Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Allyl Sulfides: Reactive Substrates for Olefin Metathesis

Justin M. Chalker
+ Author Affiliations
- Author Affiliations

Flinders University, School of Chemical and Physical Sciences, Sturt Road, Bedford Park SA 5042, Australia. Email: justin.chalker@flinders.edu.au




Justin M. Chalker earned a B.S. in Chemistry and a B.A. in the History and Philosophy of Science at The University of Pittsburgh in 2006. At Pittsburgh, he contributed to the total synthesis of several natural products under the direction of Theodore Cohen. Supported by a Rhodes Scholarship and a National Science Foundation Graduate Research Fellowship, Justin then completed his D.Phil. at the University of Oxford under the supervision of Benjamin Davis where he developed several tools for the site-selective modification of proteins. In 2012, Justin started his independent career as an assistant professor at The University of Tulsa where he established a diverse research program in organic chemistry, biochemistry and material science. In 2015, Justin moved to Flinders University where he is a lecturer and recipient of an ARC Discovery Early Career Researcher Award.

Australian Journal of Chemistry 68(12) 1801-1809 https://doi.org/10.1071/CH15311
Submitted: 29 May 2015  Accepted: 21 July 2015   Published: 31 August 2015

Abstract

Allyl sulfides have gained traction in recent years as promoters for olefin metathesis. The high reactivity of allyl sulfides in olefin metathesis is remarkable, given that many sulfur-containing substrates are incompatible with ruthenium-based olefin metathesis catalysts. In stark contrast, allyl sulfides actually enhance the rate of metathesis in comparison with other alkenes, when matched with a suitable catalyst. This review examines how the high reactivity of allyl sulfides in olefin metathesis has been harnessed in diverse areas of synthesis. In the cases examined, allyl sulfides have been explicitly incorporated into substrates to promote olefin metathesis. Recent insights into catalyst considerations, applications in chemical and biochemical synthesis, and future opportunities are discussed.


References

[1]  (a) A. Fürstner, Angew. Chem., Int. Ed. 2000, 39, 3012.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. H. Grubbs, Tetrahedron 2004, 60, 7117.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Fürstner, Chem. Commun. 2011, 47, 6505.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) S. J. Connon, S. Blechert, Angew. Chem., Int. Ed. 2003, 42, 1900.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFGgs7s%3D&md5=5c3884471db54266721fd4245dd3db5eCAS |
      (b) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem., Int. Ed. 2005, 44, 4490.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  C. W. Bielawski, R. H. Grubbs, Prog. Polym. Sci. 2007, 32, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFKmt7w%3D&md5=e0f0abcc066e68db598567572b09c4f4CAS |

[4]  (a) J. B. Binder, R. T. Raines, Curr. Opin. Chem. Biol. 2008, 12, 767.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFajs7zK&md5=4c644439a6e826c544ccae4b1c1fb4cbCAS | 18935975PubMed |
      (b) Y. A. Lin, J. M. Chalker, B. G. Davis, ChemBioChem 2009, 10, 959.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  D. J. Nelson, S. Manzini, C. A. Urbina-Blanco, S. P. Nolan, Chem. Commun. 2014, 50, 10355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCks7fO&md5=9882e10764bc5765ca4afe46a3903fd6CAS |

[6]  (a) Y. A. Lin, B. G. Davis, Beilstein J. Org. Chem. 2010, 6, 1219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtlWruw%3D%3D&md5=1e51748d7426c51181e6649510cb9137CAS | 21283554PubMed |
         (b) Y. A. Lin, B. G. Davis, in Handbook of Metathesis, 2nd ed. (Eds R. H. Grubbs, D. J. O’Leary) 2015, Vol. 2, pp. 295–309 (Wiley: Weinheim).

[7]  (a) Y. A. Lin, J. M. Chalker, N. Floyd, G. J. L. Bernardes, B. G. Davis, J. Am. Chem. Soc. 2008, 130, 9642.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvF2gs7Y%3D&md5=b0004589d0d9019443624a68bc2764e6CAS | 18593118PubMed |
      (b) Y. A. Lin, J. M. Chalker, B. G. Davis, J. Am. Chem. Soc. 2010, 132, 16805.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. A. Lin, O. Boutureira, L. Lercher, B. Bhushan, R. S. Paton, B. G. Davis, J. Am. Chem. Soc. 2013, 135, 12156.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  G. A. Edwards, P. A. Culp, J. M. Chalker, Chem. Commun. 2015, 51, 515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2jt7nO&md5=66c6057bcaad214ea61154c976513d80CAS |

