Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Natural genetic variation of Arabidopsis thaliana root morphological response to magnesium supply

Qiying Xiao A D , Hugues De Gernier A D , László Kupcsik A D , Jérôme De Pessemier A , Klaus Dittert B , Kirsten Fladung B , Nathalie Verbruggen A and Christian Hermans A C
+ Author Affiliations
- Author Affiliations

A Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Campus Plaine CP 242, Bd du Triomphe, B-1050 Brussels, Belgium.

B Institute of Applied Plant Nutrition at University of Goettingen, Carl-Sprengel-Weg 1, D-37075 Goettingen, Germany.

C Corresponding author. Email: chermans@ulb.ac.be

D These authors made equal contributions.

Crop and Pasture Science 66(12) 1249-1258 https://doi.org/10.1071/CP15108
Submitted: 31 March 2015  Accepted: 22 November 2015   Published: 21 December 2015

Abstract

Plants dynamically cope with the variability of mineral nutrient distribution in soil by constantly modulating nutrient uptake and shaping root-system architecture. The changes in root morphology in response to major essential elements are largely documented, but little is known about how the root system responds to magnesium (Mg) availability. Thirty-six natural accessions of the model species Arabidopsis thaliana were subjected to an in vitro screen for identifying variation in root system architecture in response to Mg availability. Response of root morphology was observed on 2-dimensional agar plates. Low Mg supply repressed the elongation of the lateral roots more than of the primary root. However, some accessions exhibited higher number and length of lateral roots than the reference Columbia-0. Across all accessions, the root morphological traits did not correlate with tissue Mg concentrations. Interestingly, shoot calcium and root phosphorus concentrations were positively correlated with the number and length of lateral roots, whereas root iron concentration was negatively correlated with the primary root length. The diversity of root phenotypes identified in this report is a useful resource to study the genetic component determining root morphology in response to Mg availability.

Additional keywords: magnesium supply, natural variation.


References

Alonso-Blanco C, Aarts MG, Bentsink L, Keurentjes JJ, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? The Plant Cell 21, 1877–1896.
What has natural variation taught us about plant development, physiology, and adaptation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFehtrnL&md5=6d8f240c956c89631a0bdb2fc233a215CAS | 19574434PubMed |

Baxter I, Hermans C, Lahner B, Yakubova E, Tikhonova M, Verbruggen N, Chao DY, Salt DE (2012) Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS One 7, e35121
Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVemtro%3D&md5=4a90f569169f51902ddac034cc34577cCAS | 22558123PubMed |

Bose J, Babourina O, Shabala S, Rengel Z (2013) Low-pH and aluminum resistance in arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots. Plant & Cell Physiology 54, 1093–1104.
Low-pH and aluminum resistance in arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKqu7rJ&md5=06248be54efecb6673a1d21d8e047090CAS |

Cakmak I (2013) Magnesium in crop production, food quality and human health. Plant and Soil 368, 1–4.
Magnesium in crop production, food quality and human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFClt70%3D&md5=43ccd926be2f1777438c404b1a5742e4CAS |

Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry 83, 317–340.
Chlorophyll modifications and their spectral extension in oxygenic photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOhtrjI&md5=63f30729e8bdb366db987e2e7b0012c7CAS | 24635479PubMed |

Cristescu SM, Mandon J, Arslanov D, De Pessemier J, Hermans C, Harren FJ (2013) Current methods for detecting ethylene in plants. Annals of Botany 111, 347–360.
Current methods for detecting ethylene in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtV2ksLc%3D&md5=f8aec7e9158e2b355b673cd6631287c5CAS | 23243188PubMed |

de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends in Plant Science 12, 474–481.
Root system architecture: opportunities and constraints for genetic improvement of crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWgsLjP&md5=5fedede90fdc817835d639d27b1f0916CAS | 17822944PubMed |

De Pessemier J, Chardon F, Juraniec M, Delaplace P, Hermans C (2013) Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana. Mechanisms of Development 130, 45–53.
Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFGiurg%3D&md5=5224d2ba7c34d3bd9a938646f73f1b22CAS | 22683348PubMed |

Farhat N, Ivanov AG, Krol M, Rabhi M, Smaoui A, Abdelly C, Hüner NP (2015) Preferential damaging effects of limited magnesium bioavailability on photosystem I in Sulla carnosa plants. Planta 241, 1189–1206.
Preferential damaging effects of limited magnesium bioavailability on photosystem I in Sulla carnosa plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvV2rs7Y%3D&md5=300b33c1081c914a2fca890ef9736fc7CAS | 25637102PubMed |

Giehl RF, von Wirén N (2014) Root nutrient foraging. Plant Physiology 166, 509–517.
Root nutrient foraging.Crossref | GoogleScholarGoogle Scholar | 25082891PubMed |

