Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Towards Conducting Metal-Organic Frameworks

Deanna M. D’Alessandro A B , Jehan R. R. Kanga A and James S. Caddy A
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B Corresponding author. Email: deanna@chem.usyd.edu.au




Deanna M. D'Alessandro received a B.Sc.(Hons) in 2001 and a Ph.D. (Chemistry) in 2006 from James Cook University under the supervision of Professor Richard Keene for which she received the 2006 RACI Cornforth Medal and a 2007 IUPAC Prize for Young Chemists. She held a postdoctoral position with Professor Jeffrey R. Long at the University of California, Berkeley (2007–09) and was the Dow Chemical Company Fellow of the American-Australian Association and an 1851 Royal Commission Fellow. In 2010 she commenced her independent career with a University of Sydney Research Fellowship and a L'Oreal Australia for Women in Science Fellowship. She currently holds an Australian Research Council QEII Fellowship for her research that spans the areas of inorganic chemistry, physical chemistry and materials science and focusses on the development of functional inorganic materials that exhibit novel electronic, optical, and magnetic phenomena. Potential applications range from the capture of greenhouse gases, to sensors, optoelectronics devices, and photocatalysts.

Australian Journal of Chemistry 64(6) 718-722 https://doi.org/10.1071/CH11039
Submitted: 24 January 2011  Accepted: 15 April 2011   Published: 27 June 2011

Abstract

The realization of metal-organic frameworks (MOFs) as electronic conductors is a highly sought after goal, which has the potential to revolutionize the areas of catalysis, solid-state sensors and solar energy conversion devices. To date, the design and synthesis of MOFs that exhibit through-framework conduction has been limited; however, significant interest is now emerging owing to the fascinating prospects for integrating multiple functions. This highlight article introduces the field of conducting nanoporous materials and discusses recent specific examples along with key design features that will underlie future developments in the area.


References

[1]  (a) B. Hoskins, R. Robson, J. Am. Chem. Soc. 1990, 112, 1546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXovVOjtw%3D%3D&md5=b558676f6250813281d7eca806cb4709CAS |
      (b) S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyrtLjP&md5=baf3e8f3bc7515498ba46b016beb843eCAS | 11799235PubMed |

[3]  (a) S. Qiu, G. Zhu, Coord. Chem. Rev. 2009, 253, 2891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagt77J&md5=a8e1ab033bce6d72cdcaecb7f2140552CAS |
      (b) R. A. Fischer, C. Wöll, Angew. Chem. Int. Ed. 2008, 47, 8164.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Férey, Chem. Soc. Rev. 2008, 37, 191.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Tanaka, S. Kitagawa, Chem. Mater. 2008, 20, 922.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Kitagawa, R. Matsuda, Coord. Chem. Rev. 2007, 251, 2490.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) C. J. Kepert, Chem. Commun. 2006, 695.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 2006, 16, 626.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) D. Bradshaw, J. B. Claridge, E. Cussen, T. J. Prior, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2005, 38, 273.
      (i) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) M. J. Rosseinsky, Micro. Meso. Mater. 2004, 73, 15.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) C. Janiak, Dalton Trans. 2003, 2781.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) A. Stein, Adv. Mater. (Deerfield Beach Fla.) 2003, 15, 763.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers: Design, Analysis and Application 2008 (Royal Society of Chemistry: Cambridge).

[5]  (a) R. S. Potember, T. O. Poehler, D. O. Cowan, Appl. Phys. Lett. 1979, 34, 405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhslyksrg%3D&md5=422155409adfa3f7217408ccd3abec8aCAS |
      (b) R. S. Potember, T. O. Poehler, R. C. Benson, Appl. Phys. Lett. 1982, 41, 548.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) N. López, H. Zhao, A. Ota, A. V. Prosvirin, E. W. Reinheimer, K. R. Dunbar, Adv. Mater. 2009, 21, n/a.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. P. O’Mullane, N. Fay, A. Nafady, A. M. Bond, J. Am. Chem. Soc. 2007, 129, 2066.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita, Y. Nakanishi, Y. Kitagawa, K. Yamaguchi, A. Kobayashi, H. Kitagawa, Inorg. Chem. 2009, 48, 9048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmt73E&md5=cda93cb1a26306ea78314f6c023fbaedCAS | 19067544PubMed |

