Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Species status and conservation issues of New Zealand’s endemic Latrodectus spider species (Araneae : Theridiidae)

Cor J. Vink A F , Phil J. Sirvid B , Jagoba Malumbres-Olarte C , James W. Griffiths D , Pierre Paquin E and Adrian M. Paterson C
+ Author Affiliations
- Author Affiliations

A Biosecurity Group, AgResearch, Lincoln Science Centre, Private Bag 4749, Christchurch 8140, New Zealand.

B Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand.

C Bio-Protection and Ecology Division, PO Box 84, Lincoln University, Lincoln 7647, New Zealand.

D Department of Conservation, Wellington Conservancy, PO Box 5086, Wellington 6145, New Zealand.

E Cave and Endangered Invertebrate Research Laboratory, SWCA Environmental Consultants, 4407 Monterey Oaks Boulevard, Building 1, Suite 110, Austin, TX 78749, USA.

F Corresponding author. Email: cor.vink@agresearch.co.nz

Invertebrate Systematics 22(6) 589-604 https://doi.org/10.1071/IS08027
Submitted: 29 July 2008  Accepted: 21 November 2008   Published: 22 December 2008

Abstract

New Zealand has two endemic widow spiders, Latrodectus katipo Powell, 1871 and L. atritus Urquhart, 1890. Both species face many conservation threats and are actively managed. The species status of the Latrodectus spiders of New Zealand was assessed using molecular (COI, ITS1, ITS2) and morphological methods and with cross-breeding experiments. Latrodectus katipo and L. atritus were not found to be reciprocally monophyletic for any of the gene regions or morphological traits. Other than colour, which is variable, there were no morphological characters that separated the two species, which cross-bred in the laboratory and produced fertile eggsacs. Colour variation is clinal over latitude and correlates significantly with mean annual temperature. We conclude that L. atritus is a junior synonym of L. katipo. An example of introgression from the Australian species L. hasseltii Thorell, 1870 was also detected and its conservation implications are discussed.

Additional keywords: conservation genetics, cytochrome oxidase subunit 1 (COI), DNA, internal transcribed spacer regions (ITS), intraspecific variation, Latrodectus atritus, Latrodectus hasselti, Latrodectus hasseltii, Latrodectus katipo, phylogenetics, taxonomy.


Acknowledgements

We are grateful to Nadine Dupérré for her exquisite illustrations in Figure 3, insightful observations on the genitalic structures and for providing information on Castianeira descripta. Thanks to Marshal Hedin for the use of his laboratory at San Diego State University, where a large amount of the molecular work was done. Leonor Guardia Claps (La Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán), Mark Harvey (Western Australian Museum), Gonzalo Giribet and Laura Liebensperger (Harvard University) and library staff at MONZ provided copies of key papers. We thank John Early and Rosemary Gilbert (AMNZ) and John Marris (LUNZ) for the loan of specimens and Ricardo Palma (MONZ) for nomenclatorial advice. For providing important specimens we thank Volker Framenau (Western Australian Museum), John Early (AMNZ), Carol Muir (MAF Biosecurity New Zealand), Alison Evans, Warren Chinn and Dave Anderson (DoC, Canterbury Conservancy), DoC staff at the Wanganui Conservancy, Brendon Christensen and Marion Sutton (DoC, Bay of Plenty Conservancy), Sam Brown (Lincoln University), Robert Raven (Queensland Museum), Craig Phillips (AgR) and David Hirst (South Australian Museum). Thanks to Simon Pollard (CMNZ) for providing access to Urquhart’s type specimens. Virtual Climate Station data was supplied by the National Institute of Water and Atmospheric Research, New Zealand (www.niwa.cri.nz) and John Kean (AgR) provided invaluable assistance in retrieving the necessary data. Thanks to Jeremy Miller (California Academy of Sciences) for helpful comments that greatly improved an earlier version of the manuscript and for providing information from his unpublished worldwide Latrodectus revision. Three anonymous referees made helpful suggestions for improving the manuscript. This research was partially funded by the New Zealand Department of Conservation Taxonomic Units Fund (investigation number 3771).


