshwater, metal pollution, sulfate reduction, sulfur isotope.


References

Adams, W. A., Ali, A. Y., and Lewis, P. J. (1990). The release of cationic aluminium from acidic soils into drainage water and relationships with land use. Journal of Soil Science 41, 255–268.
The release of cationic aluminium from acidic soils into drainage water and relationships with land use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkslOitrg%3D&md5=71e5ee04dce442ef07d90d25b29da76fCAS |

Alewell, C., Mitchell, M. J., Likens, G. E., and Krouse, H. R. (1999). Sources of stream sulfate at Hubbard Brook Experimental Forest: long-term analyses using stable isotopes. Biogeochemistry 44, 281–299.
Sources of stream sulfate at Hubbard Brook Experimental Forest: long-term analyses using stable isotopes.Crossref | GoogleScholarGoogle Scholar |

Andersson, P., Torssander, P., and Ingri, J. (1992). Sulphur isotope ratios in sulphate and oxygen isotopes in water from a small watershed in central Sweden. Hydrobiologia 235/236, 205–217.
Sulphur isotope ratios in sulphate and oxygen isotopes in water from a small watershed in central Sweden.Crossref | GoogleScholarGoogle Scholar |

Åström, M., and Björklund, A. (1995). Impact of acid sulfate soils on stream water geochemistry in western Finland. Journal of Geochemical Exploration 55, 163–170.
Impact of acid sulfate soils on stream water geochemistry in western Finland.Crossref | GoogleScholarGoogle Scholar |

Åström, M., and Spiro, B. (2000). Impact of isostatic uplift and ditching of sulfidic sediments on the hydrochemistry of major and trace elements and sulphur isotope ratios in streams, Western Finland. Environmental Science & Technology 34, 1182–1188.
Impact of isostatic uplift and ditching of sulfidic sediments on the hydrochemistry of major and trace elements and sulphur isotope ratios in streams, Western Finland.Crossref | GoogleScholarGoogle Scholar |

Bowen, B. B., and Benison, K. C. (2009). Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia. Applied Geochemistry 24, 268–284.
Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOntr0%3D&md5=d0650bd188c457f07243fc7cdd3342a9CAS |

Bridgman, H. A. (1989). Acid rain studies in Australia and New Zealand. Archives of Environmental Contamination and Toxicology 18, 137–146.
Acid rain studies in Australia and New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlWlsA%3D%3D&md5=33ef438529faa4e54957e2a8df1296f4CAS |

Bush, R. T., Fyfe, D., and Sullivan, L. A. (2004). Occurrence and abundance of monosulfidic black ooze in coastal acid sulfate soil landscapes. Australian Journal of Soil Research 42, 609–616.
Occurrence and abundance of monosulfidic black ooze in coastal acid sulfate soil landscapes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslShu7Y%3D&md5=60c602f76340b1f2d71707a6318447ceCAS |

Canfield, D. E. (2001). Biogeochemistry of sulfur isotopes. Reviews in Mineralogy and Geochemistry 43, 607–636.
Biogeochemistry of sulfur isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVyis74%3D&md5=99a42950a7e3b258bbe92e14c2116686CAS |

Chivas, A. R., Andrew, A. S., Lyons, W. B., Bird, M. I., and Donnelly, T. H. (1991). Isotopic constraints on the origin of salts in Australian playas. 1. Sulfur. Palaeogeography, Palaeoclimatology, Palaeoecology 84, 309–332.
Isotopic constraints on the origin of salts in Australian playas. 1. Sulfur.Crossref | GoogleScholarGoogle Scholar |

Clarke, I., and Fritz, P. (1997). ‘Environmental Isotopes in Hydrogeology.’ (Lewis Publishers, CRC Press LLC: Boca Raton, FL.)

