Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Continuous Flow Synthesis of Organic Electronic Materials – Case Studies in Methodology Translation and Scale-up

Helga Seyler A , Stefan Haid B , Tae-Hyuk Kwon A C , David J. Jones A , Peter Bäuerle B , Andrew B. Holmes A and Wallace W. H. Wong A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Bio21 Institute, University of Melbourne, Vic. 3010, Australia.

B Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.

C Current address: Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea.

D Corresponding author. Email: wwhwong@unimelb.edu.au

Australian Journal of Chemistry 66(2) 151-156 https://doi.org/10.1071/CH12406
Submitted: 1 September 2012  Accepted: 3 October 2012   Published: 19 November 2012

Abstract

The continuous flow synthesis of functional thiophene derivatives was examined. Methodology for the lithiation of thiophene building blocks was developed using a commercial bench-top flow reactor. In addition, the advantages of flow processing were demonstrated in the synthesis of a high performance organic dye in gram scale.


References

[1]  F. C. Krebs, T. Tromholt, M. Jorgensen, Nanoscale 2010, 2, 873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKru7jF&md5=8b96ff05cfc543a243c35cd7025bae7fCAS |

[2]  H. Seyler, W. W. H. Wong, D. J. Jones, A. B. Holmes, J. Org. Chem. 2011, 76, 3551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFSrur0%3D&md5=dc36da92139c597ce90dbbf2027948dbCAS |

[3]  H. Seyler, D. J. Jones, A. B. Holmes, W. W. H. Wong, Chem. Commun. 2012, 48, 1598.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFyksw%3D%3D&md5=c96f3c8beff1bdd6a4034800b91a0cfbCAS |

[4]  G. Jas, A. Kirschning, Chem. – Eur. J. 2003, 9, 5708.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVCl&md5=f4159c71ad4226dcd0dbee5fd59af701CAS |

[5]  B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtF2msr0%3D&md5=61920aa9737ff27dfaee69fe54945546CAS |

[6]  R. L. Hartman, J. P. McMullen, K. F. Jensen, Angew. Chem. Int. Ed. 2011, 50, 7502.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVCns74%3D&md5=3b906f6c72f5fa042dfc75f84f4226b2CAS |

[7]  T. Razzaq, C. O. Kappe, Chem. Asian J. 2010, 5, 1274.
         | 1:CAS:528:DC%2BC3cXmvFSrsLY%3D&md5=22e195cfc5125a305e07869461da5478CAS |

[8]  K. Geyer, J. D. C. Codée, P. H. Seeberger, Chem. – Eur. J. 2006, 12, 8434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqtLrJ&md5=90f43c8f260b09ae4f6162f84dcb6b01CAS |

[9]  J. Wegner, S. Ceylan, A. Kirschning, Adv. Synth. Catal. 2012, 354, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1GrtQ%3D%3D&md5=133061c88c92bf0a49325dc897730398CAS |

[10]  A. Mishra, C.-Q. Ma, P. Bäuerle, Chem. Rev. 2009, 109, 1141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVSnsbw%3D&md5=fc49fe7f633d3ad8fadccf9fc0467a60CAS |

[11]  H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVSlsA%3D%3D&md5=4d5e7a0f36a18e4296df0156894145a5CAS |

[12]  A. Mishra, P. Bäuerle, Angew. Chem. Int. Ed. 2012, 51, 2020.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitlygs7g%3D&md5=9c19545ffd83431e21a0e8db52575791CAS |

[13]  A. Nagaki, C. Matsuo, S. Kim, K. Saito, A. Miyazaki, J. Yoshida, Angew. Chem. Int. Ed. 2012, 51, 3245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitlyhtbk%3D&md5=f861bf4acc398e01fa27b3784e3ff8a3CAS |

[14]  H. Kim, A. Nagaki, J. Yoshida, Nat. Commun. 2011, 2, 264.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  A. Nagaki, Y. Uesugi, Y. Tomida, J. Yoshida, Beilstein J. Org. Chem. 2011, 7, 1064.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSktLvF&md5=377837160a607b9b1990af496ad7cb2bCAS |

[16]  A. Nagaki, A. Kenmoku, Y. Moriwaki, A. Hayashi, J. Yoshida, Angew. Chem. Int. Ed. 2010, 49, 7543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGiurrJ&md5=22c77b4fca6f79e7b6a2e114cb420a3fCAS |

[17]  A. Nagaki, N. Takabayashi, Y. Tomida, J. Yoshida, Beilstein J. Org. Chem. 2009, 5, 16.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  J. Yoshida, A. Nagaki, T. Yamada, Chem. – Eur. J. 2008, 14, 7450.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFeisL%2FP&md5=a6fe8cff426b4a2cf57f42ff2cb37fe5CAS |

[19]  W. Shu, S. L. Buchwald, Angew. Chem. Int. Ed. 2012, 51, 5355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1ehtr0%3D&md5=8116a94e553760bfdad25a1b5bc286b5CAS |

[20]  W. Shu, L. Pellegatti, M. A. Oberli, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 10665.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFylsL3E&md5=36f3bc5f72298a0dafece15594222d2dCAS |

[21]  D. L. Browne, M. Baumann, B. H. Harji, I. R. Baxendale, S. V. Ley, Org. Lett. 2011, 13, 3312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslGms7g%3D&md5=31cc61cb1cb7b54263e45d5801dc9fa6CAS |

[22]  K. Smith, M. L. Barratt, J. Org. Chem. 2007, 72, 1031.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1CmtQ%3D%3D&md5=c9f9d33de2c87f316641f2b8c0b61715CAS |

[23]  www.vicosc.unimelb.edu.au.

[24]  T.-H. Kwon, T. Daeneke, A. B. Holmes, N. W. Duffy, U. Bach, L. Spiccia, Nat. Chem. 2011, 3, 211.

[25]  T.-H. Kwon, V. Armel, A. Nattestad, D. R. MacFarlane, U. Bach, S. J. Lind, K. C. Gordon, W. Tang, D. J. Jones, A. B. Holmes, J. Org. Chem. 2011, 76, 4088.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlarsb4%3D&md5=982a3ef86a5b830fbfed0a35d3ad3850CAS |

[26]  A. F. Burchat, J. M. Chong, N. Nielsen, J. Organomet. Chem. 1997, 542, 281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1Glurg%3D&md5=6ebde400ffff61b1372fe5c1db93934bCAS |

[27]  S. S. Samanta, S. C. Ghosh, A. De, J. Chem. Soc., Perkin Trans. 1 1997, 2683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1egtr4%3D&md5=f92dd1f3a1a7886d15d1a5b6f3abe0f3CAS |

[28]  R. Wu, J. S. Schumm, D. L. Pearson, J. M. Tour, J. Org. Chem. 1996, 61, 6906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1Slsr4%3D&md5=2397ca4854d1ed50437f568b4d9a276dCAS |

[29]  H. Kong, D. H. Lee, I.-N. Kang, E. Lim, Y. K. Jung, J.-H. Park, T. Ahn, M. H. Yi, C. E. Park, H.-K. Shim, J. Mater. Chem. 2008, 18, 1895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFGitLs%3D&md5=123e4fe887e1dcb623ceec68cd5600aeCAS |