Giehl RF, Gruber BD, von Wirén N (2014) It’s time to make changes, modulation of root system architecture by nutrient signals. Journal of Experimental Botany 65, 769–778.
It’s time to make changes, modulation of root system architecture by nutrient signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFOjtrw%3D&md5=9ed9c5ab97b4169b80713548959739beCAS | 24353245PubMed |

Gransee A, Führs H (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil 368, 5–21.
Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1Ggu74%3D&md5=f86750f7d8454d22cf661cde86262316CAS |

Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology 163, 161–179.
Plasticity of the Arabidopsis root system under nutrient deficiencies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVygsbjM&md5=2ade2b8a12df99c0bc342b518a837600CAS | 23852440PubMed |

Grzebisz W (2013) Crop response to magnesium fertilization as affected by nitrogen supply. Plant and Soil 368, 23–39.
Crop response to magnesium fertilization as affected by nitrogen supply.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1Ghu74%3D&md5=0e601555c538daeba4102c30294f4a85CAS |

Guo W, Cong Y, Hussain N, Wang Y, Liu Z, Jiang L, Liang Z, Chen K (2014) The remodeling of seedling development in response to long-term magnesium toxicity and regulation by ABA-DELLA signaling in Arabidopsis. Plant & Cell Physiology 55, 1713–1726.
The remodeling of seedling development in response to long-term magnesium toxicity and regulation by ABA-DELLA signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do deficiencies of essential mineral elements alter biomass allocation? Trends in Plant Science 11, 610–617.
How do deficiencies of essential mineral elements alter biomass allocation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eqtbzE&md5=7b400a4e665ffbfadb53e890cc84111dCAS | 17092760PubMed |

Hermans C, Porco S, Verbruggen N, Bush D (2010a) Chitinase-like protein CTL1 plays a role in the root system plasticity in response to multiple environmental signals. Plant Physiology 152, 904–917.
Chitinase-like protein CTL1 plays a role in the root system plasticity in response to multiple environmental signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFegtLk%3D&md5=ef8ab4f59b327092d62b686d15015422CAS | 20007445PubMed |

Hermans C, Vuylsteke M, Coppens F, Craciun A, Inzé D, Verbruggen N (2010b) The early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock genes expression in roots and the triggering of ABA-responsive genes. New Phytologist 187, 119–131.
The early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock genes expression in roots and the triggering of ABA-responsive genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptV2ntr4%3D&md5=0b65eda5d39391eb9fa38d5280c3ef5bCAS | 20406411PubMed |

Hermans C, Vuylsteke M, Coppens F, Cristescu S, Harren FJM, Inzé D, Verbruggen N (2010c) System analysis of the responses to long term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytologist 187, 132–144.
System analysis of the responses to long term magnesium deficiency and restoration in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptV2ntr8%3D&md5=20d62791c73b11815044293583231b1aCAS | 20412444PubMed |

Hermans C, Porco S, Vandenbussche F, Gille S, De Pessemier J, Van Der Straeten D, Verbruggen N, Bush DR (2011) Dissecting the role of CTL1 in nitrate-dependent changes in root architecture. Plant Physiology 157, 1313–1326.
Dissecting the role of CTL1 in nitrate-dependent changes in root architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFehurzI&md5=c4b257d12681f417d56e46a5c07d569aCAS | 21949212PubMed |

Hermans C, Conn S, Chen J, Xiao Q, Verbruggen N (2013) Update on magnesium homeostasis mechanisms in plants. Metallomics 5, 1170–1183.
Update on magnesium homeostasis mechanisms in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlensL%2FK&md5=9378b36e1ec78b86dabe6a23c4e4a06eCAS | 23420558PubMed |

Jezek M, Geilfus C-M, Bayer A, Mühling K-H (2015) Photosynthetic capacity, nutrient status, and growth of maize (Zea mays L.) upon MgSO4 leaf-application. Frontiers in Plant Science 5, 781
Photosynthetic capacity, nutrient status, and growth of maize (Zea mays L.) upon MgSO4 leaf-application.Crossref | GoogleScholarGoogle Scholar | 25620973PubMed |

Julkowska MMHC, Hoefsloot S, Mol R, Feron G-J, de Boer M, Haring A, Testerink C (2014) Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiology 166, 1387–1402.
Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity.Crossref | GoogleScholarGoogle Scholar |

Kellermeier F, Chardon F, Amtmann A (2013) Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiology 161, 1421–1432.
Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKrurY%3D&md5=bb1d8ec6143d3250cb78fb7d9e6dce51CAS | 23329148PubMed |

Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A (2014) Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. The Plant Cell 26, 1480–1496.
Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps12qu7w%3D&md5=2b1117d2d55df9be376dcac6d6312293CAS | 24692421PubMed |

Kobayashi N, Iwata N, Saito T, Suzuki H, Iwata R, Tanoi K, Nakanishi TM (2013) Different magnesium uptake and transport activity along the rice root axis revealed by 28Mg tracer experiments. Soil Science and Plant Nutrition 59, 149–155.
Different magnesium uptake and transport activity along the rice root axis revealed by 28Mg tracer experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsVyrtrY%3D&md5=ea4856e2e9149f50456150a501210842CAS |

