Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Total Synthesis of (±)-Vibsanin E

Brett D. Schwartz A , Justin R. Denton B , Huw M. L. Davies C D and Craig M. Williams A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.

B Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000, USA.

C Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.

D Corresponding authors. Email: HMDAVIE@emory.edu; c.williams3@uq.edu.au

Australian Journal of Chemistry 62(9) 980-982 https://doi.org/10.1071/CH09267
Submitted: 5 May 2009  Accepted: 15 June 2009   Published: 17 September 2009

Abstract

Vibsanin E (1), a structurally rare complex diterpene, consisting of a compact 3-oxatricyclo[6.3.2.05,10] tridecane core and an unprecedented 3,3-dimethylacroyl enol ester functional group, formulate a considerable synthetic challenge. Williams and Davies failed to independently synthesize this nemesis, however, a ‘two heads are better than one’ approach delivered the first total synthesis of the molecule, since its diamond aniversary isolation.


Acknowledgements

We thank The University of Queensland, Australian Research Council (DP0666855) and the National Institutes of Health (GM080337) for financial support. Professor Fukuyama from the Tokushima Bunri University (Japan) is gratefully acknowledged for providing NMR spectra of natural vibsanin E. H.M.L.D. has financial interests in Dirhodium Technologies, Inc., a company that manufactures chiral dirhodium catalysts.


References


[1]   (a) K. Kawazu, IUPAC Int. Symp. Chem. Nat. Prod. (11th) 1978, 2,  101.
        |  CAS |  
        |  CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   Note: non-stabilized ylids as a general rule give rise to cis (or Z) olefin products, but it has been found[20] that steric hindrance dramatically influences the selectivity in the case of 18, hence the observation of an ~10:1 E/Z ratio observed for synthetic vibsanin E (1).

[24]   See supporting information for comparative 1H and 13C NMR spectra of synthetic and natural vibsanin E (1).