Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Distributions of neonicotinoid insecticides in the Commonwealth of Massachusetts: a temporal and spatial variation analysis for pollen and honey samples

Chensheng (Alex) Lu A B , Chi-Hsuan Chang A , Lin Tao A and Mei Chen A
+ Author Affiliations
- Author Affiliations

A Department of Environmental Health, Harvard T.H. Chan School of Public Health 665 Huntington Avenue, Building 1, Room G3, Boston MA 02115, USA.

B Corresponding author. Email: cslu@hsph.harvard.edu

Environmental Chemistry 13(1) 4-11 https://doi.org/10.1071/EN15064
Submitted: 26 March 2015  Accepted: 29 April 2015   Published: 24 July 2015

Environmental context. Neonicotinoids are a group of widely used insecticides that have been implicated in the deterioration of honeybee health and the declining number of honeybee colonies worldwide. We wanted to find out whether neonicotinoids are commonly present in pollen and honey, which are the main food sources for bees. The results show that neonicotinoids are ubiquitous in the environment where bees foraged, and therefore could pose risks to honeybee health.

Abstract. It is known that honeybees are exposed to a wide variety of pesticides, including systemic neonicotinoids, through different media. Pollen might be a better matrix for assessing exposure to neonicotinoid not only because it is the protein source for bees, but also because pollen collected from foraging bees could help to establish the field-realistic levels of neonicotinoids. In this study, we aimed to assess temporal and spatial variations of neonicotinoids in pollen collected across the Commonwealth of Massachusetts. Monthly pollen samples and a honey sample were collected between April and August 2013 from 62 volunteered hives and analysed for eight neonicotinoids. We utilised the relative potency factor (RPF) method to integrate individual neonicotinoids into a single measurement of imidaclopridRPF. We then analysed the spatial and temporal variations of imidaclopridRPF in pollen using the response profile analysis. Overall, 73 % of pollen and 72 % of honey samples contained at least one detectable neonicotinoid. We found that 49, 20 and 4 % of pollen samples contained one, two and three neonicotinoids respectively. In honey, we detected that 57 and 15 % of samples contained one and two neonicotinoids respectively. Neonicotinoids as a group, or imidacloprid, in pollen exhibited no significant temporal or spatial variation, however, we found statistically significant spatial–temporal interaction differences of imidaclopridRPF concentrations. Considering the ubiquitous of neonicotinoids in the environment and their effects on bees at the sub-lethal levels, it is prudent to identify ways to minimise the uses of neonicotinoids in order to reduce the risk of neonicotinoid exposure to honeybees.


References

[1]  C. A. Mullin, M. Frazier, J. L. Frazier, S. Ashcraft, R. Simonds, D. Vanengelsdorp, J. S. S. Pettis, High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 2010, 5, e9754.
High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health.Crossref | GoogleScholarGoogle Scholar | 20333298PubMed |

[2]  A. Rortais, G. Arnold, M. P. Halm, F. Touffet-Briens, Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 2005, 36, 71.
Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslalu7w%3D&md5=40b2779106b024fac438dc8a3b88d5d7CAS |

[3]  S. Suchail, D. Guez, L. P. Belzunces, Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. 2001, 20, 2482.
Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVersA%3D%3D&md5=430d67b626826f288bdf8f7f799f48a7CAS | 11699773PubMed |

[4]  H. Thompson, C. Maus, The relevance of sublethal effects in honey bee testing for pesticide risk assessment. Pest Manag. Sci. 2007, 63, 1058.
The relevance of sublethal effects in honey bee testing for pesticide risk assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KntrjK&md5=f0a108dbbd3321b77b4f021e99044ca3CAS | 17879982PubMed |

[5]  M. Spivak, E. Mader, M. Vaugha, N. H. Euliss, The plight of the bees. Environ. Sci. Technol. 2011, 45, 34.
The plight of the bees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGhsb7P&md5=371615d0a2cd154ed8c8b637c317ec92CAS | 20839858PubMed |

[6]  E. C. Yang, Y. C. Chuang, Y. L. Chen, L. H. Chang, Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 2008, 101, 1743.
Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlOmsQ%3D%3D&md5=d670bb60aab3e4a0258a5e96d3d9e479CAS | 19133451PubMed |

[7]  C. Lu, K. M. Warchol, R. A. Callahan, In situ replication of honeybee colony collapse disorder. Bull. Insectology 2012, 65, 99.

