B-Methyl Amine Borane Derivatives: Synthesis, Characterization, and Hydrogen Release
Patrick G. Campbell A , Jacob S. A. Ishibashi A , Lev N. Zakharov A and Shih-Yuan Liu A BA Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, USA.
B Corresponding author. Email: lsy@uoregon.edu
Australian Journal of Chemistry 67(3) 521-524 https://doi.org/10.1071/CH13198
Submitted: 23 April 2013 Accepted: 26 May 2013 Published: 24 June 2013
Abstract
We describe the synthesis of MeH2N–BH2Me (3) and H3N–BH2Me (4) as potential hydrogen storage materials with 6.8 wt-% and 8.9 wt-% capacity, respectively. Compounds 3 and 4 readily release 2 equivalents of H2 at 80°C in the presence of a CoCl2 catalyst to furnish the corresponding trimerized borazine derivatives. Regeneration of 3 from its spent fuel material can be accomplished using a simple two-step process: activation with formic acid followed by reduction with LiAlH4.
References
[1] (a) Z. Huang, T. Autrey, Environ. Sci. 2012, 5, 9257.| 1:CAS:528:DC%2BC38XhsFCjs7fL&md5=59f0f1fd24273cd48f1548c8856e03deCAS |
(b) A. Staubitz, A. P. Robertson, I. Manners, Chem. Rev. 2010, 110, 4079.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. W. Hamilton, R. T. Baker, A. Staubitz, I. Manners, Chem. Soc. Rev. 2009, 38, 279.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) A. Gutowska, L. Li, Y. Shin, C. M. Wang, X. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski, T. Autrey, Angew. Chem. Int. Ed. 2005, 44, 3578.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsVykt70%3D&md5=af71a48b4381ba57d7721e488728e3a0CAS |
(b) T. Autrey, M. Bowden, A. Karkamkar, Faraday Discuss. 2011, 151, 157.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. R. Wright, E. R. Berkeley, L. R. Alden, R. T. Baker, L. G. Sneddon, Chem. Commun. 2011, 47, 3177.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. J. Keaton, J. M. Blacquiere, R. T. Baker, J. Am. Chem. Soc. 2007, 129, 1844.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) A. D. Sutton, A. K. Burrell, D. A. Dixon, E. B. Garner, J. C. Gordon, T. Nakagawa, K. C. Ott, J. P. Robinson, M. Vasiliu, Science 2011, 331, 1426.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFSkt7s%3D&md5=b1673392ee4bb62a5ed2e45390c70eebCAS | 21415349PubMed |
(b) A. D. Sutton, B. L. Davis, K. X. Bhattacharyya, B. D. Ellis, J. C. Gordon, P. P. Power, Chem. Commun. 2010, 46, 148.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. L. Davis, D. A. Dixon, E. B. Garner, J. C. Gordon, M. H. Matus, B. Scott, F. H. Stephens, Angew. Chem. Int. Ed. 2009, 48, 6812.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. Reller, F. O. R. L. Mertens, Angew. Chem. Int. Ed. 2012, 51, 11731.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. J. Carter, J. W. Kampf, N. K. Szymczak, Angew. Chem. Int. Ed. 2012, 51, 13168.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. Bowden, T. Autrey, Curr. Opin. Solid State Mater. Sci. 2011, 15, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVKmt70%3D&md5=9795f48e48cfebda55e91417cb625772CAS |
[5] (a) A. C. Stowe, W. J. Shaw, J. C. Linehan, B. Schmid, T. Autrey, Phys. Chem. Chem. Phys. 2007, 9, 1831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVGqtbg%3D&md5=53b6b282adbe65b7736a119ce4ca1d06CAS | 17415495PubMed |
(b) W. J. Shaw, J. C. Linehan, N. K. Szymczak, D. J. Heldebrant, C. Yonker, D. M. Camaioni, R. T. Baker, T. Autrey, Angew. Chem. Int. Ed. 2008, 47, 7493.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) Y. Chen, J. L. Fulton, J. C. Linehan, T. Autrey, J. Am. Chem. Soc. 2005, 127, 3254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtl2nt7c%3D&md5=d99ddb17714d8b2934d4ef04fd6c6db9CAS | 15755123PubMed |
(b) C. A. Jaska, K. Temple, A. J. Lough, I. Manners, J. Am. Chem. Soc. 2003, 125, 9424.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Pons, R. T. Baker, N. K. Szymczak, D. J. Heldebrant, J. C. Linehan, M. H. Matus, D. J. Grant, D. A. Dixon, Chem. Commun. 2008, 6597,
(d) M. Käß, A. Friedrich, M. Drees, S. Schneider, Angew. Chem. Int. Ed. 2009, 48, 905.
| Crossref | GoogleScholarGoogle Scholar |
(e) X. Yang, M. B. Hall, J. Am. Chem. Soc. 2008, 130, 1798.
