Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

pH-Responsive Chiral Nanostructures

Jianzhong Du A B , Helen Willcock A , Nga Sze Ieong A and Rachel K. O'Reilly A C
+ Author Affiliations
- Author Affiliations

A University of Warwick, Department of Chemistry, Gibbet Hill Road, Coventry, CV7 4AL, UK.

B Current address: School of Materials Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China.

C Corresponding author. Email: R.K.O-Reilly@warwick.ac.uk

Australian Journal of Chemistry 64(8) 1041-1046 https://doi.org/10.1071/CH11131
Submitted: 5 April 2011  Accepted: 29 May 2011   Published: 19 August 2011

Abstract

There is great current interest in the design of robust synthetic polymers for the preparation of novel functional, well-defined, biocompatible and tailorable materials for a range of possible applications. In this work we have used reversible addition fragmentation chain transfer (RAFT) polymerization to prepare chiral and responsive amphiphilic block copolymers (based on polyphenylalanine acrylamide), which can be assembled at different pHs to form well-defined nanostructures. The morphology and size of the derived block polymers were explored using TEM, DLS and SLS measurements, while stability was examined by fluorescence and NMR spectroscopy. The application of these chiral and responsive nanostructures in the resolution of hydrophilic racemic amino acids has also been explored.


References

[1]  M. H. Li, P. Keller, Soft Matter 2009, 5, 927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCntb4%3D&md5=e52af3aa7a5123b569d786f5872f1c74CAS |

[2]  J. Du, R. K. O'Reilly, Soft Matter 2009, 5, 3544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGltLvK&md5=4b428e4e3f5a4b2b7f98a6bcb2281650CAS |

[3]  E. S. Read, S. P. Armes, Chem. Commun. (Camb.) 2007, 3021.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVCju7o%3D&md5=33f3b9641ef6bb5563f3d35272d23a8cCAS |

[4]  R. K. O'Reilly, C. J. Hawker, K. L. Wooley, Chem. Soc. Rev. 2006, 35, 1068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSgtL7L&md5=61a8895046658e4a8acd05d9f1768582CAS |

[5]  C. J. Hawker, Acc. Chem. Res. 1997, 30, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVSntL4%3D&md5=d5bf3234959f7dfde4dc7b006e0c953eCAS |

[6]  G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2005, 58, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFymsL4%3D&md5=7ba69e9b1bfd49e4fef8b7b4a68b7f21CAS |

[7]  S. Perrier, P. Takolpuckdee, J. Polym. Sci. A Polym. Chem. 2005, 43, 5347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFygtLvI&md5=3a3cdc2c7eabf1f8700b1e6783a248ddCAS |

[8]  K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1ersrc%3D&md5=7be9caeac332148dbcc8d227664213cbCAS |

[9]  G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2006, 59, 669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeqsr%2FM&md5=73105ea9341a8ccb2d93a27d4d4fce19CAS |

[10]  G. Moad, E. Rizzardo, S. H. Thang, Polymer (Guildf.) 2008, 49, 1079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlels7c%3D&md5=b2035245c78df1f099b136ce5decc15aCAS |

[11]  C. Alexander, K. M. Shakesheff, Adv. Mater. (Deerfield Beach Fla.) 2006, 18, 3321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVyhtg%3D%3D&md5=33035f57260196b3401373031f5081e7CAS |

[12]  D. Schmaljohann, Adv. Drug Deliv. Rev. 2006, 58, 1655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Kmtb7I&md5=87f520de6c60fc6ef16c7dc3432071a7CAS |

[13]  S. Dai, P. Ravi, K. C. Tam, Soft Matter 2008, 4, 435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlCisr8%3D&md5=29601f4ef6a51fb86883a93323c3fc4dCAS |

[14]  Y. Li, S. L. Brad, L. M. Charles, Angew. Chem. Int. Ed. 2006, 45, 5792.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1ejtL0%3D&md5=d418ee9b573ed6e1cb4a825b38874479CAS |

[15]  J. Du, Y. Tang, A. L. Lewis, S. P. Armes, J. Am. Chem. Soc. 2005, 127, 17982.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GktLnO&md5=d9c061b5178f1dd7fe26d3f0bba0b67dCAS |

[16]  A. Napoli, M. Valentini, N. Tirelli, M. Muller, J. A. Hubbell, Nat. Mater. 2004, 3, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Clurc%3D&md5=694c211d43e27d479f8286c7fe30211bCAS |

