Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Interrogating Fragments Using a Protein Thermal Shift Assay

Róisín M. McMahon A D , Martin J. Scanlon B C and Jennifer L. Martin A D
+ Author Affiliations
- Author Affiliations

A Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, St Lucia, Qld 4072, Australia.

B Medicinal Chemistry and Drug Action, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Vic. 3052, Australia.

C ARC Centre for Coherent X-Ray Science, Monash University, Parkville, Vic. 3052, Australia.

D Corresponding authors. Email: r.mcmahon@imb.uq.edu.au; j.martin@imb.uq.edu.au




Róisín M. McMahon is a post-doctoral researcher working with Professor Jennifer L. Martin at the Institute for Molecular Bioscience, University of Queensland. Her research interests are in the application of structural biology techniques, particularly macromolecular crystallography, for protein structure–function investigations of cell surface and integral membrane proteins, with a complementary interest in the structural characterisation of druggable targets. She read Natural Sciences at Cambridge University and holds a D.Phil. from Oxford University.



Martin J. Scanlon is an Associate Professor in the Monash Institute for Pharmaceutical Sciences at Monash University. His research focuses on the characterisation of drug–protein interactions and the use of fragment-based approaches to identify novel ligands for proteins.



Jennifer L. Martin is an ARC Australian Laureate Fellow at the Institute for Molecular Bioscience, University of Queensland. Her research interests focus on protein structure and drug design, targeting infection, inflammation, and diabetes. She trained as a pharmacist in Victoria, was awarded a D.Phil. from Oxford University and spent her post-doctoral years at Rockefeller University.

Australian Journal of Chemistry 66(12) 1502-1506 https://doi.org/10.1071/CH13279
Submitted: 31 May 2013  Accepted: 29 July 2013   Published: 5 September 2013

Abstract

Protein thermal shift is a relatively rapid and inexpensive technique for the identification of low molecular weight compound interactions with protein targets. An increase in the melting temperature of the target protein in the presence of a test ligand is indicative of a promising ligand–protein interaction. Due to its simplicity, protein thermal shift is an attractive method for screening libraries and validating hits in drug discovery programs. The methodology has been used successfully in high throughput screens of small molecule libraries, and its application has been extended to report on protein–drug-like-fragment interactions. Here, we review how protein thermal shift has been employed recently in fragment-based drug discovery (FBDD) efforts, and highlight its application to protein–protein interaction targets. Multiple validation of fragment hits by independent means is paramount to ensure efficient and economical progress in a FBDD campaign. We discuss the applicability of thermal shift assays in this light, and discuss more generally what one does when orthogonal approaches disagree.


References

[1]  M. W. Pantoliano, E. C. Petrella, J. D. Kwasnoski, V. S. Lobanov, J. Myslik, E. Graf, T. Carver, E. Asel, B. A. Springer, P. Lane, F. R. Salemme, J. Biomol. Screen. 2001, 6, 429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVCntg%3D%3D&md5=655ddb5ffd95addf3ba1e8f7bae75956CAS | 11788061PubMed |

[2]  D. Matulis, J. K. Kranz, F. R. Salemme, M. J. Todd, Biochemistry 2005, 44, 5258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVCksr4%3D&md5=be0e7b2145bb870b94993435deb476d4CAS | 15794662PubMed |

[3]  F. H. Niesen, H. Berglund, M. Vedadi, Nat. Protoc. 2007, 2, 2212.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFagsb7N&md5=0a8f9f5acbafc2b7a96abbf78d2542d9CAS | 17853878PubMed |

[4]  J. K. Kranz, C. Schalk-Hihi, Methods Enzymol. 2011, 493, 277.
         | 1:CAS:528:DC%2BC3MXoslersro%3D&md5=e4b865382e2e559fa10ab0e625e6ac89CAS | 21371595PubMed |

[5]  M. N. Schulz, J. Landström, R. E. Hubbard, Anal. Biochem. 2013, 433, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWju7bP&md5=83480d317927231126302d9d0b286c2cCAS | 23098701PubMed |

[6]  F. J. Sorrell, G. K. Greenwood, K. Birchall, B. Chen, J. Pharm. Biomed. Anal. 2010, 52, 802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVamt7s%3D&md5=f2ade95dfc25912309e3faf2813a5a02CAS | 20376913PubMed |