References


Agnarsson I., Coddington J. A., Knoflach B. (2007) Morphology and evolution of cobweb spider male genitalia (Araneae, Theridiidae). Journal of Arachnology 35, 334–395.
Crossref | GoogleScholarGoogle Scholar | open url image1

Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Andrade M. C. B. (1996) Sexual selection for male sacrifice in the Australian redback spider. Science 271, 70–72.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Arnedo M. A., Gillespie R. G. (2006) Species diversification patterns in the Polynesian jumping spider genus Havaika Prószyński, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution 41, 472–495.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Arnedo M. A., Coddington J. A., Agnarsson I., Gillespie R. G. (2004) From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 31, 225–245.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ayoub N. A., Riechert S. E., Small R. L. (2005) Speciation history of the North American funnel web spiders, Agelenopsis (Araneae: Agelenidae): Phylogenetic inferences at the population–species interface. Molecular Phylogenetics and Evolution 36, 42–57.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bond J. E., Beamer D. A., Lamb T., Hedin M. (2006) Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region. Animal Conservation 9, 145–157.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bonnet P. (1957). ‘Bibliographia Araneorum.’ (Douladoure: Toulouse, France.)

Brandley M. C., Schmitz A., Reeder T. W. (2005) Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Systematic Biology 54, 373–390.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bryant E. B. (1933) Notes on types of Urquhart’s spiders. Records of the Canterbury Museum 4, 1–27. open url image1

Casgrain P. , and Legendre P. (2000). ‘The R Package for Multivariate and Spatial Analysis.’ (Département de Sciences Biologiques, Université de Montréal: Montréal, Canada.)

Chang J., Song D., Zhou K. (2007) Incongruous nuclear and mitochondrial phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China. Molecular Phylogenetics and Evolution 42, 104–121.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Coddington J. A., Levi H. W. (1991) Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22, 565–592.
Crossref | GoogleScholarGoogle Scholar | open url image1

Crandall K. A., Bininda-Emonds O. R. P., Mace G. M., Wayne R. K. (2000) Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15, 290–295.
Crossref | GoogleScholarGoogle Scholar | open url image1

Crosby T. K., Dugdale J. S., Watt J. C. (1998) Area codes for recording specimen localities in the New Zealand subregion. New Zealand Journal of Zoology 25, 175–183. open url image1

Croucher P. J. P., Oxford G. S., Searle J. B. (2004) Mitochondrial differentiation, introgression and phylogeny of species in the Tegenaria atrica group (Araneae: Agelenidae). Biological Journal of the Linnean Society 81, 79–89.
Crossref | GoogleScholarGoogle Scholar | open url image1

Crowe A. (2007). ‘Which New Zealand Spider?’ (Penguin Books: Sydney, Australia.)

Dahl F. (1902) Über algebrochene Copulationsorgane männlicher Spinnen im Körper der Weibchen. Sitzungsberichte der Gesellschaft naturforschender Freunde zu Berlin 1902, 36–45. open url image1

Dalmas R. (1917) Araignées de Nouvelle Zélande. Annales de la Société Entomologique de France 86, 317–430. open url image1

Downes M. F. (1993) More on the redback status question. Australasian Arachnology 47, 3. open url image1

Eberhard W. G. (1986). Why are genitalia good species characters? In ‘Proceedings of the Ninth International Congress of Arachnology, Panama 1983’. (Eds W. G. Eberhard, Y. D. Lubin and B. C. Robinson.) pp. 53–59. (Smithsonian Institution Press: Washington, DC, USA.)

Felsenstein J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
CAS | PubMed |
open url image1

Forster R. R. (1975). The spiders and harvestmen. In ‘Biogeography and Ecology in New Zealand’. (Ed. G. Kuschel.) pp. 493–505. (W. Junk: The Hague, The Netherlands.)

Forster L. M. (1984). The Australian redback spider (Latrodectus hasselti): its introduction and potential for establishment and distribution in New Zealand. In ‘Commerce and the Spread of Pests and Disease Vectors’. (Ed. M. Laird.) pp. 273–289. (Praeger Publishers: New York, USA.)

