Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Cationic Iridium Dendrimers: Synthesis and Photophysical Properties

Bin Du A , Si-Chun Yuan B C and Jian Pei A C
+ Author Affiliations
- Author Affiliations

A The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

B Department of Fundamental Science, Beijing University of Agriculture, Beijing 102206, China.

C Corresponding authors. Email: ysc2007@bua.edu.cn, jianpei@pku.edu.cn

Australian Journal of Chemistry 64(9) 1211-1220 https://doi.org/10.1071/CH11143
Submitted: 13 April 2011  Accepted: 27 May 2011   Published: 27 July 2011

Abstract

Two dendrimers, D1 and D2, containing the cationic iridium complexes (C1 and C2) as cores and truxene-functionalized chromophores as the branches, have been developed by a convergent synthetic strategy. The cationic complexes employ 3-(pyridin-2-yl)-1H-1,2,4-triazole and 2-(pyridin-2-yl)-benzimidazole derivatives as the ancillary ligands. To avoid the change in emission colour arising from the iridium complex, the conjugation between the dendron and the ligand is decoupled by separating them using the alkyl chain. An investigation of their photoluminescent features reveals that efficient energy transfer happens from the dendrons to the core in the solid state. Likewise, the charged dendritic structure is demonstrated to be an efficient method to improve the compatibility between the polar charged iridium complexes and typical hydrophobic hosts with the additional benefit of excellent solution processability. Both dendrimers exhibit strong solvatochromic behaviours in solvents and exclusive green and yellow-orange light in the solid state.


References

[1]  S. C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn, O. V. Salata, I. D. W. Samuel, Adv. Mater. 2002, 14, 975.

[2]  N. D. McClenaghan, R. Passalacqua, F. Loiseau, S. Campagna, B. Verheyde, A. Hameurlaine, W. Dehaen, J. Am. Chem. Soc. 2003, 125, 5356.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  X. Gong, M. R. Robinson, J. C. Ostrowki, D. Moses, G. C. Bazan, A. J. Heeger, Adv. Mater. 2002, 14, 581.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. Köhler, J. Wilson, R. Friend, Adv. Mater. 2002, 14, 701.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  E. Holder, B. M. W. Langeveld, U. S. Schubert, Adv. Mater. 2005, 17, 1109.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. Welter, K. Brunner, J. W. Hofstraat, L. De Cola, Nature 2003, 421, 54.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. Slinker, D. Bernards, P. L. Houston, H. D. Abruna, S. Bernhard, G. G. Malliaras, Chem. Commun. 2003, 2392.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7796.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  H. Rudmann, S. Shimada, M. F. Rubner, J. Am. Chem. Soc. 2002, 124, 4918.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. Buda, G. Kalyuzhny, A. J. Bard, J. Am. Chem. Soc. 2002, 124, 6090.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  F. G. Gao, A. J. Bard, J. Am. Chem. Soc. 2000, 122, 7426.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. K. Nazeeruddin, R. T. Wegh, Z. Zhou, C. Klein, Q. Wang, F. Angelis, M. Gra1tzel, Inorg. Chem. 2006, 45, 9245.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G. Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  H. J. Bolink, L. Cappelli, E. Coronado, M. Grätzel, E. Orti, R. D. Costa, P. M. Viruela, M. K. Nazeeruddin, J. Am. Chem. Soc. 2006, 128, 14786.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. D. Slinker, A. A. Gorodetsky, M. S. Lowry, J. J. Wang, S. Parker, R. Rohl, S. Bernhard, G. G. Malliaras, J. Am. Chem. Soc. 2004, 126, 2763.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 8723.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  E. A. Plummer, A. V. Dijken, H. W. Hofstraat, L. D. Cola, K. Brunner, Adv. Funct. Mater. 2005, 15, 281.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  W. Y. Wong, G. J. Zhou, X. M. Yu, H. S. Kwok, Z. Y. Lin, Adv. Funct. Mater. 2007, 17, 315.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  V. Marin, E. Holder, A. R. M. Michael, R. Hoogenboom, U. S. Schubert, Macromol. Rapid Commun. 2004, 25, 793.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. J. Liu, Q. Zhao, R. F. Chen, Y. Deng, Q. L. Fan, F. Y. Li, L. H. Wang, C. H. Huang, W. Huang, Chemistry 2006, 12, 4351.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  G. G. Shan, D. X. Zhu, H. B. Li, P. Li, Z. M. Su, Y. Liao, Dalton Trans. 2011, 40, 2947.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  C. S. K. Mak, W. K. Cheung, Q. Y. Leung, W. K. Chan, Macromol. Rapid Commun. 2010, 31, 875.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  S. C. Yu, S. J. Hou, W. K. Chan, Macromolecules 1999, 32, 5251.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  T. E. Keyes, R. J. Forster, A. M. Bond, W. Miao, J. Am. Chem. Soc. 2001, 123, 2877.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  L. S. Yu, S. A. Chen, Adv. Mater. 2004, 16, 744.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  R. Hage, J. G. Haasnoot, J. Reedijk, J. G. Vos, Chemtracts. Inorg. Chem. 1992, 4, 75.

[28]  Y. Jiang, Y. X. Lu, Y. X. Cui, Q. F. Zhou, Y. G. Ma, J. Pei, Org. Lett. 2007, 9, 4539.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. L. Wang, Y. T. Chan, C. N. Moorefield, J. Pei, D. A. Modarelli, N. C. Romanno, G. R. Newkome, Macromol. Rapid Commun. 2010, 31, 850.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  N. R. Evans, L. S. Devi, C. S. K. Mak, S. E. Watkins, I. Pascu, A. Köhler, A. B. Holmes, J. Am. Chem. Soc. 2006, 128, 6647.

[31]  B. Du, L. Wang, H. B. Wu, W. Yang, Y. Zhang, R. S. Liu, M. L. Sun, J. B. Peng, Y. Cao, Chemistry 2007, 13, 7432.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  N. R. M. Simpson, M. D. Ward, A. F. Morales, F. Barigelletti, J. Chem. Soc., Dalton Trans. 2002, 2449.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  B. Li, X. Xu, M. Sun, Y. Fu, G. Yu, Y. Liu, Z. Bo, Macromolecules 2006, 39, 456.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  A. Vogler, H. Kunkely, Coord. Chem. Rev. 2000, 200–202, 991.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  K. Eckert, A. Schroder, H. Hartmann, Eur. J. Org. Chem. 2000, 1327.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  J. Ohshita, K. H. Lee, M. Hahimoto, Y. Kunugi, Y. Harima, K. Yamashita, A. Kunai, Org. Lett. 2002, 4, 1891.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  C. O. Ng, L. T. L. Lo, S. M. Ng, C. C. Ko, N. Y. Zhu, Inorg. Chem. 2008, 47, 7447.
         | Crossref | GoogleScholarGoogle Scholar |