Cook, F. J., Hicks, W., Gardner, E. A., Carlin, G. D., and Froggatt, D. W. (2000). Export of acidity in drainage water from acid sulphate soils. Marine Pollution Bulletin 41, 319–326.
Export of acidity in drainage water from acid sulphate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1agsQ%3D%3D&md5=3b66976d6e8cbe918979a86365aff161CAS |

Coomer, P. G., and Robinson, B. W. (1976). Sulphur and sulphate-oxygen isotopes and the origin of Silvermines deposits, Ireland. Mineralium Deposita 11, 155–169.
Sulphur and sulphate-oxygen isotopes and the origin of Silvermines deposits, Ireland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlsVGqs78%3D&md5=c3d1a237744fdc719fc3ed1a9b065b69CAS |

Dogramaci, S. S., Herczeg, A. L., Schiff, S. L., and Bone, Y. (2001). Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes. Applied Geochemistry 16, 475–488.
Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFelsLY%3D&md5=745ae757b28fe6a9ddede9a8a4dedb4aCAS |

Dowuona, G. N., Mermut, A. R., and Krouse, H. R. (1993). Stable isotope geochemistry of sulfate in relation to hydrogeology in southern Saskatchewan, Canada. Applied Geochemistry 8, 255–263.
Stable isotope geochemistry of sulfate in relation to hydrogeology in southern Saskatchewan, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtlSntLc%3D&md5=17a2afe6f3e867c420e1e376df994649CAS |

Fältmarsch, R. M., Åström, M., and Vuori, K.-M. (2008). Environmental risks of metal mobilised from acid sulphate soils in Finland: a literature review. Boreal Environment Research 13, 444–456.

Fitzhugh, R. D., Furman, T., and Korsak, A. K. (2001). Sources of stream sulphate in headwater catchments in Otter Creek Wilderness, West Virginia, USA. Hydrological Processes 15, 541–556.
Sources of stream sulphate in headwater catchments in Otter Creek Wilderness, West Virginia, USA.Crossref | GoogleScholarGoogle Scholar |

Giesemann, A., Jäger, H.-J., and Feger, K. H. (1995). Evaluation of sulfur cycling in managed forest stands by means of stable S-isotope analysis. Plant and Soil 168–169, 339–404.

Gosavi, K., Sammut, J., Gifford, S., and Jankowski, J. (2004). Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds. The Science of the Total Environment 324, 25–39.
Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFyhtrg%3D&md5=103e3a34064de95e90f429f9495ea112CAS | 15081694PubMed |

Green, R., Waite, T. D., Melville, M. D., and Macdonald, B. C. T. (2006). Characteristics of the acidity in acid sulfate soil drainage waters, McLeods Creek, Northeastern NSW, Australia. Environmental Chemistry 3, 225–232.
Characteristics of the acidity in acid sulfate soil drainage waters, McLeods Creek, Northeastern NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1ers7g%3D&md5=53c1c5afa031682e2e6acf2e63da3ad6CAS |

Indraratna, B., Sullivan, J., and Nethery, A. (1995). Effect of groundwater table on the formation of acid sulfate soils. Mine Water and the Environment 14, 71–84.
| 1:CAS:528:DyaK28XivFWgs7Y%3D&md5=3bb94806e1013c9211ad1ea574597aafCAS |

Johnston, S. G., Slavich, P. G., Sullivan, L. A., and Hirst, P. (2003). Artificial drainage of floodwaters from sulfidic backswamps: effects on deoxygenation in an Australian estuary. Marine and Freshwater Research 54, 781–795.
Artificial drainage of floodwaters from sulfidic backswamps: effects on deoxygenation in an Australian estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVGmtbY%3D&md5=1356b5af6abe3e8da8475ed209a6efd3CAS |

Jowett, E. C., Roth, T., Rydzewski, A., and Oszczepalski, S. (1991). ‘Background’ δ34S values of Kupferschiefer sulphides in Poland: pyrite-marcasite nodules. Mineralium Deposita 26, 89–98.
‘Background’ δ34S values of Kupferschiefer sulphides in Poland: pyrite-marcasite nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslGmsr0%3D&md5=577d445b57b262ef61d32fedb718f732CAS |

Kaplan, I. R., and Rafter, T. A. (1957). Fractionation of stable isotopes of sulfur by thiobacilli. Science 127, 517–518.
Fractionation of stable isotopes of sulfur by thiobacilli.Crossref | GoogleScholarGoogle Scholar |

Keene, A. F., Johnston, S. G., Bush, R. T., Burton, E. D., and Sullivan, L. A. (2010). Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia. Marine Pollution Bulletin 60, 620–626.
Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFOlsLY%3D&md5=302142e0460c075c951d574de5e2e834CAS | 20223484PubMed |