Forster L. M. (1992) The stereotyped behaviour of sexual cannibalism in Latrodectus hasselti Thorell (Araneae: Theridiidae), the Australian redback spider. Australian Journal of Zoology 40, 1–11.
Crossref | GoogleScholarGoogle Scholar | open url image1

Forster L. M. (1995) The behavioural ecology of Latrodectus hasselti (Thorell), the Australian redback spider (Araneae: Theridiidae): a review. Records of the Western Australian Museum 52(Supplement), 13–24. open url image1

Forster R. R. , and Forster L. M. (1970). ‘Small Land Animals of New Zealand.’ (John McIndoe: Dunedin, NZ.)

Forster R. R. , and Forster L. M. (1973). ‘New Zealand Spiders an Introduction.’ (Collins: Auckland, NZ.)

Forster R. R. , and Forster L. M. (1999). ‘Spiders of New Zealand and their Worldwide Kin.’ (Otago University Press: Dunedin, NZ.)

Forster L. M., Kingsford S. (1983) A preliminary study of development in two Latrodectus species (Araneae: Theridiidae). New Zealand Entomologist 7, 431–439. open url image1

Funk D. J., Omland K. E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology and Systematics 34, 397–423.
Crossref | GoogleScholarGoogle Scholar | open url image1

Garb J. E., González A., Gillespie R. G. (2004) The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Molecular Phylogenetics and Evolution 31, 1127–1142.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gerschman B. S. , and Schiapelli R. D. (1942). Revisión del género Latrodectus Walckenaer 1805. In ‘Latrodectus mactans y latrodectismo’. (Ed. R. Sampayo.) pp. 1–23. (Universidad Nacional de Buenos Aires: Buenos Aires, Argentina.)

Griffiths J. W. (2001). Web site characteristics, dispersal and species status of New Zealand’s katipo spiders, Latrodectus katipo and L. atritus. Ph.D. Thesis, Lincoln University, Christchurch, NZ.

Griffiths J. W., Paterson A. M., Vink C. J. (2005) Molecular insights into the biogeography and species status of New Zealand’s endemic Latrodectus spider species; L. katipo and L. atritus. Journal of Arachnology 33, 776–784.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hann S. W. (1990) Evidence for the displacement of an endemic New Zealand spider, Latrodectus katipo Powell by the South African species Steatoda capensis Hann (Araneae: Theridiidae). New Zealand Journal of Zoology 17, 295–308. open url image1

Hasegawa M., Kishino K., Yano T. (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hebert P. D., Ratnasingham S., de Waard J. R. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B. Biological Sciences 270(Supplement), 96–99.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hedin M. C. (1997) Speciation history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling. Evolution 51, 1929–1945.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hedin M. C., Maddison W. P. (2001) A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hedin M. C., Wood D. A. (2002) Genealogical exclusivity in geographically proximate populations of Hypochilus thorelli Marx (Araneae, Hypochilidae) on the Cumberland Plateau of North America. Molecular Ecology 11, 1975–1988.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hitchmough R. , Bull L. , and Cromarty P. (Eds) (2007). ‘New Zealand Threat Classification System Lists 2005.’ (Department of Conservation: Wellington, NZ.)

Huber B. A. (2004). The significance of copulatory structures in spider systematics. In ‘Biosemiotik – praktische Anwendung und Konsequenzen für die Einzelwissenschaften’. (Ed. J Schult.) pp. 89–100. (VWB Verlag: Berlin, Germany.)

Hutton F. W. (Ed.) (1904). ‘Index Faunae Novae Zealandiae.’ (Dulau & Co.: London, UK.)

International Commission on Zoological Nomenclature (1999). ‘International Code of Zoological Nomenclature.’ (The International Trust for Zoological Nomenclature: London, UK.)

Ji Y.-J., Zhang D.-X., He L.-J. (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Molecular Ecology Notes 3, 581–585.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kaston B. J. (1970) Comparative biology of American black widow spiders. Transactions of the San Diego Society of Natural History 16, 33–82. open url image1

Kasumovic M. M., Andrade M. C. B. (2004) Discrimination of airborne pheromones by mate-searching male western black widow spiders (Latrodectus hesperus): species- and population-specific responses. Canadian Journal of Zoology 82, 1027–1034.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kavale J. (1986). The Comparative Biology of Two Latrodectus species. M.Sc. Thesis, University of Otago, NZ.

