Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Air-stable Curved π-Radical Based on Corannulene: Dynamic Electronic-spin Structure Induced by Temperature-dependent Conformational Changes

Akira Ueda A , Kanako Ogasawara A , Shinsuke Nishida B , Kozo Fukui A , Kazunobu Sato B , Takeji Takui B C , Kazuhiro Nakasuji A and Yasushi Morita A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

B Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.

C Corresponding authors. Email: morita@chem.sci.osaka-u.ac.jp; takui@sci.osaka-cu.ac.jp

Australian Journal of Chemistry 63(12) 1627-1633 https://doi.org/10.1071/CH10280
Submitted: 26 July 2010  Accepted: 1 September 2010   Published: 6 December 2010

Abstract

A new corannulene-based curved neutral π-radical bearing a tert-butylnitroxide moiety has been synthesized and isolated as an air-stable solid. Direct attachment of the spin centre to the corannulene skeleton gives rise to an extensive spin-delocalization onto the curved π-conjugated system from the nitroxide moiety. This salient electronic feature in the curved neutral radical system and its high stability have allowed us to find a dynamic electronic-spin behaviour induced by the temperature-dependent conformational change of the nitroxide moiety, as studied by liquid-phase variable-temperature electron spin resonance and 1H electron-nuclear double resonance and electron-nuclear-nuclear triple resonance spectroscopies with the help of density functional theory calculations.


References

[1]  A. R. Forrester, J. M. Hay, R. H. Thomson, Organic Chemistry of Stable Free Radicals 1968 (Academic Press: London).
      (b) R. G. Hicks, Org. Biomol. Chem. 2007, 5, 1321.
         | Crossref | GoogleScholarGoogle Scholar |
      Stable Radicals: Fundamentals and Applied Aspects of Odd-electron Compounds 2010 (Ed. R. G. Hicks) (Wiley: West Sussex).10.1002/9780470666975

[2]  E. Breuer, H. G. Aurich, A. Nielsen, Nitrones, Nitronates, and Nitroxides 1989 (Eds S. Patai, Z. Rappoport) (John Wiley & Sons: New York, NY).
      G. I. Likhtenshtein, J. Yamauchi, S. Nakatsuji, A. I. Smirnov, R. Tamura, Nitroxides: Applications in Chemistry, Biomedicine, and Materials Science 2008 (Wiley-VCH: Weinheim).

[3]  Magnetic Properties of Organic Materials 1999 (Ed. P. M. Lahti) (Marcel Dekker: New York).
      Molecular Magnetism 2000 (Eds K. Itoh, M. Kinoshita) (Kodansha, and Gordon and Breach Science Publishers: Tokyo).
      Magnetism: Molecules to Materials, Vol. I–V 2001–2005 (Eds J. S. Miller, M. Drillon) (Wiley-VCH: Weinheim).

[4]  (a) K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, E. Hasegawa, Chem. Phys. Lett. 2002, 359, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1GgsrY%3D&md5=d94930a32f0c04b845935811f8b25520CAS |
      (b) H. Nishide, K. Oyaizu, Science 2008, 319, 737.
         | Crossref | GoogleScholarGoogle Scholar |
      We claimed in 2002 the possibility of realizing a high-performance secondary battery by utilizing stable neutral radical with multi-stage redox ability, and in 2007 we fabricated ‘molecular crystalline secondary batteries’ based on 6-oxophenalenoxyl neutral radical with multi-stage redox ability, see: Morita  Y., Aoki  T., Fukui  K., Nakazawa  S., Tamaki  K., Suzuki  S., Fuyuhiro  A., Yamamoto  K., Sato  K., Shiomi  D., Naito  A., Takui  T., Nakasuji  K., Angew. Chem. Int. Ed. 2002, 41, 1793. 10.1002/1521-3773(20020517)41:10<1793::AID-ANIE1793>3.0.CO;2-G
      (d) Y. Morita, S. Nishida, J. Kawai, K. Fukui, S. Nakazawa, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, Org. Lett. 2002, 4, 1985.
         | Crossref | GoogleScholarGoogle Scholar |
      Y. Morita, T. Okafuji, M. Satoh, Jpn. Kokai Tokkyo Koho JP 2007227186 A 20070906 2007.
      (f) Y. Morita, T. Ohba, N. Haneda, S. Maki, J. Kawai, K. Hatanaka, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, J. Am. Chem. Soc. 2000, 122, 4825.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Höfer, T. Takui, J. Mater. Chem. 2009, 19, 3739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVCrs7s%3D&md5=673c98b92a4575435e65291cd710f7c3CAS |
      K. Sato, S. Nakazawa, R. Rahimi, S. Nishida, T. Ise, D. Shiomi, K. Toyota, Y. Morita, M. Kitagawa. P. Carl, P. Höfer, T. Takui, in Molecular Realizations of Quantum Computing 2007 2009, pp. 58–162 (Eds M. Nakahara, Y. Ota, R. Rahimi) (World Scientific: Singapore).
      (c) Y. Morita, Y. Yakiyama, S. Nakazawa, T. Murata, T. Ise, D. Hashizume, D. Shiomi, M. Kitagawa, K. Nakasuji, T. Takui, J. Am. Chem. Soc. 2010, 132, 6944.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  For our recent studies on phenalenyl systems as a highly spin-delocalized planar π-radical, see:
      (b) S. Nishida, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, Angew. Chem. Int. Ed. 2005, 44, 7277.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Suzuki, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, J. Am. Chem. Soc. 2006, 128, 2530.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Morita, S. Suzuki, K. Fukui, S. Nakazawa, H. Kitagawa, H. Kishida, H. Okamoto, A. Naito, A. Sekine, Y. Ohashi, M. Shiro, K. Sasaki, D. Shiomi, K. Sato, T. Takui, K. Nakasuji, Nat. Mater. 2008, 7, 48.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. Morita, S. Nishida, J. Kawai, T. Takui, K. Nakasuji, Pure Appl. Chem. 2008, 80, 507.
         | Crossref | GoogleScholarGoogle Scholar |
      See also ref. 4c–f.