[7]  M. Vedadi, F. H. Niesen, A. Allali-Hassani, O. Y. Fedorov, P. J. Finerty, G. A. Wasney, R. Yeung, C. Arrowsmith, L. J. Ball, H. Berglund, R. Hui, B. D. Marsden, P. Nordlund, M. Sundstrom, J. Weigelt, A. M. Edwards, Proc. Natl. Acad. Sci. USA 2006, 103, 15835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFymur%2FN&md5=6eb9466112fa64da1a7593c1d3856443CAS | 17035505PubMed |

[8]  U. B. Ericsson, B. M. Hallberg, G. T. Detitta, N. Dekker, P. Nordlund, Anal. Biochem. 2006, 357, 289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFemu7g%3D&md5=d3b6ba88d47603ef02f5cc3099ade7e6CAS | 16962548PubMed |

[9]  M.-C. Lo, A. Aulabaugh, G. Jin, R. Cowling, J. Bard, M. Malamas, G. Ellestad, Anal. Biochem. 2004, 332, 153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVKhu7g%3D&md5=6fcef32cd31f9400a31243d9cb889341CAS | 15301960PubMed |

[10]  B. L. Grasberger, T. Lu, C. Schubert, D. J. Parks, T. E. Carver, H. K. Koblish, M. D. Cummings, L. V. LaFrance, K. L. Milkiewicz, R. R. Calvo, D. Maguire, J. Lattanze, C. F. Franks, S. Zhao, K. Ramachandren, G. R. Bylebyl, M. Zhang, C. L. Manthey, E. C. Petrella, M. W. Pantoliano, I. C. Deckman, J. C. Spurlino, A. C. Maroney, B. E. Tomczuk, C. J. Molloy, R. F. Bone, J. Med. Chem. 2005, 48, 909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosFWmtg%3D%3D&md5=5b4563217ea09c23b357da5d00a69b55CAS | 15715460PubMed |

[11]  H. K. Koblish, S. Zhao, C. F. Franks, R. R. Donatelli, R. M. Tominovich, L. V. LaFrance, K. A. Leonard, J. M. Gushue, D. J. Parks, R. R. Calvo, K. L. Milkiewicz, J. J. Marugán, P. Raboisson, M. D. Cummings, B. L. Grasberger, D. L. Johnson, T. Lu, C. J. Molloy, A. C. Maroney, Mol. Cancer Ther. 2006, 5, 160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFKktg%3D%3D&md5=7c5ad1a87d8ea24e68d930dbb8aa9040CAS | 16432175PubMed |

[12]  E. V. Bobkova, M. J. Weber, Z. Xu, Y.-L. Zhang, J. Jung, P. Blume-Jensen, A. Northrup, P. Kunapuli, J. N. Andersen, I. Kariv, J. Biol. Chem. 2010, 285, 18838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFaqtrk%3D&md5=38324febcf916e4f5fcb15b4337eb946CAS | 20385558PubMed |

[13]  B. J. Davis, D. A. Erlanson, Bioorg. Med. Chem. Lett. 2013, 23, 2844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlOns7s%3D&md5=3c69458b6ebf979de109ae610fcd898dCAS | 23562240PubMed |

[14]  P. Cimmperman, L. Baranauskiene, Biophys. J. 2008, 95, 3222.
         | 1:CAS:528:DC%2BD1cXht1Srs7nK&md5=555f78d627f586513ab0591cf4f1febcCAS | 18599640PubMed |

[15]  L. L. Major, T. K. Smith, Mol. Biol. Int. 2011, 2011, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. A. Hudson, K. J. McLean, S. Surade, Y.-Q. Yang, D. Leys, A. Ciulli, A. W. Munro, C. Abell, Angew. Chem. Int. Ed. 2012, 51, 9311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOmt7bO&md5=c21fbc309e479be751ea9f197a57db04CAS |

[17]  R. Wilcken, X. Liu, M. O. Zimmermann, T. J. Rutherford, A. R. Fersht, A. C. Joerger, F. M. Boeckler, J. Am. Chem. Soc. 2012, 134, 6810.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVKnsb0%3D&md5=e31e2b6612652e230766e077497029b0CAS | 22439615PubMed |