[9]  (a) J. C. M. van Hest, D. A. Tirrell, FEBS Lett. 1998, 428, 68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1CmtLY%3D&md5=47c07218364913837b61b3d3a01ea307CAS |
      (b) J. C. M. van Hest, K. L. Kiick, D. A. Tirrell, J. Am. Chem. Soc. 2000, 122, 1282.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Z. Zhang, L. Wang, A. Brock, P. G. Schultz, Angew. Chem., Int. Ed. 2002, 41, 2840.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. B. Binder, J. J. Blank, R. T. Raines, Org. Lett. 2007, 9, 4885.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. Brik, Adv. Synth. Catal. 2008, 350, 1661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVehtbfN&md5=75f19a4a0e0281ea61db8852deae303eCAS |

[11]  (a) S. J. Miller, R. H. Grubbs, J. Am. Chem. Soc. 1995, 117, 5855.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1yqsbY%3D&md5=dbe8524caa73446fb929178585f98f4bCAS |
      (b) S. J. Miller, H. E. Blackwell, R. H. Grubbs, J. Am. Chem. Soc. 1996, 118, 9606.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) J. L. Stymiest, B. F. Mitchell, S. Wong, J. C. Vederas, Org. Lett. 2003, 5, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVegtrs%3D&md5=97333487329a2a605104b8fdd0252067CAS | 12509887PubMed |
      (b) J. L. Stymiest, B. F. Mitchell, S. Wong, J. C. Vederas, J. Org. Chem. 2005, 70, 7799.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) H. E. Blackwell, R. H. Grubbs, Angew. Chem., Int. Ed. 1998, 37, 3281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVehtA%3D%3D&md5=f675171ee0852bff63b75481362a24f1CAS |
      (b) H. E. Blackwell, J. D. Sadowsky, R. J. Howard, J. N. Sampson, J. A. Chao, W. E. Steinmetz, D. J. O’Leary, R. H. Grubbs, J. Org. Chem. 2001, 66, 5291.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) L. K. Henchey, A. L. Jochim, P. S. Arora, Curr. Opin. Chem. Biol. 2008, 12, 692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFajs7%2FK&md5=ea0193d7ae5134efac578a3523625f34CAS | 18793750PubMed |
         (b) G. L. Verdine, G. J. Hilinski, in Methods in Enzymology (Eds K. D. Wittrup, G. L. Verdine) 2012, Vol. 503, pp. 3–33 (Elsevier Inc.: San Diego, CA).

[15]  Y.-J. Hu, R. Roy, Tetrahedron Lett. 1999, 40, 3305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFGqtLs%3D&md5=368ec97bcfeda4b694f86d7c6d54216eCAS |

[16]  (a) G. J. McGarvey, T. E. Benedum, F. W. Schmidtmann, Org. Lett. 2002, 4, 3591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1Sit7c%3D&md5=0510572c6977d960439b2acb49f7c543CAS | 12375895PubMed |
      (b) F. W. Schmidtmann, T. E. Benedum, G. J. McGarvey, Tetrahedron Lett. 2005, 46, 4677.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  P. Brüchner, D. Koch, U. Voigtmann, S. Blechert, Synth. Commun. 2007, 37, 2757.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) D. Crich, V. Krishnamurthy, T. K. Hutton, J. Am. Chem. Soc. 2006, 128, 2544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWqurk%3D&md5=b7779fa99c678edba8ca0d9e47a0b7b4CAS | 16492032PubMed |
      (b) D. Crich, V. Krishnamurthy, F. Brebion, M. Karatholuvhu, V. Subramanian, T. K. Hutton, J. Am. Chem. Soc. 2007, 129, 10282.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. M. Chalker, Y. A. Lin, O. Boutureira, B. G. Davis, Chem. Commun. 2009, 3714.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) G. J. L. Bernardes, J. M. Chalker, J. C. Errey, B. G. Davis, J. Am. Chem. Soc. 2008, 130, 5052.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslahur8%3D&md5=141b97512014fa240faae3d9aa248d68CAS |
      (b) J. M. Chalker, S. B. Gunnoo, O. Boutureira, S. C. Gerstberger, M. Fernández-González, G. J. L. Bernardes, L. Griffin, H. Hailu, C. J. Schofield, B. G. Davis, Chem. Sci. 2011, 2, 1666.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) S. K. Armstrong, B. A. Christie, Tetrahedron Lett. 1996, 37, 9373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitlSqsg%3D%3D&md5=323ebb63ccc067edb8443f36d7dad7e2CAS |
      (b) Y.-S. Shon, T. R. Lee, Tetrahedron Lett. 1997, 38, 1283.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. L. Mascareñas, A. Rumbo, L. Castedo, J. Org. Chem. 1997, 62, 8620.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Fürstner, G. Seidel, N. Kindler, Tetrahedron 1999, 55, 8215.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  E. Tzur, A. Szadkowska, A. Ben-Asuly, A. Makal, I. Goldberg, K. Woźniak, K. Grela, N. G. Lemcoff, Chem. – Eur. J. 2010, 16, 8726.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslWmurs%3D&md5=91ec2b1b7bf67266d09e965809abfe75CAS | 20564287PubMed |

