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Fluorescence in the estimation of chlorophyll-a in public water
reservoirs in the Brazilian cerrado
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ABSTRACT

Context. The usual strategy for monitoring of eutrophication process is the use of traditional
limnological methods, based on laboratory analysis. These procedures involve costly and time-
consuming analyses, usually with in vitro methodologies, which can still have limitations in terms of
sensitivity and reliability, if poorly managed. Phytoplankton pigments, such as chlorophyll-a (Chl-a),
are highly fluorescent and can provide the environmental status of water bodies. Aims. This study
aims to analyse, compare and evaluate an estimation of Chl-a through fluorescence in public water
sources in the Brazilian cerrado. Exploratory statistical analyses were conducted by using absolute
fluorescence units (AFU) and relative fluorescence units (RFU) compared with traditional laboratory
data (standard procedure for the determination of Chl-a by spectroscopic methods) to evaluate the
significance of differences in estimating Chl-a concentration. Subsequently, empirical models, based on
spectral band combinations, were generated to convert fluorescence measurement in Chl-a concen-
tration, by linear regression. Key results. The generated model found a strong correlation and
coefficient of determination (r = 0.88; R2 = 0.78). The efficiency of the model was also confirmed by
statistical indicators (RMSE = 1.27, MAPE = 26.72 and BIAS = −6.32).Conclusions. We concluded
that the estimate of Chl-a through RFU was better than through AFU. Implications. Therefore,
based on the results of this study, it is recommended that RFU be used to obtain more precise
and accurate estimates of Chl-a concentration through empirical models based on linear regression.

Keywords: absolute fluorescence units, AFU, aquatic environments, chlorophyll-a, public water
supply, relative fluorescence units, RFU, water quality monitoring.
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Protecting water reservoirs has become critical for maintaining the health of terrestrial 
ecosystems. In addition to underground sources and rainfall, water that supplies urban and 
rural areas comes from these surface water bodies. Therefore, it is the responsibility of 
society to utilise, preserve, and monitor them in a mindful manner (Mustafa et al. 2020). 
Also, anthropogenic impacts, such as siltation and artificial eutrophication – which are 
generally caused by point and diffuse source pollution – are progressively worse and more 
frequent worldwide. These processes’ dynamics are heightened in tropical environments, 
where the alternation between seasons – hot and humid weather in the summer, followed 
by a cold and dry period in the winter – lead to an increased capacity for nutrient uptake and 
consequent rapid growth of algae and aquatic plants (Lewis 2000; Hennemann and Petrucio 
2010; Andrade et al. 2020). As a result, some limnological variables may have values out of 
the adequate water quality range, and the reservoir may fail to fulfil its multiple uses. This is 
a common scenario in large urban regions, which can make it challenging to establish 
monitoring strategies that ensure the understanding of the aquatic environment’s 
dynamics. Chlorophyll-a (Chl-a) is a photosynthetic pigment found in phytoplankton 
biomass, and it has the potential to serve as a marker for eutrophication, making it an 
important target with great potential for orientating control measures (Lorenzen 1967; 
Hartmann et al. 2019; Panchenko et al. 2020). 
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Currently, there are a variety of approaches to measure and 
quantify Chl-a. The most traditional and based on laboratory 
techniques are the spectrophotometric methods and high-
performance liquid chromatography (HPLC; Marino 2017; 
Batista and Fonseca 2018; Garrido et al. 2019). Although 
these methods provide very reliable quantifications, they 
are in vitro methods which demand benchtop protocols 
with several steps and substantial consumption of chemical 
reagents that can deteriorate algae at the time of extraction 
(Lorenzen 1967; Van Heukelem and Thomas 2001; Marino 
2017; Graban et al. 2020). In addition, analyses are time-
consuming, require a large sample volume and involve high 
logistic and analytical costs (Ferreira et al. 2012; Kuha et al. 
2020), which can delay the availability of results and 
response actions for prevention and control. 

