Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Contact metamorphism, halocarbons, and environmental crises of the past

Henrik Svensen A E , Norbert Schmidbauer B , Marco Roscher A , Frode Stordal C and Sverre Planke A D
+ Author Affiliations
- Author Affiliations

A Physics of Geological Processes (PGP), University of Oslo, PO Box 1048 Blindern, NO-0316 Oslo, Norway.

B Norwegian Institute for Air Research, PO Box 100, NO-2027 Kjeller, Norway.

C Department of Geosciences, University of Oslo, PO Box 1047 Blindern, NO-0316 Oslo, Norway.

D Volcanic Basin Petroleum Research (VBPR), Oslo Research Park, NO-0349 Oslo, Norway.

E Corresponding author. Email: hensven@fys.uio.no

Environmental Chemistry 6(6) 466-471 https://doi.org/10.1071/EN09118
Submitted: 17 September 2009  Accepted: 17 November 2009   Published: 18 December 2009

Environmental context. What caused the biggest known mass extinction on Earth ~252 million years ago? A possible killer mechanism was the release of specific gases into the atmosphere, which eventually led to destruction of the ozone layer. This is now supported by new laboratory experiments in which ozone-destructing gases were generated when heating rocks from East Siberia (Russia) – reconstructing what happened naturally in Siberia during explosive gas eruptions 252 million years ago.

Abstract. What triggered the largest know mass extinction at the Permian–Triassic boundary 252 million years ago, when 95% of the species in the oceans disappeared? New geological data suggest that eruptions of carbon (CH4, CO2) and halocarbon (CH3Cl and CH3Br) gases from the vast sedimentary basins of east Siberia could have triggered a period with global warming (5°–10°C) and terrestrial mass extinction. The gases were generated during contact metamorphism of sedimentary rocks around 1200°C hot igneous intrusions. One of the suggested end-Permian extinction mechanisms is the extreme ultraviolet radiation (UV-B) caused by a prolonged destruction of stratospheric ozone induced by the emitted halocarbons. This hypothesis is supported by a new set of experiments, where natural rock salt samples from Siberia were heated to 275°C. Among the gases generated during heating are methyl chloride (CH3Cl) and methyl bromide (CH3Br). These findings open up new possibilities for investigating ancient environmental crises.


Acknowledgements

This study was supported by a Centre of Excellence grant to Physics of Geological Processes, by a Young Outstanding Researcher grant and a PetroMaks grant to H. Svensen, all from the Norwegian Research Council. We thank the editors of Environmental Chemistry for inviting us to submit this paper, Alexander G. Polozov, Linda Elkins-Tanton and Nick Arndt for discussions about the Siberian Traps and the end-Permian crisis, Claus Nielsen for discussions about halocarbons, and three anonymous referees for suggestions about how to improve the manuscript.


References


[1]   P. B. Wignall , Large igneous provinces and mass extinctions. Earth Sci. Rev. 2001 , 53,  1.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[2]   V. E. Courtillot , P. R. Renne , On the ages of flood basalt events. C. R. Geosci. 2003 , 335,  113.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   H. Svensen , S. Planke , A. Malthe-Sorenssen , B. Jamtveit , R. Myklebust , T. Rasmussen Eidem , S. S. Rey , Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 2004 , 429,  542.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   H. Svensen , S. Planke , A. G. Polozov , N. Schmidbauer , F. Corfu , Y. Y. Podladchikov , B. Jamtveit , Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 2009 , 277,  490.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   H. Svensen , S. Planke , L. Chevallier , A. Malthe-Sørenssen , F. Corfu , B. Jamtveit , Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett. 2007 , 256,  554.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[6]   J. C. Zachos , U. Rohl , S. A. Schellenberg , A. Sluijs , D. A. Hodell , D. C. Kelly , E. Thomas , M. Nicolo , et al. Rapid acidification of the ocean during the Paleocene–Eocene thermal maximum. Science 2005 , 308,  1611.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[7]   J. P. Kennett , L. D. Stott , Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 1991 , 353,  225.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   U. Röhl , T. Westerhold , T. J. Bralower , J. C. Zachos , On the duration of the Paleocene–Eocene thermal maximum (PETM). Geochem. Geophys. Geosyst. 2007 , 8,  Q12002.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   D. C. Kelly , T. J. Bralower , J. C. Zachos , I. P. Silva , E. Thomas , Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 1996 , 24,  423.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   G. R. Dickens , M. M. Castillo , J. C. G. Walker , A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation on oceanic methane hydrate. Geology 1997 , 25,  259.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   R. E. Zeebe , J. C. Zachos , G. R. Dickens , Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene thermal maximum warming. Nat. Geosci. 2009 , 2,  576.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[12]   Erwin D. H., Bowring S. A., Yugan J., Catastrophic events and mass extinctions: Impacts and beyond. Special Paper 356 (Eds C. Koeberl, K. G. MacLeod) 2002, pp. 363–383 (Geological Society of America: Boulder, CO).