[22]  D. Burtscher, K. Grela, Angew. Chem., Int. Ed. 2009, 48, 442.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSqsrw%3D&md5=9c89139ac137c363f541230159997cb0CAS |

[23]  (a) G. Spagnol, M.-P. Heck, S. P. Nolan, C. Mioskowski, Org. Lett. 2002, 4, 1767.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVWhtr0%3D&md5=e910f5f8a5f732caa4ed18f6a688dffaCAS | 12000294PubMed |
      (b) F. D. Toste, A. K. Chatterjee, R. H. Grubbs, Pure Appl. Chem. 2002, 74, 7.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. A. Smulik, A. J. Giessert, S. T. Diver, Tetrahedron Lett. 2002, 43, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1Gnu70%3D&md5=30a2192bca292e63a73391fa95d736d4CAS |

[25]  J. Carlisle, D. J. Fox, S. Warren, Chem. Commun. 2003, 2696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1eku7s%3D&md5=166635cae0a7cba2c4cf84e818d7f4d8CAS |

[26]  (a) E. L. Dias, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1997, 119, 3887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVOrurY%3D&md5=6ea3f4f4a0f9e8e8beed4537ef5ff92eCAS |
      (b) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  (a) R. M. Garbaccio, S. J. Stachel, D. K. Baeschlin, S. J. Danishefsky, J. Am. Chem. Soc. 2001, 123, 10903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlGru7k%3D&md5=4251fd78e3f24fd2d791bceb625d2e3eCAS | 11686693PubMed |
      (b) A. Fürstner, B. Fasching, G. W. O’Neil, M. D. B. Fenster, C. Godbout, J. Ceccon, Chem. Commun. 2007, 3045.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. C. Nicolaou, T. V. Koftis, S. Vyskocil, G. Petrovic, T. Ling, Y. M. A. Yamada, W. Tang, M. O. Frederick, Angew. Chem., Int. Ed. 2004, 43, 4318.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. Dong, V. A. Gordon, R. L. Grange, J. Johns, P. G. Parsons, A. Porzelle, P. Reddell, H. Schill, C. M. Williams, J. Am. Chem. Soc. 2008, 130, 15262.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) L. Dong, H. Schill, R. L. Grange, A. Porzelle, J. P. Johns, P. G. Parsons, V. A. Gordon, P. W. Reddell, C. M. Williams, Chem. – Eur. J. 2009, 15, 11307.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFKltLw%3D&md5=082e8caa4742b75d57506fe1b6edceedCAS |

[29]  S. L. Mangold, D. J. O’Leary, R. H. Grubbs, J. Am. Chem. Soc. 2014, 136, 12469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12nsr7P&md5=363c453771160fc8e387fe66f67ededdCAS | 25102124PubMed |

[30]  (a) J. M. Chalker, G. J. L. Bernardes, B. G. Davis, Acc. Chem. Res. 2011, 44, 730.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFCmtb8%3D&md5=8ff1128b7782f34eacdf08ab88f4c640CAS | 21563755PubMed |
      (b) J. M. Chalker, Chem. Biol. Drug Des. 2013, 81, 122.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) O. Boutureira, G. J. L. Bernardes, Chem. Rev. 2015, 115, 2174.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  (a) D. P. Gamblin, E. M. Scanlan, B. G. Davis, Chem. Rev. 2009, 109, 131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFals7rI&md5=6e48fb1d6114be66487be95389453b3fCAS | 19093879PubMed |
      (b) G. J. L. Bernardes, B. Castagner, P. H. Seeberger, ACS Chem. Biol. 2009, 4, 703.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J. M. Harris, R. B. Chess, Nat. Rev. Drug Discovery 2003, 2, 214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFKrtLs%3D&md5=0988e35731dc93c5e42a43b925cbac95CAS | 12612647PubMed |