To overcome this temporal limitation, alternative tech-
nologies that present real-time data acquisition have been 
proposed (Loisa et al. 2015; Cremella et al. 2018; Shin et al. 
2018; Garrido et al. 2019; Panchenko et al. 2020; Silva and 
Garcia 2021). Fluorescence optical sensors stand out among 
diverse technologies. Roesler et al. (2017) highlight the 
benefits of using in vivo fluorescence, such as ease of use, 
immediate non-destructive determination of concentrations 
from the organisms, and high rates of data acquisition, 
precision and accuracy. 

This method is based on the spectral ranges of excitation 
and emission of each pigment. For Chl-a, absorbance 
wavelengths are smaller than 675 nm (453–440, 620–635 and 
672–675 nm) and re-emission is at ~685 nm (Lohrenz et al. 
2003; Seppälä et al. 2007; Suggett et al. 2010; Choo et al. 
2018; Shin et al. 2020). These ranges (fluorimetric bands) 
play a very important role in pigment detection and identifica-
tion of algae groups. Ling et al. (2018) showed good results 
using fluorescence emission channels at 550 and 700 nm 
to estimate Chl-a and to distinguish microalgae groups. 
Garrido et al. (2019) also had good results with this method, 
but used other fluorimetric bands (370, 450, 525, 570, 590 
and 610 nm) for pigment quantification. Despite these 
advantages, some studies report concerns regarding acquired 
data, such as observed by Catherine et al. (2012), which 
identified overestimated Chl-a values when compared to 
traditional laboratory measurements. 

Besides, many other works, with different approaches, also 
evaluated the effectiveness of in vivo fluorescence determina-
tion (Leboulanger et al. 2002; Gregor and Maršálek 2004; 
Richardson et al. 2010; Houliez et al. 2012; Kring et al. 
2014; Escoffier et al. 2015; Ling et al. 2018; Hartmann 
et al. 2019). However, several of these were developed in 
either controlled environments, temperate regions, or in sites 
with high Chl-a concentrations, which differ from tropical 
reservoirs that can be highly heterogeneous in comparison. 

Considering the above, the present study aims to analyse 
and evaluate methods of Chl-a estimation by fluorescence 
in reservoirs for public water supply in the cerrado region 
(Brazil). To this end, different compositions in terms of 

absolute and relative fluorescence units (emission and 
excitation regions) were tested to assess their accuracy in 
detecting Chl-a. We believe that raw fluorometric data 
(relative fluorescence units, RFU) can be adapted through 
empirical models, which could improve the process of 
estimating Chl-a in specific environmental conditions. 

Material and methods

Experimental area

The aquatic environments studied in this work are in the 
cerrado, a biome located in central Brazil, known to contain 
most of the headwaters of the country’s main hydrographic 
basins (Lima 2011). Its climate is characterised by a dry season 
and a rainy season, with an average annual precipitation in the 
range of 800–1800 mm and average temperatures ranging 
between 20 and 27°C (Pereira et al. 2011). 

The study was carried out in three public water reservoirs 
in the Federal District (FD): Descoberto, Santa Maria and 
Paranoá lakes (Fig. 1), which supply water to ~3 million 
people (IBGE 2017). Descoberto lake accounts for 60% of 
the public water supply and is in the western region of the 
FD, with useful volume of 86 ×106 m3 (Governo do Distrito 
Federal 2017). Over the years, expansion of agricultural 
activity and inadequate occupations of its surroundings has 
been contributing to its pollution. The second studied 
reservoir – Santa Maria – is located in a conservation area, 
the National Park of Brasília, that occupies an area of 6.1 km2

with a grassland–cerrado landscape. According to the 
Integrated Planning for Addressing the Water Crisis (Governo 
do Distrito Federal 2017), the Descoberto and Santa Maria 
reservoirs have been suffering from low levels of precipita-
tion (drought) in recent years, which has interfered with 
catchment levels. This situation pushed the FD Environmental 
Sanitation Company (CAESB) to interrupt the water supply, 
which required a rotation distribution system for FD regions 
in 2016 and 2017. 