[18]  P. Bamborough, H. Diallo, J. D. Goodacre, L. Gordon, A. Lewis, J. T. Seal, D. M. Wilson, M. D. Woodrow, C.-w. Chung, J. Med. Chem. 2012, 55, 587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKktrfF&md5=610bb445a709194c2e7ed3b257a2b152CAS | 22136469PubMed |

[19]  A. L. Hopkins, C. R. Groom, Nat. Rev. Drug Discov. 2002, 1, 727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslamtrY%3D&md5=dd90451773da04cbfc197455e6b10a90CAS | 12209152PubMed |

[20]  J. A. Wells, C. L. McClendon, Nature 2007, 450, 1001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaqtr7F&md5=73956d26367acc0d67cd8a13479c8347CAS | 18075579PubMed |

[21]  D. A. Erlanson, A. C. Braisted, D. R. Raphael, M. Randal, R. M. Stroud, E. M. Gordon, J. A. Wells, Proc. Natl. Acad. Sci. USA 2000, 97, 9367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVensr8%3D&md5=2db94c17fd13a42cfb2c398abff7d039CAS | 10944209PubMed |

[22]  D. A. Erlanson, J. W. Lam, C. Wiesmann, T. N. Luong, R. L. Simmons, W. L. DeLano, I. C. Choong, M. T. Burdett, W. M. Flanagan, D. Lee, E. M. Gordon, T. O’Brien, Nat. Biotechnol. 2003, 21, 308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFajs78%3D&md5=60f46d606145c971e7c49eded668ea3dCAS | 12563278PubMed |

[23]  D. E. Scott, M. T. Ehebauer, T. Pukala, M. Marsh, T. L. Blundell, A. R. Venkitaraman, C. Abell, M. Hyvönen, ChemBioChem 2013, 14, 332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Gks7Y%3D&md5=a49226241a8480883a6d20ef19050365CAS | 23344974PubMed |

[24]  L. Pellegrini, D. S. Yu, T. Lo, S. Anand, M. Lee, T. L. Blundell, A. R. Venkitaraman, Nature 2002, 420, 287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVektLY%3D&md5=8e1ddda5a08b75b95785bf5fd34015aaCAS | 12442171PubMed |

[25]  N. Abdel-Rahman, A. Martinez-Arias, T. L. Blundell, Biochem. Soc. Transit. 2011, 39, 1327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ajs7zP&md5=e596671aace02b910ed8f1b2d72551dcCAS |

[26]  N. Basse, J. L. Kaar, G. Settanni, A. C. Joerger, T. J. Rutherford, A. R. Fersht, Chem. Biol. 2010, 17, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12ns70%3D&md5=829b0aaf09abdd2f0906480d76c7e78dCAS | 20142040PubMed |

[27]  T. Tiefenbrunn, S. Forli, M. M. Baksh, M. W. Chang, M. Happer, Y. Lin, A. L. Perryman, J. Rhee, B. E. Torbett, A. J. Olson, J. H. Elder, M. G. Finn, C. D. Stout, ACS Chem. Biol. 2013, 8, 1223.
         | 1:CAS:528:DC%2BC3sXkvFKrsbo%3D&md5=683336d93c70cd647cf87b5eaecc73aeCAS |

[28]  R. E. Hubbard, J. B. Murray, Meth. Enzymol. 2011, 493, 509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslers70%3D&md5=52a299bf4f4841140ac791aca2bc4319CAS | 21371604PubMed |

[29]  D. Erlanson, Seventh Annual Fragment-Based Drug Discovery Meeting. Practical Fragments 2012. Available at http://practicalfragments.blogspot.com.au/2012/04/seventh-annual-fragment-based-drug.html

[30]  J. Wielens, S. J. Headey, D. I. Rhodes, R. J. Mulder, O. Dolezal, J. J. Deadman, J. Newman, D. K. Chalmers, M. W. Parker, T. S. Peat, M. J. Scanlon, J. Biomol. Screen. 2013, 18, 147.
         | Crossref | GoogleScholarGoogle Scholar | 23139382PubMed |

[31]  Z. Zhu, J. Cuozzo, J. Biomol. Screen. 2009, 14, 1157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSltrk%3D&md5=7b3b9983564ce32357fffab7bddab27aCAS | 19822881PubMed |