Keegan H. L. (1955) Spiders of genus Latrodectus. American Midland Naturalist 54, 142–152.
Crossref | GoogleScholarGoogle Scholar | open url image1

Knowles L. L., Carstens B. C. (2007) Delimiting species without monophyletic gene trees. Systematic Biology 56, 887–895.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lanave C., Preparata G., Sacone C., Serio G. (1984) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20, 86–93.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Legendre P. , and Legendre L. (1998). ‘Numerical Ecology.’ (Elsevier Science: Amsterdam, The Netherlands.)

Levi H. W. (1959) The spider genus Latrodectus (Araneae, Theridiidae). Transactions of the American Microscopical Society 78, 7–43.
Crossref | GoogleScholarGoogle Scholar | open url image1

Levi H. W. (1983) On the value of genitalic structures and coloration in separating species of widow spiders (Latrodectus sp.) (Arachnida: Araneae: Theridiidae). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 26, 195–200. open url image1

Levy G., Amitai P. (1983) Revision of the widow-spider genus Latrodectus (Araneae: Theridiidae) in Israel. Zoological Journal of the Linnean Society 77, 39–63.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lotz L. N. (1994) Revision of the genus Latrodectus (Araneae: Theridiidae) in Africa. Navorsinge van die Nasionale Museum Bloemfontein 10, 1–60. open url image1

Main B. Y. (1993) Redbacks may be dinky-di after all: an early record from South Australia. Australasian Arachnology 46, 3–4. open url image1

Mantel N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–220.
CAS | PubMed |
open url image1

McCrone J. D., Levi H. W. (1964) North American widow spiders of the Latrodectus curacviensis group (Araneae: Theridiidae). Psyche 71, 12–27.
Crossref | GoogleScholarGoogle Scholar | open url image1

McCutcheon E. R. (1976) Distribution of the katipo spiders (Araneae: Theridiidae) of New Zealand. New Zealand Entomologist 6, 204. open url image1

McCutcheon E. R. (1992) Two species of katipo spiders. The Weta 15, 1–2. open url image1

Moritz C. (1994) Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
Crossref | GoogleScholarGoogle Scholar | open url image1

National Institute of Water and Atmospheric Research NZ (2004). Mean annual temperature, 1971–2000. In ‘NIWA poster number 4’. (National Institute of Water and Atmospheric Research, New Zealand: Wellington, NZ.)

Nicholls D. C., Sirvid P. J., Pollard S. D., Walker M. (2000) A list of arachnid primary types held in Canterbury Museum. Records of the Canterbury Museum 14, 37–48. open url image1

Nylander J. A. A. (2005). ‘MrModeltest 2.2.’ (Department of Systematic Zoology, Uppsala University: Uppsala, Sweden.)

Page R. D. M. (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biological Sciences 12, 357–358.
CAS |
open url image1

Paquin P., Hedin M. (2004) The power and perils of “molecular taxonomy”: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves. Molecular Ecology 13, 3239–3255.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Paquin P., Dupérré N., Cokendolpher J. C., White K., Hedin M. (2008) The fundamental importance of taxonomy in conservation biology: the case of the eyeless Cicurina bandida (Araneae: Dictynidae) of Central Texas, including new synonyms and the description of the male of the species. Invertebrate Systematics 22, 139–149.
Crossref | GoogleScholarGoogle Scholar | open url image1

Parrott A. W. (1946) A systematic catalogue of New Zealand spiders. Records of the Canterbury Museum 5, 51–92. open url image1

Parrott A. W. (1948) The katipo spider of New Zealand (Latrodectus hasseltii Thorell). Records of the Canterbury Museum 5, 161–165. open url image1

Patrick B. H. (2002) Conservation status of the New Zealand red katipo spider (Latrodectus katipo Powell, 1871). Science for Conservation (Wellington) 194, 1–33. open url image1