The 2016–2017 water crisis led to an emergency use of 
Paranoá lake as a source of water to public supply. Also, in 
2016, along with the water crisis, the same lake recorded 
high nutrient concentrations that resulted in eutrophication 
and, consequently, the emergence of an intense cyanobac-
teria growth, which can be harmful to the environment and 
to human health (Barbosa et al. 2019). Thus, Paranoá lake 
was chosen as the third study site. This multiple-uses water 
body, located in FD’s central region, with an area of ~48 km2, 
is heavily influenced by the anthropic activities in its 
surroundings, particularly by receiving treated wastewater 
effluents. The reservoirs were sampled for analyses with the 
same design sample due to the fact that concentration range 
of Chl-a was very similar among them. This is justified by the 
proximity between them, as well as similar environmental 
and meteorological conditions. 
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Fig. 1. Descoberto and Santa Maria Reservoirs and Paranoá Lake and sampling points.

Data acquisition design and estimation methods

In this study, data acquisition was carried out along with 
the routine sampling done by the CAESB, that carries out 
systematic water quality monitoring using conventional 
methods. The sampling points and dates (covering ~1 year 
of data collection) are listed in Table 1 and Fig. 1. The 
variation on depths was dependent on routine sampling done 
by the CAESB, without affecting the results. Kiefer et al. 
(1989) demonstrated that, depending on the wavelength, the 
quality of fluorescence is relatively constant with the depth. 

Concentration of chlorophyll-a was estimated by two 
different methods: a traditional spectrophotometric technique 
(reference) and in vivo fluorescence (IVF) by spectrofluo-
rometer (portable probes). The traditional estimation method 
used for validation was performed by the CAESB, using the 
10200 H reference technique of the Standard Methods for 
the Examination of Water and Wastewater (American Public 
Health Association et al. 2012). 

Each water sample collected in the field was kept under 
refrigeration and in the dark until arrival at the laboratory, 
where they were filtered through a Whatman GF/F filter 
(porosity 0.7 μm and diameter 47 mm) and frozen. These were 
then subjected to pigment extraction with a 90% acetone 

solution. Samples were then analysed using a spectropho-
tometer at 664 and 750 nm and then, after acidifying with 
a 0.1-N HCl solution, re-analysed at 665 and 750 nm. This 
methodology has been used in Brazilian inland waters by 
several authors (Ferreira et al. 2012; Utsumi et al. 2015; 
Silva et al. 2016; Cicerelli et al. 2017). 

Chlorophyll-a concentration was also measured using 
spectrofluorometry by IVF. These instruments induce 
specific excitation (absorption) and emission (fluorescence) 
wavelengths by directing a beam of light (light-emitting 
diode, LED) at a specific wavelength and then measuring 
the highest fluorescence wavelength emitted (Yellow Springs 
Inc. 2009). In this study, two models were tested: the multi-
parameter probe EXO2 from YSI and the bbe Moldaenke 
FluoroProbe (ver. 2.6 E2, bbe Moldaenke, Schwentinental, 
Germany). According to the EXO2-YSI manufacturer’s standard 
procedure for Chl-a estimation, the excitation wavelength 
occurs at 470 ± 15 nm, whereas the emission wavelength is 
at 685 ± 20 nm. For the estimation of the phycocyanin and 
phycoerythrin pigments, the excitation wavelength is at 590 
and 525 ± 15 nm respectively, and the emission wavelength is 
at 685 ± 20 nm (Choo et al. 2018). The FluoroProbe 
fluorometer has six excitation wavelengths – 370, 470, 525, 
570, 590 and 610 nm – with an emission wavelength range 
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Table 1. The sampling points and dates acquisition.

Date Points Reservoir Depths Number of samples

10 July 2019 A1 Descoberto (area 12 km2) 30 cm (surface) 1

21 October 2019 30 cm, 1 m, and 5 m 3

15 August 2019 A2 Santa Maria (area 7 km2) 30 cm (surface) 1

19 June 2019 C, D, and E Paranoá (area 38 km2) 1 m 3

23 July 2019 D, and E 2

13 August 2019 A4, A5, B, C, D, and E 6

22 October 2019 6

19 November 2019 6

11 December 2019 6

11 February 2020 6

17 August 2020 A5, B, C, D, and E 30 cm 5 (validation)

Total 45

between 685 and 700 nm. The results are generated in RFU, 
that is a unit of measurement used in analysis which employs 
fluorescence detection. Also, it should be noted that these 
instruments provide Chl-a estimate in absolute fluorescence 
units (AFU, μg L–1). 

