Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Salinity-induced acidification in a wetland sediment through the displacement of clay-bound iron(II)

Annaleise R. Klein A , Darren S. Baldwin B , Balwant Singh C and Ewen J. Silvester A D
+ Author Affiliations
- Author Affiliations

A Department of Environmental Management and Ecology (DEME), La Trobe University, Albury-Wodonga Campus, VIC 3690, Australia.

B Murray–Darling Freshwater Research Centre (MDFRC), CSIRO Land and Water, La Trobe University, Albury-Wodonga Campus, VIC 3690, Australia.

C Faculty of Agriculture, Food and Natural Resources, The University of Sydney, NSW 2006, Australia.

D Corresponding author. Email: e.silvester@latrobe.edu.au

Environmental Chemistry 7(5) 413-421 https://doi.org/10.1071/EN10057
Submitted: 31 May 2010  Accepted: 4 August 2010   Published: 13 October 2010

Environmental context. Acidification of inland waterways is an emerging issue worldwide, mostly because it disturbs the balance of reduced sulfur species in soils, sediments and mine tailings. We describe a pathway for wetland acidification through salt displacement and oxidation of Fe2+ from clay minerals. This alternative pathway for acidification raises environmental concerns because an increasing number of inland waterways are affected by increasing salinity.

Abstract. A wetland near the Murray River (south-eastern Australia) was found to have significant levels of exchangeable reduced iron (Fe2+) in the sediment clay-zone, and the potential for acidification under high salinity and oxidising conditions. Cation exchange experiments using purified clay from this site show relative affinities consistent with the lyotrophic series: Fe2+ > Ca2+ > Mg2+ > H+ > K+ > Na+. This relative affinity is confirmed in Fe2+ displacement experiments using natural sediment clay. Proton production during oxidation of salt-treated sediments corresponds to that expected for the oxidation and hydrolysis of Fe2+ displaced from clay interlayers, taking into account the buffering properties of the sediment matrix. This work shows that wetland acidification can occur in low sulfur-containing wetlands and is not exclusively a problem associated with sulfidic sediments.


References

[1]  N. R. Bond, P. S. Lake, A. H. Arthington, The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 2008, 600, 3.
The impacts of drought on freshwater ecosystems: an Australian perspective.Crossref | GoogleScholarGoogle Scholar |

[2]  S. Lamontagne, W. S. Hicks, R. W. Fitzpatrick, S. Rogers, Sulfidic materials in dryland river wetlands. Mar. Freshwater Res. 2006, 57, 775.
Sulfidic materials in dryland river wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OgsLfL&md5=0356d9d4b458d4d992ed69487a98f4bfCAS |

[3]  K. Hall, D. S. Baldwin, G. Rees, A. Richardson, Distribution of inland wetlands with sulfidic sediments in the Murray–Darling Basin, Australia. Sci. Total Environ. 2006, 370, 235.
Distribution of inland wetlands with sulfidic sediments in the Murray–Darling Basin, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvF2ns70%3D&md5=440e7e41bc73949bb86963fec76a2f68CAS | 16930680PubMed |

[4]  B. McCarthy, A. Conalin, P. D’Santos, D. S. Baldwin, Acidification, salinisation and fish kills at an inland wetland in south-eastern Australia following partial drying. Ecol. Manage. Restor. 2006, 7, 218.
Acidification, salinisation and fish kills at an inland wetland in south-eastern Australia following partial drying.Crossref | GoogleScholarGoogle Scholar |

[5]  B. G. Lottermoser, Mine Wastes: Characterization, Treatment and Environmental Impacts, 2nd edn 2007 (Springer: Heidelberg).

[6]  K. R. James, B. T. Hart, P. C. E. Bailey, D. W. Blinn, Impact of secondary salinisation on freshwater ecosystems: effect of experimentally increased salinity on an intermittent floodplain wetland. Mar. Freshwater Res. 2009, 60, 246.
Impact of secondary salinisation on freshwater ecosystems: effect of experimentally increased salinity on an intermittent floodplain wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslWku7Y%3D&md5=90133d4cc8a89dc559e5299a166ee382CAS |

[7]  D. S. Baldwin, G. N. Rees, A. M. Mitchell, G. Watson, J. Williams, The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 2006, 26, 455.
The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland.Crossref | GoogleScholarGoogle Scholar |

[8]  W. Stumm, J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edn 1996 (Wiley: New York).