[7]  Y. Morita, S. Nishida, in Stable Radicals: Fundamentals and Applied Aspects of Odd-electron Compounds 2010, Ch. 3, pp. 81–146 (Ed. R. Hicks) (Wiley: West Sussex). 10.1002/9780470666975.CH3

[8]  (a) H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XotVOktQ%3D%3D&md5=50e4a4d953aa377f42ff89e87840c8d5CAS |
      (b) S. Iijima, Nature 1991, 354, 56.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  For overviews of fullerene and carbon nanotube chemistry, see: (a) Fullerenes: Chemistry, Physics and Technology 2000 (Eds K. M. Kadish, R. S. Ruoff) (John Wiley & Sons: New York, NY).
      Carbon Nanotubes Synthesis, Structure, Properties, and Applications 2001 (Eds M. D. Dresselhaus, R. S. Dresselhaus, P. Avouris) (Springer: Heidelberg).
      A. Hirsch, M. Brettreich, Fullerenes: Chemistry and Reactions 2005 (Wiley-VCH: New York, NY).

[10]  A. Sygula, P. W. Rabideau, in Carbon-Rich Compounds 2006, Ch. 12, pp. 529–565 (Eds M. M. Haley, R. R. Tykwinski) (Wiley-VCH: Weinheim).
      (b) Y.-T. Wu, J. S. Siegel, Chem. Rev. 2006, 106, 4843.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. M. Tsefrikas, L. T. Scott, Chem. Rev. 2006, 106, 4868.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) C. Corvaja, M. Maggini, M. Prato, G. Scorrano, M. Venzin, J. Am. Chem. Soc. 1995, 117, 8857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVKru7w%3D&md5=01f160054f60316df0fce7ef6896b5f5CAS |
      an overview of radical chemistry of fullerenes: B. Tumanskii, O. Kalina, Radical Reactions of Fullerenes and their Derivatives 2001 (Kluwer Academic Publishers: Dordrecht).
      Krusic  P. J.Wasserman  E.Keizer  P. N.Morton  J. R.Preston  K. F.Science 1991, 254, 1183. 10.1126/SCIENCE.254.5035.1183

[12]  For our recent studies on air-stable curved π-radicals, see: (a) Morita  Y.Nishida  S.Kobayashi  T.Fukui  K.Sato  K.Shiomi  D.Takui  T.Nakasuji  K.Org. Lett. 2004, 6, 1397. 10.1021/OL0497786
      (b) S. Nishida, Y. Morita, T. Kobayashi, K. Fukui, A. Ueda, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, Polyhedron 2005, 24, 2200.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Fukui, Y. Morita, S. Nishida, T. Kobayashi, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, Polyhedron 2005, 24, 2326.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Morita, A. Ueda, S. Nishida, K. Fukui, T. Ise, D. Shiomi, K. Sato, T. Takui, K. Nakasuji, Angew. Chem. Int. Ed. 2008, 47, 2035.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Nishida, Y. Morita, A. Ueda, T. Kobayashi, K. Fukui, K. Ogasawara, K. Sato, T. Takui, K. Nakasuji, J. Am. Chem. Soc. 2008, 130, 14954.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. Ueda, S. Nishida, K. Fukui, T. Ise, D. Shiomi, K. Sato, T. Takui, K. Nakasuji, Y. Morita, Angew. Chem. Int. Ed. 2010, 49, 1678.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) A. Ueda, K. Ogasawara, S. Nishida, T. Ise, T. Yoshino, S. Nakazawa, K. Sato, T. Takui, K. Nakasuji, Y. Morita, Angew. Chem. Int. Ed. 2010, 49, 6333.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. E. Barth, R. G. Lawton, J. Am. Chem. Soc. 1966, 88, 380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XktlKjtQ%3D%3D&md5=f406d29981e0310f688fa59592cdd2b3CAS |