Then, using the localisation from each point of the design 
sample (Fig. 1), we acquired chlorophyll concentration by 
traditional limnologic method and the fluorescence method. 
The probes remained recording data for 4 min with 2-s intervals. 
The fluorescence data were used to obtain an average of each 
point.  As  stated  above,  the EXO  probe gave us only AFU  
(μg L–1) to compare with the reference value. 

Modelling and statistical analysis

Chlorophyll-a data acquired by the fluorometers (μg L–1) as  
well as by the traditional laboratory analyses (in vitro) were 
subjected to an exploratory statistical evaluation. First, a basic 
descriptive statistical analysis of the data was performed, 
followed by normality tests (Shapiro–Wilk and Kolmogorov– 
Smirnov tests), which identified data that did not fit the 
normal distribution. A boxplot visualisation was then used 
to investigate the source of the abnormality, which could 
have arisen from outliers, noisy observations, or abnormal 
system behaviour (Díaz Muñiz et al. 2012; Gradilla-Hernández 
et al. 2020). Frequently, a raw dataset may contain data with 
atypical behaviour (outliers), so it is important to categorise the 
outlier type to adopt the best data refinement strategy 
(Gradilla-Hernández et al. 2020). It was concluded that 
many of the observed outliers were caused by common 
limnologic variation in aquatic environments; consequently, 
these observations were not excluded. 

Previous studies also did not find normal distributions 
for similar datasets and used non-parametric statistics to 
perform comparative analyses, such as the Spearman correla-
tion (Hartmann et al. 2019) and the Kruskal–Wallis test 

(Garrido et al. 2019). In this work, the Kruskal–Wallis test and 
Dunn’s post hoc (or Dunn–Bonferroni) pairwise comparative 
method were used to analyse and compare the differences 
between the evaluated methods. Furthermore, data analysis 
was complemented by other metrics: linear regression, 95% 
reliability, probability of significance (P-value), correlation, 
coefficient of determination (R2) and root mean square error 
(RMSE), with the aim of evaluating the behavior, accuracy, 
dispersion and trend of AFU compared with reference data. 

The chosen approach for relative fluorescence data analysis 
was then used to develop empirical models by combining 
emission spectra bands, to estimate Chl-a concentrations from 
fluorometric measurements, similarly to what is described in 
Ling et al. (2018). These authors also applied a method based 
on combinations of fluorescence emission spectra bands to 
estimate dominant algal species in marine environments. 

In this study, after several tests, eight combinations were 
used, which included individual band analysis and bands 
ratio operations (Table 2). For each combination of fluores-
cence emission, all 40 collected samples were used to create 
the model. Pearson correlation (r), determination coefficient 
(R2) and dispersion analysis were used to determine the 
best model. Subsequently, regression analysis was used to 
generate Chl-a estimation models from the relationship 
between laboratory spectrophotometry data and relative 
fluorescence data. These models considered dispersion of 
the points in relation to the regression function, with a 95% 
confidence interval and a P-value of 0.05. The model that 
had the best statistical results was chosen to estimate Chl-a. 

Data validation

Statistical analyses were performed to assess the performance 
and accuracy of the chosen model. Three statistical indicators, 
commonly used in limnological variables research, were 
applied: RMSE, mean absolute percentage error (MAPE) 
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Table 2. Fluorescence emission bands combinations. Fluorescence
emission bands 370, 470, 525, 570, 590 and 610 nm were tested for
x and y.

Band combinations ID

Individual band x (1)

log10(x) (2)

(x)−(y) (3)

(x) ÷ (y) (4)

log10(x) ÷ log10(y) (5)

[(x)−(y)] ÷ [(x) ÷ (y)] (6)

[(x)−(y)] ÷ [(y) ÷ (x)] (7)

[(x) + (y)] ÷ [(x) ÷ (y)] (8)

[(x) + (y)] ÷ [(y) ÷ (x)] (9)

[(x)−(y)] ÷ [(x) + (y)] (10)

and systematic error (BIAS) (Ling et al. 2018; Kuha et al. 
2020). These can be calculated as follows: 

(1)

(2)

(3)

l

To evaluate model performance, another dataset was 
collected in situ on 17 August 2020 (5 points), and Chl-a 
values, determined by the model, were compared with values 
obtained by the traditional spectrophotometric technique. 