Khademi, H., Mermut, A. R., and Krouse, H. R. (1997). Sulfur isotope geochemistry of gypsiferous Aridisols from central Iran. Geoderma 80, 195–209.
Sulfur isotope geochemistry of gypsiferous Aridisols from central Iran.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitl2gtQ%3D%3D&md5=dd956ec52c5a951b5283c1072341f13aCAS |

Lewicka-Szczebak, D., Trojanowska, A., Górka, M., and Jędrysek, M.-O. (2008). Sulfur isotope mass balance of dissolved sulphate ion in a freshwater dam reservoir. Environmental Chemistry Letters 6, 169–173.
Sulfur isotope mass balance of dissolved sulphate ion in a freshwater dam reservoir.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotV2htr8%3D&md5=f833a7d30f7a6498885c03d3c397a37dCAS |

MacDonald, B. C. T., White, I., Åström, M. E., Keene, A. F., Melville, M. D., et al. (2007). Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia. Applied Geochemistry 22, 2695–2705.
Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGjtbvM&md5=3147757253b7a832bfe75fcd358bed62CAS |

Mayer, B., Feger, K. H., Giesemann, A., and Jäger, H.-J. (1995). Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data. Biogeochemistry 30, 31–58.
Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslKg&md5=b558e846fad8cdafb3cbade856c28617CAS |

Minh, L. Q., Tuong, T. P., van Mensvoort, M. E. F., and Bouma, J. (1997). Contamination of surface water as affected by land use in acid sulfate soils in the Mekong River Delta, Vietnam. Agriculture Ecosystems & Environment 61, 19–27.
Contamination of surface water as affected by land use in acid sulfate soils in the Mekong River Delta, Vietnam.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlOqs7g%3D&md5=33b87b5d6cbfae1d336757da5f7ca6feCAS |

Minh, L. Q., Tuong, T. P., van Mensvoort, M. E. F., and Bouma, J. (2002). Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil. Agricultural Water Management 56, 179–191.
Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil.Crossref | GoogleScholarGoogle Scholar |

Mizota, C., and Sasaki, A. (1996). Sulfur isotope composition of soils and fertilizers: Differences between Northern and Southern hemispheres. Geoderma 71, 77–93.
Sulfur isotope composition of soils and fertilizers: Differences between Northern and Southern hemispheres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFyqu70%3D&md5=e22c91e37731bdc898db2d5fcdf94e50CAS |

Moncaster, S. J., Bottrell, S. H., Tellam, J. H., Lloyd, J. W., and Konhauser, K. O. (2000). Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate. Journal of Contaminant Hydrology 43, 147–163.
Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitleltrg%3D&md5=70a53c0ef8e24de6758b98d827024e10CAS |

Mörth, C.-M., and Torssander, P. (1995). Sulfur and oxygen isotope ratios in sulphate during an acidification reversal study at Lake Gårdjsön, Western Sweden. Water, Air, and Soil Pollution 79, 261–278.
Sulfur and oxygen isotope ratios in sulphate during an acidification reversal study at Lake Gårdjsön, Western Sweden.Crossref | GoogleScholarGoogle Scholar |

Mulvey, P. J. (1993). Pollution prevention and management of sulfidic clays and sands. In ‘Proceedings of the National Conference on Acid Sulfate Soils. Coolangatta, 24–25 June 1993’. (Ed. R. T. Bush.) pp. 116–129. (NSW Department of Agriculture: Sydney.)

Nordmyr, L., Åström, M., and Peltola, P. (2008). Metal pollution of estuarine sediments caused by leaching of acid sulphate soils. Estuarine, Coastal and Shelf Science 76, 141–152.
Metal pollution of estuarine sediments caused by leaching of acid sulphate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGjsLnM&md5=73380c8771721a1e3bdc8a79e607bf50CAS |

Nordmyr, L., Österholm, P., and Åström, M. (2008). Estuarine behaviour of metal loads leached from coastal lowland acid sulphate soils. Marine Environmental Research 66, 378–393.
Estuarine behaviour of metal loads leached from coastal lowland acid sulphate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVagsLw%3D&md5=8aba9728eef960d6dbaf00a04c0588cbCAS | 18657315PubMed |

NSW Department of Primary Industries (2008). Acid sulfate soils priority investigations for the Lower Hunter River Estuary. Report to the Department of Environment, Water, Heritage and the Arts. Department of Primary Industries (Aquatic Habitat Rehabilitation), Port Stephens.