[33]  A. K. Chatterjee, T.-L. Choi, D. P. Sanders, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 11360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVyqtLs%3D&md5=f95e110b77526732de54aed30e726bb4CAS | 16220959PubMed |

[34]  H.-W. Ai, W. Shen, E. Brustad, P. G. Schultz, Angew. Chem., Int. Ed. 2010, 49, 935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGmsbc%3D&md5=059ba7079b5aec10f849d0286e94ceddCAS |

[35]  (a) S. A. Cochrane, Z. Huang, J. C. Vederas, Org. Biomol. Chem. 2013, 11, 630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyktLfP&md5=3f64df8b75bcbdf21b1d9518655b6579CAS | 23212663PubMed |
      (b) Q. Zhang, X. Shi, Y. Jiang, Z. Li, Tetrahedron 2014, 70, 7621.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  M. D. Best, Biochemistry 2009, 48, 6571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlemtbk%3D&md5=1517b4feff15cf07ea2447787940053aCAS | 19485420PubMed |

[37]  J. Alam, T. H. Keller, T.-P. Loh, J. Am. Chem. Soc. 2010, 132, 9546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFKnu74%3D&md5=da8731c88f5ad2f51954a8c238fb1bf2CAS | 20583846PubMed |

[38]  L. Hunter, G. C. Condie, M. M. Harding, Tetrahedron Lett. 2010, 51, 5064.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrtbzK&md5=ab55b4b56fbd9c7a8e585ed8a943cd67CAS |

[39]  S. Zheng, N. Gao, W. Liu, D. Liu, X. Zhao, T. Cohen, Org. Lett. 2010, 12, 4454.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2nu7fE&md5=cb9b7c68ad0a19864d326f39724e4558CAS | 20863112PubMed |

[40]  G. Mingat, J. J. W. McDouall, J. Clayden, Chem. Commun. 2014, 50, 6754.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVaqs7g%3D&md5=aacc0bda095d5cbeb6cfd0d61eb2fd8aCAS |

[41]  T. Bach, C. Körber, J. Org. Chem. 2000, 65, 2358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFKnu70%3D&md5=7b29591dce11076109bb104206fa6c5fCAS | 10789447PubMed |

[42]  I. C. Stewart, T. Ung, A. A. Pletnev, J. M. Berlin, R. H. Grubbs, Y. Schrodi, Org. Lett. 2007, 9, 1589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1ymtbo%3D&md5=0e713d37b40628fcb6e4523237daee5cCAS | 17378575PubMed |

[43]  M. B. Herbert, R. H. Grubbs, Angew. Chem., Int. Ed. 2015, 54, 5018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvF2qs7c%3D&md5=45806cdbed307e63d8d3d7b8c33c4c31CAS |

[44]  A. D. Abell, M. A. Jones, J. M. Coxon, J. D. Morton, S. G. Aitken, S. B. McNabb, H. Y.-Y. Lee, J. M. Mehrtens, N. A. Alexander, B. G. Stuart, A. T. Neffe, R. Bickerstaffe, Angew. Chem., Int. Ed. 2009, 48, 1455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFCltrs%3D&md5=8ec86b31a1d52f43b3ff76854a166977CAS |

[45]  T. R. Hoye, C. S. Jeffrey, M. A. Tennakoon, J. Wang, H. Zhao, J. Am. Chem. Soc. 2004, 126, 10210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVeitLo%3D&md5=d7e760cdc46ab043f44810996a052dd4CAS | 15315410PubMed |

[46]  (a) H. Mutlu, L. M. de Espinosa, M. A. R. Meier, Chem. Soc. Rev. 2011, 40, 1404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kis7c%3D&md5=ddf622bba233baccf92285aa005968b5CAS | 20944834PubMed |
      (b) M. R. Buchmeiser, Chem. Rev. 2000, 100, 1565.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  Y.-J. Miao, G. C. Bazan, Macromolecules 1997, 30, 7414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1Wgs78%3D&md5=a40482d15c0d743011af1690d6bbed87CAS |

[48]  (a) C. D. Vo, G. Kilcher, N. Tirelli, Macromol. Rapid Commun. 2009, 30, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFelu7c%3D&md5=f7381440e9c76d492a53659b46ef5105CAS | 21706606PubMed |
      (b) M. E. Cinar, T. Ozturk, Chem. Rev. 2015, 115, 3036.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  H. A. Kang, H. E. Bronstein, T. M. Swager, Macromolecules 2008, 41, 5540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFSru7Y%3D&md5=a1211449b641de3244df7b647006ebbaCAS |