[9]  D. R. Lovley, Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 1991, 55, 259..
| 1886521PubMed |

[10]  Y. Luu, J. A. Ramsay, Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source. World J. Microbiol. Biotechnol. 2003, 19, 215.
Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVWltb0%3D&md5=0ae66f8910c29c3c52ab934f4f4f8027CAS |

[11]  C. M. Johnson, B. L. Beard, E. E. Roden, D. K. Newman, K. H. Nealson, Isotopic constraints on biogeochemical cycling of Fe. Rev. Mineral. Geochem. 2004, 55, 359.
Isotopic constraints on biogeochemical cycling of Fe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVOgt7Y%3D&md5=173470cbb647ada7c732bfe10565c179CAS |

[12]  K. A. Weber, M. M. Urrutia, P. F. Churchill, R. K. Kukkadapu, E. E. Roden, Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ. Microbiol. 2006, 8, 100.
Anaerobic redox cycling of iron by freshwater sediment microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFSgurw%3D&md5=f52b78334acde8c388bffebdaea98b9dCAS | 16343326PubMed |

[13]  D. P. Jaisi, C. Liu, H. Dong, R. E. Blake, J. B. Fein, Fe2+ sorption onto nontronite (NAu-2). Geochim. Cosmochim. Acta 2008, 72, 5361.
Fe2+ sorption onto nontronite (NAu-2).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yrs7rM&md5=9a4790fb44dd4adcbe7cd4dc0392fc72CAS |

[14]  C. Schultz, T. Grundl, pH dependence of ferrous sorption onto two smectite clays. Chemosphere 2004, 57, 1301.
pH dependence of ferrous sorption onto two smectite clays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1aktLg%3D&md5=5136e67aa0c9328d246ca6f3c4808562CAS | 15519374PubMed |

[15]  L. Charlet, C. Tournassat, Fe(II)–Na(I)–Ca(II) cation exchange on montmorillonite in chloride medium: evidence for preferential clay adsorption of chloride–metal ion pairs in seawater. Aquat. Geochem. 2005, 11, 115.
Fe(II)–Na(I)–Ca(II) cation exchange on montmorillonite in chloride medium: evidence for preferential clay adsorption of chloride–metal ion pairs in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsl2mtrg%3D&md5=d104b981b2bcd4800a95b99a232eaf7fCAS |

[16]  T. B. Hofstetter, R. P. Schwarzenbach, S. B. Haderlein, Reactivity of Fe(II) species associated with clay minerals. Environ. Sci. Technol. 2003, 37, 519.
Reactivity of Fe(II) species associated with clay minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFCns70%3D&md5=44d5228fc8b2bedcf0b50d5231b86534CAS | 12630467PubMed |

[17]  A. Neumann, T. B. Hofstetter, M. Skarpeli-Liati, R. P. Schwarzenbach, Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites. Environ. Sci. Technol. 2009, 43, 4082.
Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlKltbs%3D&md5=e2f3d3ad32a422019ddbf440806b62a4CAS | 19569334PubMed |

[18]  G. Kamei, C. Oda, S. Mitsui, M. Shibata, T. Shinozaki, Fe(II)–Na ion exchange at interlayers of smectite: adsorption-desorption experiments and a natural analogue. Eng. Geol. 1999, 54, 15.
Fe(II)–Na ion exchange at interlayers of smectite: adsorption-desorption experiments and a natural analogue.Crossref | GoogleScholarGoogle Scholar |

[19]  K. Saeki, S. I. Wada, M. Shibata, Ca2+-Fe2+ and Ca2+-Mn2+ exchange selectivity of kaolinite, montmorillonite, and illite. Soil Sci. 2004, 169, 125.
Ca2+-Fe2+ and Ca2+-Mn2+ exchange selectivity of kaolinite, montmorillonite, and illite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFGqu78%3D&md5=09d639be6ec6afcbb74eb723ed1f25bfCAS |

[20]  D. L. Gribben, G. N. Rees, R. L. Croome, Anoxygenic phototrophic bacteria and aerobic phototrophs in Normans Lagoon, a ‘billabong’ adjacent to the Murray River, south-eastern Australia. Lakes Reservoirs: Res. Manage. 2003, 8, 95.
Anoxygenic phototrophic bacteria and aerobic phototrophs in Normans Lagoon, a ‘billabong’ adjacent to the Murray River, south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

[21]  D. L. Sparks, Environmental Soil Chemistry 1995 (Academic Press: San Diego, CA).

[22]  A. P. Vanselow, Equilibria of the base-exchange reactions of bentonites, permutites, soil colloids, and zeolites. Soil Sci. 1932, 33, 95.
Equilibria of the base-exchange reactions of bentonites, permutites, soil colloids, and zeolites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA38XisVWksw%3D%3D&md5=cfe10c50d605524b399453e12233f707CAS |

[23]  J. Westall, MICROQL. A Chemical Equilibrium Program in BASIC 1979 (Swiss Federal Institute of Technology EAWAG: Dübendorf).