[14]  T. J. Seiders, E. L. Elliott, G. H. Grube, J. S. Siegel, J. Am. Chem. Soc. 1999, 121, 7804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFSrsLs%3D&md5=2c6a13f6d173eca72b0e134ab9febf51CAS |

[15]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E. 01 2004 (Gaussian Inc.: Wallingford, CT).
      The convergence criterion for the energy was set at 10–6 hartree.

[16]  Our previous theoretical study (ref. 12c) reports that the radical-substituted corannulene derivatives have at least two metastable geometries with respect to the rotational motion of the radical moiety. On the basis of this finding, we have carefully determined the most stable geometry of 4.

[17]  The calculated (UB3LYP/6–31G(d) level) spin densities on the carbon or nitrogen atom of the verdazyl, iminonitroxide, phenoxyl, and tert-butylnitroxide moieties attached to the corannulene skeleton are –0.160, –0.128, +0.349, and +0.374, respectively. These calculated results also suggest that the highest degree of extensive spin-delocalized nature of 4 in comparison with 13 is attributable to the direct attachment of the spin centre of the tert-butylnitroxide moiety to the corannulene skeleton.

[18]  Judging from the angular-dependent |AN| change in the all regions, the |AN| at θ = 70° seems somewhat abnormal. However, the origin is not clear at this stage.

[19]  The calculated total energy of 4 at θ = –34°, 40°, and 130° is –1055.30164090hartree (–662212.3321 kcal mol–1), –1055.30114740 hartree (–662212.0228 kcal mol–1), and –1055.30116340 hartree (–662212.0328 kcal mol–1), respectively.

[20]  The calculated |AN| and |AH2| in the other two geometries are (0.899 mT and 0.403 mT, θ = –34°) and (0.934 mT and 0.303 mT, θ = 40°), respectively.

[21]  The UV-vis spectrum of 4 in CH3CN solution shows that a red shift of the absorption band is due to the corannulene moiety (289 nm) in comparison with the corresponding band of corannulene itself (282 nm) in CH3CN solution. This result demonstrates the occurrence of a significant π-conjugation between the radical and corannulene moieties of 4 as well as 13 (see also ref. 12a, b, d).

[22]  We understand that it is not easy to discuss such subtle energy difference (ca. 0.30 kcal mol–1) between the two geometries[19] in detail because the present DFT calculations do not take into account intermolecular interactions such as aggregation behaviour or solvent effects that occur under actual experimental conditions.

[23]  We are also interested in 3D dynamic molecular and electronic-spin structures relevant to bowl-to-bowl inversion phenomenon of open-shell systems of corannulene in a solution state, and we have already reported the calculated inversion barriers of some open-shell systems (see ref. 12e, g). In contrast to the closed-shell systems documented so far, such dynamic structures of the open-shell systems have not been experimentally investigated. The neutral radical 4 possessing the large amount of spin density on the corannulene skeleton gives a testing ground for studying the inversion behaviour. The experimental observation by pulsed-ESR technique is underway in our group. For experimental studies on the bowl-to-bowl inversion phenomenon of the closed-shell systems, see: (a) Scott  L. T.Hashemi  M. M.Bratcher  M. S.J. Am. Chem. Soc. 1992, 114, 1920. 10.1021/JA00031A079
      (b) A. Sygula, A. H. Abdourazak, P. W. Rabideau, J. Am. Chem. Soc. 1996, 118, 339.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. J. Seiders, K. K. Baldridge, G. H. Grube, J. S. Siegel, J. Am. Chem. Soc. 2001, 123, 517.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Hayama, K. K. Baldridge, Y.-T. Wu, A. Linden, J. S. Siegel, J. Am. Chem. Soc. 2008, 130, 1583.
         | Crossref | GoogleScholarGoogle Scholar |