Otero, N., Soler, A., and Canals, À. (2008). Controls of δ34S and δ18O in dissolved sulphate: Learning from a detailed study in the Llobregat River (Spain). Applied Geochemistry 23, 1166–1185.
Controls of δ34S and δ18O in dissolved sulphate: Learning from a detailed study in the Llobregat River (Spain).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVGrsLw%3D&md5=d5daa74baa76978b315a14f8d59f05efCAS |

Peterson, B. J., Howarth, R. W., and Garritt, R. H. (1986). Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67, 865–874.
Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsFSiurk%3D&md5=85f6f70e7b595d20f820b5ce366d632dCAS |

Powell, B., and Martens, M. (2005). A review of acid sulfate soil impacts, actions and policies that impact of water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity. Marine Pollution Bulletin 51, 149–164.
A review of acid sulfate soil impacts, actions and policies that impact of water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2gtL0%3D&md5=f5107e9fa103c74242a40dd1dda9505dCAS | 15757717PubMed |

Robinson, B. W., and Bottrell, S. H. (1997). Discrimination of sulfur sources in pristine and polluted New Zealand river catchments using stable isotopes. Applied Geochemistry 12, 305–319.
Discrimination of sulfur sources in pristine and polluted New Zealand river catchments using stable isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksF2isb8%3D&md5=ccd31c7b82abba6d944bb64af36db91bCAS |

Sammut, J., Melville, M. D., Callinan, R. B., and Fraser, G. C. (1995). Estuarine acidification: impacts on aquatic biota of draining acid sulfate soils. Australian Geographical Studies 33, 89–100.
Estuarine acidification: impacts on aquatic biota of draining acid sulfate soils.Crossref | GoogleScholarGoogle Scholar |

Sammut, J., White, I., and Melville, M. D. (1996). Acidification of an estuarine tributary in Eastern Australia due to drainage of acid sulfate soils. Marine and Freshwater Research 47, 669–684.
Acidification of an estuarine tributary in Eastern Australia due to drainage of acid sulfate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvF2jtLk%3D&md5=bde60ed63e472e2b8a62c4c054aafdd2CAS |

Smith, J., and Melville, M. D. (2004). Iron monosulfide formation and oxidation in drain-bottom sediments of an acid sulfate soil environment. Applied Geochemistry 19, 1837–1853.
Iron monosulfide formation and oxidation in drain-bottom sediments of an acid sulfate soil environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntV2gsLw%3D&md5=661b804e1b2f5777ab5e8106aef830b5CAS |

Sohlenius, G., and Öborn, I. (2004). Geochemistry and partitioning of trace metals in acid sulphate soils in Sweden and Finland before and after sulphide oxidation. Geoderma 122, 167–175.
Geochemistry and partitioning of trace metals in acid sulphate soils in Sweden and Finland before and after sulphide oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlaqt7w%3D&md5=f8502c715e85b85a7c247b29895e0b99CAS |

Sullivan, L. A., and Bush, R. T. (2000). The behaviour of drain sludge in acid sulfate soil areas: some implications for acidification of waterways and drain maintenance. In ‘Proceedings of a Workshop on Remediation and Assessment of Broadacre Acid Sulfate Soils. NSW Agriculture: Southern Cross University, Lismore, Australia, 31 August–2 September 1999’. (Ed. P. Slavich.) pp. 43–48.

WAPC (2009). Planning Bulletin 64/2009. Acid Sulfate Soils. Western Australian Planning Commission: Western Australian Government, Perth.

Wilkin, R. T., and Barnes, H. L. (1997). Pyrite formation in an anoxic estuarine basin. American Journal of Science 297, 620–650.
Pyrite formation in an anoxic estuarine basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVKju7o%3D&md5=6e04d366ca20671cbe29f69ed75a667aCAS |

Willett, I. R., Melville, M. D., and White, I. (1993). Acid drainwaters from potential acid sulphate soils and their impact on estuarine ecosystems. In ‘Selected papers from the Ho Chi Minh City, 4 March 1992 Symposium on Acid Sulfate Soils’. (Eds D. L. Dent and M. E. F. van Mensvoort.) pp. 419–425. (International Institute for Land Reclamation and Improvement: Wageningen.)