[17]  X. Tang, L. Cao, X. Fan, X. Liang, Q. Zhou, Macromol. Chem. Phys. 2009, 210, 1556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGktrnL&md5=49c9ec2c4235cffe7bdff30334ae9d7eCAS |

[18]  C. Pietsch, R. Hoogenboom, U. S. Schubert, Angew. Chem. Int. Ed. 2009, 48, 5653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslOqsr0%3D&md5=6a12708a898a0e52f41dc4f86f0a0127CAS |

[19]  C. Chang, H. Wei, J. Feng, Z.-C. Wang, X.-J. Wu, D.-Q. Wu, S.-X. Cheng, X.-Z. Zhang, R.-X. Zhuo, Macromolecules 2009, 42, 4838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt12nsbc%3D&md5=b066d5e3d8d54c8dc6fcb0dc87606f03CAS |

[20]  S. Liu, N. C. Billingham, S. P. Armes, Angew. Chem. Int. Ed. 2001, 40, 2328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVahsr8%3D&md5=e4e4fa19d38820024813c1d9a5d24793CAS |

[21]  S. Liu, S. P. Armes, Angew. Chem. Int. Ed. 2002, 41, 1413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1eqsrY%3D&md5=57353fb287a4e5aa4ec85b9e1e19147dCAS |

[22]  J. Du, R. K. O'Reilly, Macromol. Chem. Phys. 2010, 211, 1530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVansb4%3D&md5=966b4073d8874ac4ff8371bfcb0517d4CAS |

[23]  S. Holder, N. A. J. M. Sommerdijk, Polym. Chem. 2011, 2, 1018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2rtLw%3D&md5=2cb8080727e38c9200efc05bd33d345aCAS |

[24]  Y. Geng, P. Dalhaimer, S. S. Cai, R. Tsai, M. Tewari, T. Minko, D. E. Discher, Nature Nano. 2007, 2, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVGgsbs%3D&md5=6ae03772512ad3bfda9c24b5a730e114CAS |

[25]  F. Sanda, T. Endo, Macromol. Chem. Phys. 1999, 200, 2651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVyrt78%3D&md5=443c8d582b020e6ca3537c0067172198CAS |

[26]  H. Mori, H. Iwaya, A. Nagai, T. Endo, Chem. Commun. (Camb.) 2005, 4872.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeqs7vO&md5=97cdb89c1b520b5b9c70da54b2633c1cCAS |

[27]  M. Casolaro, E. Paccagnini, R. Mendichi, Y. Ito, Macromolecules 2005, 38, 2460.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aqs7o%3D&md5=7ffe4f4500502bfdafbf07e4ad2093e0CAS |

[28]  J. Skey, R. K. O'Reilly, J. Polym. Sci. A Polym. Chem. 2008, 46, 3690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFWnsbY%3D&md5=2125018dac74b8945921a56aaeba9fdcCAS |

[29]  R. K. O'Reilly, Polym. Int. 2010, 59, 568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1CitL0%3D&md5=ac4e4b1bfe7f0feed46aff7f15d25593CAS |

[30]  H. Mori, M. Matsuyama, K. Sutoh, T. Endo, Macromolecules 2006, 39, 4351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFaqs7k%3D&md5=f7abb9772c61e15a1023de03568b550dCAS |

[31]  A. B. Lowe, C. L. McCormick, Prog. Polym. Sci. 2007, 32, 283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlOlu7g%3D&md5=0f410df818e6f58586fdd44e647f07a8CAS |

[32]  P. Xu, H. Tang, S. Li, J. Ren, E. Van Kirk, W. J. Murdoch, M. Radosz, Y. Shen, Biomacromolecules 2004, 5, 1736.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVShuro%3D&md5=854fd2bcbedc7afc2e04b81104c26ea8CAS |

[33]  H. Willcock, R. K. O'Reilly, Polym. Chem. 2010, 1, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1OhtL0%3D&md5=e6d7d65b1f881f715fe115b829f5aafaCAS |

[34]  J. Skey, H. Willcock, M. Lammens, F. du Prez, R. K. O'Reilly, Macromolecules 2010, 43, 5949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1Gitr8%3D&md5=558b70e29321c4071a9266be0ce834f8CAS |

[35]  J. Skey, R. K. O'Reilly, Chem. Commun. (Camb.) 2008, 4183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFektbzL&md5=32f5eee6a787aa933cade5d2646f3730CAS |

[36]  J. Skey, C. H. Hansell, R. K. O'Reilly, Macromolecules 2010, 43, 1309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvVGrtQ%3D%3D&md5=7216ec765f0e4a20ab6b5ac181913feeCAS |