Pickard-Cambridge F. O. (1902a) On the genus Latrodectus, Walck. Annals and Magazine of Natural History 10, 38–41. open url image1

Pickard-Cambridge F. O. (1902b) On the spiders of the genus Latrodectus, Walckenaer. Proceedings of the Zoological Society of London 1902, 247–261. open url image1

Posada D., Buckley T. R. (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Powell L. (1871) On Latrodectus (Katipo), the poisonous spider of New Zealand. Transactions of the New Zealand Institute 3, 56–59. open url image1

Rader R. B., Belk M. C., Shiozawa D. K., Crandall K. A. (2005) Empirical tests for ecological exchangeability. Animal Conservation 8, 239.
Crossref | GoogleScholarGoogle Scholar | open url image1

Raven R. J. , and Gallon J. A. (1987). The redback spider. In ‘Toxic Plants and Animals. A Guide for Australia’. (Eds J. Covacevich, P. Davie and J. Pearns.) pp. 307–311. (Queensland Museum: Brisbane, Australia.)

Reiskind J. (1969) The spider subfamily Castianeirinae of North and Central America (Araneae, Clubionidae). Bulletin of the Museum of Comparative Zoology 138, 163–325. open url image1

Rodríguez F., Oliver J. F., Marín A., Medina J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142, 485–501.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roewer C. F. (1942). ‘Katalog der Araneae von 1758 bis 1940.’ (Paul Budy: Bremen, Germany.)

Ronquist F., Huelsenbeck J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Schmidt G. (1990) Courtship behaviour, copulation and crossing experiments in Latrodectus species (Araneida: Theridiidae). Acta Zoologica Fennica 190, 351–355. open url image1

Sutton M. E. , Christensen B. R. , and Hutcheson J. A. (2006). ‘Field Identification of Katipo.’ (Department of Conservation: Wellington, NZ.)

Swofford D. L. (2002). ‘PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10.’ (Sinauer Associates: Sunderland, MA, USA.)

Tait A., Henderson R., Turner R., Zheng Z. (2006) Thin plate smoothing interpolation of daily rainfall for New Zealand using a climatological rainfall surface. International Journal of Climatology 26, 2097–2115.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tavaré S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17, 57–86. open url image1

Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Thorell T. (1870) Araneae nonnullae Novae Hollandie, descriptae. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar 27, 367–389. open url image1

Thorell T. (1881) Studi sui Ragni Malesi e Papuani. III. Ragni dell’Austro Malesia e del Capo York, conservati nel Museo civico di storia naturale di Genova. Annali del Museo Civico di Storia Naturale di Genova 17, 1–727. open url image1

Towns D. R., Williams M. (1993) Single species conservation in New Zealand: towards a redefined conceptual approach. Journal of the Royal Society of New Zealand 23, 61–78. open url image1

Urquhart A. T. (1887) On new species of Araneida. Transactions of the New Zealand Institute 19, 72–118. open url image1

Urquhart A. T. (1890) Descriptions of new species of Araneidae. Transactions of the New Zealand Institute 22, 239–266. open url image1

Urquhart A. T. (1892) Catalogue of the described species of New Zealand Araneidae. Transactions of the New Zealand Institute 24, 220–230. open url image1

Urquhart A. T. (1894) Descriptions of new species of Araneae. Transactions of the New Zealand Institute 26, 204–218. open url image1

Vink C. J., Paterson A. M. (2003) Combined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus Anoteropsis (Araneae: Lycosidae). Molecular Phylogenetics and Evolution 28, 576–587.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Vink C. J., Thomas S. M., Paquin P., Hayashi C. Y., Hedin M. (2005) The effects of preservatives and temperatures on arachnid DNA. Invertebrate Systematics 19, 99–104.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Yang Z., Goldman N., Friday A. (1994) Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Molecular Biology and Evolution 11, 316–324.
CAS | PubMed |
open url image1

Zhang D., Cook W. B., Horner N. V. (2004) ITS2 rDNA variation of two black widow species, Latrodectus mactans and Latrodectus hesperus (Araneae, Theridiidae). Journal of Arachnology 32, 349–352.
Crossref | GoogleScholarGoogle Scholar | open url image1