[13]   Retallack G. J., Krull E. S., Wetlands through time. Special Paper 399 (Eds S. F. Greb, W. A. DiMichele) 2006, pp. 249–268 (Geological Society of America: Boulder, CO).

[14]   J. L. Payne , D. J. Lehrmann , J. Wei , M. J. Orchard , D. P. Schrag , A. H. Knoll , Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 2004 , 305,  506.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   J. L. Payne , L. R. Kump , Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 2007 , 256,  264.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[16]   L. R. Kump , A. Pavlov , M. A. Arthur , Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 2005 , 33,  397.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[17]   K. M. Meyer , L. R. Kump , Biogeochemical controls on photic-zone euxinia during the end-Permain mass extinction. Geology 2008 , 36,  747.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[18]   K. Grice , C. Q. Cao , G. D. Love , M. E. Bottcher , R. J. Twitchett , E. Grosjean , R. E. Summons , S. C. Turgeon , et al. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 2005 , 307,  706.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   M. K. Reichow , A. D. Saunders , R. V. White , M. S. Pringle , A. I. Al’Mukhamedov , A. I. Medvedev , N. P. Kirda , Ar-40/Ar-39 dates from the West Siberian Basin: Siberian flood basalt province doubled. Science 2002 , 296,  1846.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   S. C. Xie , R. D. Pancost , J. H. Huang , P. B. Wignall , J. X. Yu , X. Y. Tang , L. Chen , X. Y. Huang , et al. Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis. Geology 2007 , 35,  1083.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   A. Grard , L. M. Francois , C. Dessert , B. Dupre , Y. Godderis , Basaltic volcanism and mass extinction at the Permo–Triassic boundary: environmental impact and modeling of the global carbon cycle. Earth Planet. Sci. Lett. 2005 , 234,  207.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   R. A. Berner , Examination of hypotheses for the Permo–Triassic boundary extinction by carbon cycle modeling. Proc. Natl. Acad. Sci. USA 2002 , 99,  4172.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   D. J. Beerling , M. Harfoot , B. Lomax , J. A. Pyle , The stability of the stratospheric ozone layer during the end-Permain eruption of the Siberian Traps. Philos. T. Roy. Soc. A 2007 , 365,  1843.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   G. Retallack , A. H. Jahren , Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events. J. Geol. 2008 , 116,  1.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   H. Visscher , C. V. Looy , M. E. Collinson , H. Brinkhuis , J. Cittert , W. M. Kurschner , M. A. Sephton , Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl. Acad. Sci. USA 2004 , 101,  12952.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   L. Weissflog , N. Elansky , K. Kotte , F. Keppler , A. Pfennigsdorff , C. Lange , E. Putz , L. Lisitsyna , Late permian changes in conditions of the atmosphere and environments caused by halogenated gases. Dokl. Earth Sci. 2009 , 425,  291.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   C. B. Foster , S. A. Afonin , Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian–Triassic boundary. J. Geol. Soc. London 2005 , 162,  653.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   A. H. Knoll , R. K. Bambach , J. L. Payne , S. Pruss , W. W. Fischer , Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 2007 , 256,  295.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   P. B. Wignall , R. J. Twitchett , Oceanic anoxia and the end Permian mass extinction. Science 1996 , 272,  1155.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[30]   S. A. Bowring , D. H. Erwin , Y. G. Jin , M. W. Martin , K. Davidek , W. Wang , U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 1998 , 280,  1039.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[31]   R. Mundil , K. R. Ludwig , P. R. Metcalfe , Renne , Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 2004 , 305,  1760.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[32]   S. L. Kamo , J. Crowley , S. A. Bowring , The Permian-Triassic boundary event and eruption of the Siberian flood basalts: an inter-laboratory U-Pb dating study. Geochim. Cosmochim. Acta 2006 , 70,  A303.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   Meyerhoff A. A., Giant Oil and Gas Fields of the Decade 1968–1978 (Ed. M. T. Halbouty) 1980, pp. 225–252 (American Association of Petroleum Geologists: Tulsa, OK).