[8]  C. Lu, K. M. Warchol, R. A. Callahan, Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bull. Insectology 2014, 67, 125.
| 1:CAS:528:DC%2BC2cXht1WmtL%2FN&md5=a5dcff8067c366d561a599e8dcfbab3cCAS |

[9]  V. Girolami, L. Mazzon, A. Squartini, N. Mori, M. Marzaro, A. Di Bernardo, M. Greatti, C. Giorio, A. Tapparo, Translocation of neonicotinoid insecticides from coasted seeds to seedling guttation drops: a novel way of intoxication for bees. J. Econ. Entomol. 2009, 102, 1808.
Translocation of neonicotinoid insecticides from coasted seeds to seedling guttation drops: a novel way of intoxication for bees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCns7zJ&md5=dce0333c3323f251af894d5829b98b54CAS | 19886445PubMed |

[10]  M. Chen, L. Tao, J. McLean, C. Lu, Quantitative analysis of neonicotinoid insecticide residues in foods: implication for dietary exposure. J. Agric. Food Chem. 2014, 62, 6082.
Quantitative analysis of neonicotinoid insecticide residues in foods: implication for dietary exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslegurk%3D&md5=5f278b43d6582e16b894d8cb73d6b07fCAS | 24933495PubMed |

[11]  D. F. Staskal, L. S. Birmbaum, L. C. Haws, Application of a relative potency fact or approach in the assessment of health risks associated with exposure to mixtures of dioxin-like compounds, in Principles and Practice of Mixtures Toxicology (Ed. M. Mumtaz) 2010, Chapter 3, pp. 11–20 (Wiley Online). http://dx.dpi.org/10.1002/9783527630196.ch3

[12]  M. G. Barron, R. Heintz, S. D. Rice, Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Mar. Environ. Res. 2004, 58, 95.
Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslSisrY%3D&md5=0e98ac51836cb6b7c9270ee7a8177d06CAS | 15178019PubMed |

[13]  Development of a relative potency factor (RPF) approach for polycyclic aromatic hydrocarbon mixtures 2010 (US Environmental Protection Agency: Washington, DC). Available at http://yosemite.epa.gov/sab/sabproduct.nsf/0/E65D909C98520C1D85257501005E46AE/$File/IRIS_PAH_RPF_ERD_Feb+2010.pdf [Verified 24 June 2015].

[14]  C. H. Krupke, G. J. Hunt, B. D. Eitzer, G. Andino, K. Given, Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 2012, 7, e29268.
Multiple routes of pesticide exposure for honey bees living near agricultural fields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFWhtg%3D%3D&md5=57ecfb29c9bdd057b45ffbc22d2eafecCAS | 22235278PubMed |

[15]  G. Rondeau, F. Sánchez-Bayo, H. A. Tennekes, A. Decourtye, R. Ramírez-Romero, N. Desneux, Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci. Rep. 2014, 4, 5566.
Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVWmtLw%3D&md5=ea807bf0f397c01d5c14c097a103bed1CAS | 24993452PubMed |

[16]  C. Lu, K. M. Warchol, R. A. Callahan, In situ replication of honey bee colony collapse disorder. Bull. Insectology 2012, 65, 99.

[17]  C. Lu, K. M. Warchol, R. A. Callahan, Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bull. Insectology 2014, 67, 125.
| 1:CAS:528:DC%2BC2cXht1WmtL%2FN&md5=a5dcff8067c366d561a599e8dcfbab3cCAS |

[18]  A. Decourtye, J. Devillers, S. Cluzeau, M. Charreton, M. H. Pham-Delègue, Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 2004, 57, 410.
Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVKmu7Y%3D&md5=1b406849da820ef780ff2a7a85e76d27CAS | 15041263PubMed |

[19]  E. C. Yang, Y. C. Chuang, Y. L. Chen, L. H. Chang, Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 2008, 101, 1743.
Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlOmsQ%3D%3D&md5=d670bb60aab3e4a0258a5e96d3d9e479CAS | 19133451PubMed |

[20]  D. M. Eiri, J. C. Nieh, A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing. J. Exp. Biol. 2012, 215, 2022.
A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kksb7M&md5=d9ab85e444088691ed2a88e8624cc37cCAS | 22623190PubMed |

[21]  B. S. Teeters, R. M. Johnson, M. D. Ellis, B. D. Siegfried, Using video-tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environ. Toxicol. Chem. 2012, 31, 1349.
Using video-tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlWntr0%3D&md5=8933dabc14c7ca757c5940d754893520CAS | 22488825PubMed |

[22]  M. Henry, O. Rollin, J. Aptel, S. Tchamitchian, M. Beguin, F. Requier, A. Decourtye, A common pesticide decreases foraging success and survival in honey bees. Science 2012, 336, 348.
A common pesticide decreases foraging success and survival in honey bees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlslOqtb8%3D&md5=89427f0af41fcda278e3b91a3049d261CAS | 22461498PubMed |