| Crossref | GoogleScholarGoogle Scholar |
[7] For an overview, see: P. G. Campbell, A. J. Marwitz, S. Y. Liu, Angew. Chem. Int. Ed. 2012, 51, 6074.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Wktb0%3D&md5=ed5c024656c27d361282b73c64c1abc3CAS |
[8] (a) For leading references, see: A. J. Marwitz, E. R. Abbey, J. T. Jenkins, L. N. Zakharov, S. Y. Liu, Org. Lett. 2007, 9, 4905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOitL3E&md5=3dce3b3622fb20d9040c10b323b18429CAS | 17944483PubMed |
(b) A. J. Marwitz, M. H. Matus, L. N. Zakharov, D. A. Dixon, S. Y. Liu, Angew. Chem. Int. Ed. 2009, 48, 973.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. J. Marwitz, J. T. Jenkins, L. N. Zakharov, S. Y. Liu, Angew. Chem. Int. Ed. 2010, 49, 7444.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. G. Campbell, L. N. Zakharov, D. J. Grant, D. A. Dixon, S.-Y. Liu, J. Am. Chem. Soc. 2010, 132, 3289.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. R. Abbey, L. N. Zakharov, S. Y. Liu, J. Am. Chem. Soc. 2011, 133, 11508.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. N. Lamm, E. B. Garner, D. A. Dixon, S. Y. Liu, Angew. Chem. Int. Ed. 2011, 50, 8157.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. H. Knack, J. L. Marshall, G. P. Harlow, A. Dudzik, M. Szaleniec, S. Y. Liu, J. Heider, Angew. Chem. Int. Ed. 2013, 52, 2599.
| Crossref | GoogleScholarGoogle Scholar |
[9] W. Luo, L. N. Zakharov, S. Y. Liu, J. Am. Chem. Soc. 2011, 133, 13006.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslGit7w%3D&md5=1be09af57ad79c1c9ae30fb68f0974a0CAS | 21786818PubMed |
[10] (a) W. Luo, P. G. Campbell, L. N. Zakharov, S. Y. Liu, J. Am. Chem. Soc. 2011, 133, 19326.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCgt7jM&md5=19fa916ea2d4eaed0735676cbe387b89CAS | 22070729PubMed |
(b) W. Luo, D. Neiner, A. Karkamkar, K. Parab, E. B. Garner, D. A. Dixon, D. Matson, T. Autrey, S. Y. Liu, Dalton Trans. 2013, 42, 611.
| Crossref | GoogleScholarGoogle Scholar |
[11] For a leading reference, see: S. S. Mal, F. H. Stephens, R. T. Baker, Chem. Commun. 2011, 47, 2922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1aqu78%3D&md5=a70f035f3841f40ab9d200a0f4624e4aCAS |
[12] (a) For an example, see: S. K. Kim, W. S. Han, T. J. Kim, T. Y. Kim, S. W. Nam, M. Mitoraj, Ł. Piekoś, A. Michalak, S. J. Hwang, S. O. Kang, J. Am. Chem. Soc. 2010, 132, 9954.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlSnsrw%3D&md5=5d262d5e165278564618c973a454e468CAS | 20597488PubMed |
(b) For theoretical treatments, see: K.-A. Ostby, A. Haaland, G. Gundersen, H. Noeth, Organometallics 2005, 24, 5318.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. J. Grant, M. H. Matus, K. D. Anderson, D. M. Camaioni, S. R. Neufeldt, C. F. Lane, D. A. Dixon, J. Phys. Chem. A 2009, 113, 6121.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Hoffmann, J. Chem. Phys. 1964, 40, 2474.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Pross, L. Radom, N. V. Riggs, J. Am. Chem. Soc. 1980, 102, 2253.
| Crossref | GoogleScholarGoogle Scholar |
[13] D. J. Heldebrant, A. Karkamkar, J. C. Linehan, T. Autrey, Environ. Sci. 2008, 1, 156.
| 1:CAS:528:DC%2BD1cXhtV2htrjF&md5=baf8e5daa06ed45883d7854a6b91ac79CAS |
[14] B. Singaram, T. E. Cole, H. C. Brown, Organometallics 1984, 3, 774.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhslCrurY%3D&md5=94bf18387dc8db6bb46078c912c179caCAS |
[15] F. Zheng, S. D. Rassat, D. J. Helderandt, D. D. Caldwell, C. L. Aardahl, T. Autrey, J. C. Linehan, K. G. Rappé, Rev. Sci. Instrum. 2008, 79, 084103.
| Crossref | GoogleScholarGoogle Scholar | 19044364PubMed |
[16] Treatment of 5 directly with LiAlH4 without pretreatment with formic acid was not sufficient to break the ring; only unreacted starting material was recovered.