Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Molecular Orbital Studies of Enzyme Catalysed Reactions. Rearrangement of Chorismate to Prephenate

PR Andrews and RC Haddon

Australian Journal of Chemistry 32(9) 1921 - 1929
Published: 1979

Abstract

Molecular orbital calculations are used to describe the reaction surface for the non-enzymic Claisen rearrangement of chorismate to prephenate, which may proceed through either a boat-like or a chair-like transition state. Detailed molecular geometries are obtained for the neutral and dianionic forms of chorismate, prephenate, and the alternative transition states. The transition states are asymmetric structures in which the breaking C-O bond (c. 1.45 A) is significantly shorter than the making C-C bond (c. 1.95 A). The alternative reaction pathways have almost identical enthalpies of activation (chair, 277.4 kJ/mol ; boat, 282.8 kJ/mol; dianionic forms) which result partly from a loss of internal bond strength and partly from repulsive interactions between the polar carboxyl groups. Protonation stabilizes the transition states (chair, 247.3 kJ/mol; boat, 248.5 kJ/mol ; diacid forms) by delocalization of charge in the carboxyl groups, and a similar mechanism is proposed for the greatly reduced enthalpy of activation in aqueous solution (86.6 kJ/mol). The enthalpy difference between the alternative reaction pathways is insufficient to define a preferred transition state structure, and either pathway may be favoured for the non-enzymic reaction in aqueous solution. For the enzyme-catalysed reaction the chair pathway is used, and the calculated transition state structures and enthalpy barriers provide information relevant to the catalytic mechanism. They indicate that an active site comprising only two essential binding groups is sufficient to account for catalysis; the orientation of these groups within the active site should allow simultaneous bond formation, accompanied by charge delocalization, to both carboxyl groups of the transition state, but not to those of substrate or product. The calculated structure for the chair transition state, taken in conjunction with those for chorismate and prephenate, thus provides a template for the active sites of chorismate mutases.

https://doi.org/10.1071/CH9791921

© CSIRO 1979

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions

View Altmetrics