Owing to the small quantity of validation points, the 
validation technique ‘leave-one-out cross-validation’ was 
also applied to provide an overall assessment of the model 
accuracy. However, it does not evaluate the dependence of 
the estimation error on Chl-a values. Such an evaluation, for 
the estimation error associated with the uncertain model 
parameters, can be achieved through a non-parametric 
bootstrap method (Efron 1979; Volpe et al. 2011). As such, 
we adopt a bootstrap resampling method, in which the 
observed set of Chl-a fluorescence pairs are re-sampled 
with re-substitution (i.e. a pair that has been extracted is 
available for possible subsequent sampling). 

Results and discussion

Absolute fluorescence units

Fieldwork was carried out in favourable boating weather 
conditions of temperature (average 22°C), wind (average 
1.1 m s –1), air humidity (55%) and with no rain. Statistical 

Table 3. Descriptive statistics of chlorophyll-a (Chl-a) concen-
trations (μg L–1) for each data acquisition method.

Variable EXO probe BBE probe LAB

Sample size 40 40 40

Min. 0.28 1.60 0.80

Max. 10.01 20.88 11.8

Total amplitude 9.73 19.28 11

Median 0.88 3.92 3.60

Average 1.89 5.63 4.09

Variance 5.02 23.56 7.50

s.d. 2.24 4.85 2.74

s.e. 0.35 0.77 0.43

Coefficient of variation 118.73% 86.15% 66.91%

analyses of the Chl-a concentration absolute values provided 
by the fluorometers are shown in Table 3. All the values were 
below 30 μg L–1 in the evaluated period, which is within the 
imit established by the Brazilian environmental regulations 
Resolução n°357, de 17 de Março de 2005 (Ministério do Meio 
Ambiente e Mudança do Clima 2005). Although observed 
values were low, data variability was still observed, as shown 
by the standard deviation values. The coefficients of variation 
obtained from fluorometers EXO2 and bbe Moldaenke were of 
118 and 86% respectively. Laboratory analyses (LAB) 
provided the smallest variability values (66%). 

According to Table 3, average Chl-a concentration was 
lower than 6 μg L–1 for all methods. By contrast, other works 
in the literature that used similar methods, such as the papers 
by Gregor et al. (2005), Catherine et al. (2012) and Garrido 
et al. (2019), found medium values of 90, 265 and 42 μg L–1 

respectively. It seems clear that estimation under these 
conditions is difficult, as it is close to the detection limit of 
the techniques employed. 

The Kruskal–Wallis non-parametric test showed significant 
difference (P < 0.05) between the three tested methods. 
However, when compared in pairs with the Dunn method, 
there was no significant difference between the LAB and the 
BBE measurement (P-adjusted < 0.05), differently for measure-
ments by LAB and EXO (P-adjusted < 0.05). Fig. 2 shows the 
outlier points (7, 6 and 1 for EXO2, BBE and LAB methods 
respectively) which were measured at the same date for the 
sampling sites in each of the three lakes being studied. Thus, 
it is concluded that the effects of outliers were the result of 
common phenomena in these aquatic environments. 

Fig. 2 also shows a violin plot statistical data distribution 
for every tested method. Chlorophyll-a values from portable 
fluorometers generally are higher than those obtained by 
the conventional spectrophotometric technique. This overesti-
mation could have been caused by several reasons, such as 
an increase in fluorescence emission by cyanobacteria in 
the face of nutrient limitation (MacIntyre et al. 2010), the 
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Non-parametric test (violin plot) 
2 2 
Kruskal–Wallis(2) = 37.69, P = 6.55e-09, εordinal = 0.32, Cl95% [0.20, 1.00], nobs = 120 
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phytoplankton life cycle phase and its variations in the pigment 
content of cells (Beutler et al. 2002), the different levels of 
efficiency during the extraction of Chl-a by the spectropho-
tometric method (Nusch 1980), as well as other factors, such as 
light variation, presence of bubbles, dissolved organic matter, 
turbidity and temperature (Zamyadi et al. 2016; Choo et al. 
2018). Besides considering the type and size of the algae, it 
is worth mentioning that the fluorescence method predicts 
the estimation for a point based on a set of data collected 
over time, taking into account the variation in types and 
sizes of naturally occurring algae in the environment, as well 
as their composition, richness and abundance. 