[8]  H. J. Choi, M. P. Suh, J. Am. Chem. Soc. 2004, 126, 15844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFKkur0%3D&md5=95ed39aac2b4a589ea5aa1f2dc8e2355CAS | 15571409PubMed |

[9]  G. Férey, F. Millange, M. Morcrette, C. Serre, M.-L. Doublet, J.-M. Greneche, J.-M. Tarascon, Angew. Chem. Int. Ed. 2007, 46, 3259.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  G. R. Goward, F. Leroux, L. F. Nazar, Electrochim. Acta 1998, 43, 1307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFynt7o%3D&md5=80b04ccc091c2e61d06b8185779aae74CAS |

[11]  Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFyntr0%3D&md5=cca7be0553b90b5b59abc488c0011512CAS |

[12]  M. B. Robin, P. Day, Adv. Inorg. Chem. Radiochem. 1968, 10, 247.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) B.-Q. Ma, K. L. Mulfort, J. T. Hupp, Inorg. Chem. 2005, 44, 4912.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVynurc%3D&md5=132cc4d721352a230f70dc010d544d5eCAS | 15998017PubMed |
      (b) K. L. Mulfort, J. T. Hupp, J. Am. Chem. Soc. 2007, 129, 9604.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Y. E. Cheon, M. P. Suh, Angew. Chem. Int. Ed. 2009, 48, 2899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVehu7k%3D&md5=9d8c3c376358b8b5981e176ae02e341cCAS |

[15]  N. Motokawa, H. Miyasaka, M. Yamashita, K. R. Dunbar, Angew. Chem. Int. Ed. 2008, 47, 7760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmsL%2FN&md5=d0106149dc9c53954b6ab0426a7bb583CAS |

[16]  (a) D. M. D’Alessandro, F. R. Keene, Chem. Rev. 2006, 106, 2270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVehtLY%3D&md5=82a89dafd15ef882ee29f4627b27e74eCAS | 16771450PubMed |
      (b) D. M. D’Alessandro, F. R. Keene, Chem. Soc. Rev. 2006, 35, 424.

[17]  (a) H. Miyasaka, N. Motokawa, S. Matsunaga, M. Yamashita, K. Sugimoto, T. Mori, N. Toyota, K. R. Dunbar, J. Am. Chem. Soc. 2010, 132, 1532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslaitQ%3D%3D&md5=dee54be52cd2124ec22c77078fc06b8bCAS | 20078121PubMed |
      (b) N. Motokawa, T. Oyama, S. Matsunaga, H. Miyasaka, K. Sugimoto, M. Yamashita, N. Lopez, K. R. Dunbar, Dalton Trans. 2008, 4099.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Y. Docummn, A. E. Merback, Inorganic High Pressure Chemistry 1986 (Elsevier: Amsterdam).

[19]  H. Miyasaka, S. C. Campos-Fernández, R. Clérac, K. R. Dunbar, Angew. Chem. Int. Ed. 2000, 39, 3831.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFyqur4%3D&md5=a1325d6c690a83ad06055a38ec36be41CAS |

[20]  N. Motokawa, H. Miyasaka, M. Yamashita, K. R. Dunbar, Angew. Chem. Int. Ed. 2008, 47, 7760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmsL%2FN&md5=d0106149dc9c53954b6ab0426a7bb583CAS |

[21]  H. Miyasaka, T. Izawa, N. Takahashi, M. Yamashita, K. R. Dunbar, J. Am. Chem. Soc. 2006, 128, 11358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Khtbw%3D&md5=cb4d43a034fa41753d77187e2df0259aCAS | 16939251PubMed |

[22]  T. E. Vos, Y. Liao, W. W. Shum, J.-H. Her, P. W. Stephens, W. M. Reiff, J. S. Miller, J. Am. Chem. Soc. 2004, 126, 11630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFSqsr8%3D&md5=89aaf9613e578935f584bd7fb71334bbCAS | 15366910PubMed |

[23]  S.-I. Noro, M. Kondo, T. Ishii, S. Kitagawa, H. Matsuzaka, Dalton Trans. 1999, 1569.
         | 1:CAS:528:DyaK1MXivFOltLk%3D&md5=dbae1c4b4e80e0fb93cb5c8a6741c226CAS |

[24]  J. N. Behera, D. M. D’Alessandro, N. Soheilnia, J. R. Long, Chem. Mater. 2009, 21, 1922.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFemu74%3D&md5=236f7ea89bf2800f39700011dee6b4f1CAS |