[23]  C. W. Schneider, J. Tautz, B. Grünewald, S. Fuchs, RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 2012, 7, e30023.
RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCqt7g%3D&md5=91e6313b1efe8d76c46620d372a32810CAS | 22253863PubMed |

[24]  K. Tan, W. Chen, S. Dong, X. Liu, Y. Wang, J. C. Nieh, Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS One 2014, 9, e102725.
Imidacloprid alters foraging and decreases bee avoidance of predators.Crossref | GoogleScholarGoogle Scholar | 25025334PubMed |

[25]  K. Derecka, M. J. Blythe, S. Malla, D. P. Genereux, A. Guffanti, P. Pavan, A. Moles, C. Snart, T. Ryder, C. A. Ortori, D. A. Barrett, E. Schuster, R. Stöger, Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One 2013, 8, e68191.
Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGru7bO&md5=8d044c382c71ceec6b416fc542681111CAS | 23844170PubMed |

[26]  C. Sandrock, L. G. Tanadini, J. S. Pettis, J. C. Biesmeijer, S. G. Potts, P. Neumann, Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric. For. Entomol. 2014, 16, 119.
Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success.Crossref | GoogleScholarGoogle Scholar |

[27]  A. K. El Hassani, M. Dacher, M. Gauthier, C. Armengaud, Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol. Biochem. Behav. 2005, 82, 30.
Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyntL%2FO&md5=ea77cb1ede7bc069e9183bde87e51316CAS | 16102801PubMed |

[28]  A. K. El Hassani, M. Dacher, V. Gary, M. Lambin, M. Gauthier, C. Armengaud, Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch. Environ. Contam. Toxicol. 2008, 54, 653.
Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt12gu7c%3D&md5=ed955f518741806babf0accee106f1c1CAS | 18026773PubMed |

[29]  S. M. Williamson, G. A. Wright, Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 2013, 216, 1799.
Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOktbnO&md5=50870fedbc9006b6b01e78ad077810dbCAS | 23393272PubMed |

[30]  S. M. Williamson, S. J. Willis, G. A. Wright, Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology 2014, 23, 1409.
Exposure to neonicotinoids influences the motor function of adult worker honeybees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCgurjJ&md5=f398c8a80f54bfd86ae93f2aaa336f6fCAS | 25011924PubMed |

[31]  M. J. Palmer, C. Moffat, N. Saranzewa, J. Harvey, G. A. Wright, C. N. Connolly, Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat. Commun. 2013, 4, 1634.
Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees.Crossref | GoogleScholarGoogle Scholar | 23535655PubMed |

[32]  J. Fischer, T. Müller, A. K. Spatz, U. Greggers, B. Grünewald, R. Menze, Neonicotinoids interfere with specific components of navigation in honeybees. PLoS One 2014, 9, e91364.
Neonicotinoids interfere with specific components of navigation in honeybees.Crossref | GoogleScholarGoogle Scholar | 24646521PubMed |

[33]  A. Decourtye, C. Armengaud, M. Renou, J. Devillers, S. Cluzeau, M. Gauthier, M. A. Pham-Delègue, Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic. Biochem. Physiol. 2004, 78, 83.
Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFyjtg%3D%3D&md5=fac0f24e40272a577f3ea68b3d2238e2CAS |

[34]  V. Doublet, M. Labarussias, J. R. de Miranda, R. F. A. Moritz, R. J. Paxton, Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 2015, 17, 969.
Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvV2ktLo%3D&md5=d612c07b83e39becf62d76ff46c32b4cCAS | 25611325PubMed |

[35]  J. S. Pettis, D. van Engelsdorp, J. Johnson, G. Dively, Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 2012, 99, 153.
Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wgu7o%3D&md5=858aadc8b416bfa6838199b04044ca81CAS | 22246149PubMed |

[36]  C. Vidau, M. Diogon, J. Aufauvre, R. Fontbonne, B. Viguès, J. L. Brunet, C. Texier, D. G. Biron, N. Blot, H. El Alaoui, L. P. Belzunces, F. Delbac, Exposure to sub-lethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 2011, 6, e21550.
Exposure to sub-lethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVaitLs%3D&md5=909029ca3b04dcf4e452c9f8da88d01eCAS | 21738706PubMed |

[37]  C. Alaux, J. L. Brunet, C. Dussaubat, F. Mondet, S. Tchamitchan, M. Cousin, J. Brillard, A. Baldy, L. P. Belzunces, Y. Le Conte, Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 2010, 12, 774.
Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera).Crossref | GoogleScholarGoogle Scholar | 20050872PubMed |