[34]   V. Fedorenko , G. K. Czamanske , Results of new field and geochemical studies of the volcanic and intrusive rocks of the Maymecha-Kotuy area, Siberian Flood-Basalt Province, Russia. Int. Geol. Rev. 1997 , 39,  479.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   Ulmishek G. F., Petroleum geology and resources of the Baykit High Province, East Siberia, Russia. Bulletin 2201-F 2001 (US Geological Survey: Denver, CO).

[36]   O. Y. Petrychenko , T. M. Peryt , E. I. Chechel , Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites. Chem. Geol. 2005 , 219,  149.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   Zharkov M. A., Paleozoic Salt Bearing Formations of the World 1984 (Springer-Verlag: Berlin).

[38]   G. S. Von der Flaass , V. A. Naumov , Cup-shaped structures of iron ore deposits in the South of the Siberian Platform (Russia). Geol. Ore Depos. 1995 , 37,  340.
         open url image1

[39]   G. S. Von der Flaass , Structural and genetic model of an ore field of the Angaro-Ilim type (Siberian Platform). Geol. Ore Depos. 1997 , 39,  461.
         open url image1

[40]   F. Keppler , R. Eiden , V. Niedan , J. Pracht , H. F. Scholer , Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 2000 , 403,  298.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[41]   J. A. Conesa , A. Marcilla , J. A. Caballero , Evolution of gases from the pyrolysis of modified almond shells: effect of impregnation with CoCl2 J. Anal. Appl. Pyrolysis 1997 , 43,  59.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   M. Frische , K. Garofalo , T. H. Hansteen , R. Borchers , Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua). Geochem. Geophys. Geosyst. 2006 , 7,  Q05020.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[43]   M. Frische , K. Garofalo , T. H. Hansteen , R. Borchers , J. Harnisch , The origin of stable halogenated compounds in volcanic gases. Environ. Sci. Poll. Res. 2006 , 13,  406.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[44]   J. M. Lobert , W. C. Keene , J. A. Logan , R. Yevich , Global chlorine emissions from biomass burning: Reactive Chlorine Emissions Inventory. J. Geophys. Res. – Atmos. 1999 , 104,  8373.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[45]   H. F. Scholer , F. Keppler , Abiotic formation of organohalogens in the terrestrial environment. Chimia (Aarau) 2003 , 57,  33.
         open url image1

[46]   M. B. Harfoot , J. A. Pyle , D. J. Beerling , End-Permian ozone shield unaffected by oceanic hydrogen sulfide and methane release. Nat. Geosci 2008 , 1,  247.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[47]   A. C. Scott , The pre-Quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000 , 164,  281.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   J. Rozema , P. Blokker , M. A. M. Fuertes , R. Broekman , UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation. Photochem. Photobiol. Sci. 2009 , 8,  1233.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1