Kobayashi N, Tanoi K (2015) Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants. International Journal of Molecular Sciences 16, 23076–23093.
Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants.Crossref | GoogleScholarGoogle Scholar | 26404266PubMed |

Langfelder P, Zhang B, Horvath S (2014) dynamicTreeCut: Methods for detection of clusters in hierarchical clustering dendrograms. R Package version 1.62.The R Project for Statistical Computing, Vienna. Available at: http://CRAN.R-project.org/package=dynamicTreeCu

Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L (2013) Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science 4, 272
Source-to-sink transport of sugar and regulation by environmental factors.Crossref | GoogleScholarGoogle Scholar | 23898339PubMed |

López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology 6, 280–287.
The role of nutrient availability in regulating root architecture.Crossref | GoogleScholarGoogle Scholar | 12753979PubMed |

Lynch J (1995) Root architecture and plant productivity. Plant Physiology 109, 7–13.

Mao D, Chen J, Tian L, Liu Z, Yang L, Tang R, Li J, Lu C, Yang Y, Shi J (2014) Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. The Plant Cell 26, 2234–2248.
Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOhtrrE&md5=90920b231fc6a2c5965654a36b4b6cd2CAS | 24794135PubMed |

McKhann H, Camilleri C, Berard A, Bataillon T, David J, Reboud X, Le Corre V, Caloustian C, Gut I, Brunel D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. The Plant Journal 38, 193–202.
Nested core collections maximizing genetic diversity in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVOhsr0%3D&md5=4923370420c25ed9eced20c65a4c98c0CAS | 15053772PubMed |

Niu Y, Jin G, Li X, Tang C, Zhang Y, Liang Y, Yu J (2015) Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heyn. Journal of Experimental Botany 66, 3841–3854.
Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heyn.Crossref | GoogleScholarGoogle Scholar | 25922494PubMed |

Ohkama-Ohtsu N, Wasaki J (2010) Recent progress in plant nutrition research, cross-talk between nutrients, plant physiology and soil microorganisms. Plant & Cell Physiology 51, 1255–1264.
Recent progress in plant nutrition research, cross-talk between nutrients, plant physiology and soil microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVanu73K&md5=9ab19447ba127a402253cfd072e87464CAS |

Péret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L (2014) Root architecture responses, in search of phosphate. Plant Physiology 166, 1713–1723.
Root architecture responses, in search of phosphate.Crossref | GoogleScholarGoogle Scholar | 25341534PubMed |

Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annual Review of Plant Biology 63, 563–590.
Control of Arabidopsis root development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1amtr0%3D&md5=f9b91fa4781cabb659843226b655c2bbCAS | 22404466PubMed |

Pound MP, French AP, Atkinson JA, Wells DM, Bennett MJ, Pridmore T (2013) RootNav, navigating images of complex root architectures. Plant Physiology 162, 1802–1814.
RootNav, navigating images of complex root architectures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWlt73M&md5=b386dd9ab046439a381fa15e7bba0f34CAS | 23766367PubMed |

R Core Team (2015) R, a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna. Available at: www.R-project.org/

Ristova D, Busch W (2014) Natural variation of root traits, from development to nutrient uptake. Plant Physiology 166, 518–527.
Natural variation of root traits, from development to nutrient uptake.Crossref | GoogleScholarGoogle Scholar | 25104725PubMed |

Rosas U, Cibrian-Jaramillo A, Ristova D, Banta JA, Gifford ML, Fan AH, Zhou RW, Kim GJ, Krouk G, Birnbaum KD (2013) Integration of responses within and across Arabidopsis natural accessions uncovers loci controlling root systems architecture. Proceedings of the National Academy of Sciences of the United States of America 110, 15133–15138.
Integration of responses within and across Arabidopsis natural accessions uncovers loci controlling root systems architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFWrs7zP&md5=21e3f6526efb4ca6f172b62ae0d557e9CAS | 23980140PubMed |

Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annual Review of Plant Biology 59, 709–733.
Ionomics and the study of the plant ionome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtro%3D&md5=6d07957d37497ec37da4207bd285aed6CAS | 18251712PubMed |

Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 367, 1441–1452.
Root system architecture: insights from Arabidopsis and cereal crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Oru74%3D&md5=426fa0ec834485360744ed83747fc833CAS | 22527386PubMed |

Verbruggen N, Hermans C (2013) Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant and Soil 368, 87–99.
Physiological and molecular responses to magnesium nutritional imbalance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1Gntrw%3D&md5=65c1e475e36c007c42bfb2bb32133978CAS |

Vidal EA, Araus A, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 107, 4477–4482.
Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlKmtr8%3D&md5=d0da09405b816dd2636a8e58cf5001b2CAS | 20142497PubMed |

Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiology 147, 1181–1191.
The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslyis7k%3D&md5=5f1dca76d1fb797063b7fd7f81abe6f0CAS | 18467463PubMed |