[24]  G. L. Gaines, , H. C. Thomas, Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Chem. Phys. 1953, 21, 714.
Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXjvF2hsw%3D%3D&md5=8d19924cded01ca96e758adb51d4d4d4CAS |

[25]  C. Tournassat, H. Gailhanou, C. Crouzet, G. Braibant, A. Gautier, E. C. Gaucher, Cation exchange selectivity coefficient values on smectite and mixed-layer illite/smectite minerals. Soil Sci. Soc. Am. J. 2009, 73, 928.
Cation exchange selectivity coefficient values on smectite and mixed-layer illite/smectite minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFylsLY%3D&md5=d3e90771c4384cd220d552392ae2df64CAS |

[26]  A. Géhin, J.-M. Grenèche, C. Tournassat, J. Brendlé, D. G. Rancourt, L. Charlet, Reversible surface-sorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral. Geochim. Cosmochim. Acta 2007, 71, 863.
Reversible surface-sorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral.Crossref | GoogleScholarGoogle Scholar |

[27]  C. Tournassat, J. M. Greneche, D. Tisserand, L. Charlet, The titration of clay minerals. I. Discontinuous back titration technique combined with CEC measurements. J. Colloid Interface Sci. 2004, 273, 224.
The titration of clay minerals. I. Discontinuous back titration technique combined with CEC measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFCnsbc%3D&md5=c942fdb6d46618973427afe733a6b91bCAS | 15051456PubMed |

[28]  J. Ikhsan, B. B. Johnson, J. D. Wells, A comparative study of the adsorption of transition metals on kaolinite. J. Colloid Interface Sci. 1999, 217, 403.
A comparative study of the adsorption of transition metals on kaolinite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFyiurg%3D&md5=ba725ccdb96725e6e8133bb10c3094bbCAS | 10469549PubMed |

[29]  M. H. Bradbury, B. Baeyens, Sorption modelling on illite. Part I. Titration measurements and the sorption of Ne, Co, Eu and Sn. Geochim. Cosmochim. Acta 2009a, 73, 990.
Sorption modelling on illite. Part I. Titration measurements and the sorption of Ne, Co, Eu and Sn.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1aqsr0%3D&md5=942aecad07ecd1f8d6fba7f25917bd61CAS |

[30]  M. H. Bradbury, B. Baeyens, Sorption modelling on illite. Part II. Actinide sorption and linear free energy relationships. Geochim. Cosmochim. Acta 2009b, 73, 1004.
Sorption modelling on illite. Part II. Actinide sorption and linear free energy relationships.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1aruro%3D&md5=9171f45fa29e40fd583ed41d200ec730CAS |

[31]  B. Hagedorn, I. Cartwright, Climatic and lithologic controls on the temporal and spatial variability of CO2 consumption via chemical weathering: an example from the Australian Victorian Alps. Chem. Geol. 2009, 260, 234.
Climatic and lithologic controls on the temporal and spatial variability of CO2 consumption via chemical weathering: an example from the Australian Victorian Alps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCmsL4%3D&md5=4e0a6891665ed4bf3222405768e5ef54CAS |

[32]  C. Tournassat, H. Gailhanou, C. Crouzet, G. Braibant, A. Gautier, E. C. Gaucher, Cation exchange selectivity coefficient values on smectite and mixed-layer illite/smectite minerals. Soil Sci. Soc. Am. J. 2009, 73, 928.
Cation exchange selectivity coefficient values on smectite and mixed-layer illite/smectite minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFylsLY%3D&md5=d3e90771c4384cd220d552392ae2df64CAS |

[33]  A. D. Eaton, L. S. Clesceri, A. E. Greenberg (Eds), Standard Methods for the Examination of Water and Wastewater, 19th edn 1995 (American Public Health Association: Washington, DC).

[34]  Water Quality – Determination of Dissolved Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ using Ion Chromatography – Method for Water and Wastewater. ISO 14911:1998(E) 1998 (International Organization for Standardization: Geneva).

[35]  H. Gailhanou, J. C. van Miltenburg, J. Rogez, J. Olives, M. Amouric, E. C. Gaucher, P. Blanc, Thermodynamic properties of anhydrous smectite MX-80, illite IMt-2 and mixed-layer illite-smectite ISCz-1 as determined by calorimetric methods. Part I: Heat capacities, heat contents and entropies. Geochim. Cosmochim. Acta 2007, 71, 5463.
Thermodynamic properties of anhydrous smectite MX-80, illite IMt-2 and mixed-layer illite-smectite ISCz-1 as determined by calorimetric methods. Part I: Heat capacities, heat contents and entropies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GhurfL&md5=ee31bc259e80444c93026c03f0da81e2CAS |

[36]  E. Silvester, L. Charlet, C. Tournassat, A. Géhin, J.-M. Greneche, E. Liger, Redox potential measurements and Mössbauer spectrometry of FeII Adsorbed onto FeIII (Oxyhydr)oxides. Geochim. Cosmochim. Acta 2005, 69, 4801.
Redox potential measurements and Mössbauer spectrometry of FeII Adsorbed onto FeIII (Oxyhydr)oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOgs7zM&md5=c9dcd23bd6ba55033efd1e83811f96c7CAS |

[37]  J. M. Delany, S. R. Lundeen, The LLNL Thermochemical Database. Report UCRL-21658 1990 (Lawrence Livermore National Laboratory: Livermore, CA).