This overestimation could have also been caused by the 
HPLC-based calibration method of the BBE fluorometer, as 
discussed by Meyns et al. (1994). Several studies have 
calculated an ‘overestimation index’ for Chl-a spectrofluorometry 
measurements, with values ranging from 0.27 to 1.03 
(Leboulanger et al. 2002; Silva et al. 2016) (Table 4). 
Additionally, Leboulanger et al. (2002) found a Chl-a 
concentration and overestimation index similar to what 
was found in the present study. 

Fig. 3 shows a scatter plot of spectrophotometry (LAB) and 
spectrofluorometry (EXO and BBE) chlorophyll-a measure-
ments. The LAB and EXO results were strongly correlated 
(r = 0.79, R2 = 0.63, P < 0.0001, n = 40) and had a relatively 
low RMSE (2.97). The BBE probe results also show a strong 
correlation (r = 0.78, R2 = 0.63, P < 0.0001, n = 40), but 

Fig. 2. Distribution of chlorophyll-a (Chl-a)
data using fluorimeter (BBE and EXO2) and
spectrophotometric (LAB) methods.

with a higher RMSE of 3.34. A possible reason for such 
difference is the due to outliers, as can be seen in Fig. 3b. 
Concentrations above 5 μg L–1 did not fit well to the linear 
regression model and can be seen out of the grey zone 
corresponding to the confidence interval (95%). A different 
scenario can be seen in Fig. 3a where EXO measurements had 
a better fit to the linear regression, which can be attributed to 
these measurements finding Chl-a concentrations below 
10 μg L–1. 

Previous studies, such as Silva et al. (2016), found a strong 
correlation between spectrofluorometry and spectropho-
tometry methods for Chl-a concentrations bellow 100 μg L–1 

(r = 0.84, P < 0.001, n = 25), and a low correlation for 
concentrations above 100 μg L–1 (r = 0.17, P = 0.63, 
n = 10). Gregor et al. (2005) and Catherine et al. (2012) also 
observed strong correlations (r = 0.95, n = 96; r = 0.97, 
n = 50) for maximum Chl-a concentrations of 90 and 
264 μg L–1 respectively. On the other hand, Leboulanger 
et al. (2002) found a high correlation in an aquatic 
environment with maximum Chl-a of 20 μg L–1 (r = 0.77, 
n = 55), which is similar to the present study’s conditions. 
Those studies show that low biomass frequently provides 
minor correlation coefficients. Although these studies have 
found strong correlations, in general factors such as organic 
matter, total suspended material and bloom conditions in 
particular, can limit the accuracy of the results (Chang et al. 
2012; Kring et al. 2014; Zamyadi et al. 2016). 
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Table 4. FluoroProbe BBE overestimation factors reported in the literature.

Extraction solvet Chl-a concentration range (μg L–1) Number of sampled places Overestimation factor Reference

Acetone 0–20 1 1.03A Leboulanger et al. (2002)

Ethanol 0–50 6 0.83A Gregor and Maršálek (2004)

Ethanol 0–90 5 0.74A Gregor et al. (2005)

Methanol 0–265 50 0.56B Catherine et al. (2012)

Ethanol 42–626 1 0.36A and 0.27B Silva et al. (2016)

Acetone 0–20.8 3 1.37B This study

AThis overestimation factor was calculated using a linear regression y= ax, where y is the chlorophyll-a (Chl-a) concentration provided by the spectrofluorometer and x
is the concentration provided by laboratory spectrophotometry.
BThis overestimation factor is the average between spectrofluorometry and spectrophotometry measurements.

Fig. 3. Linear regression models of the spectrofluorometry methods. (a) Chlorophyll-a (Chl-a) EXO:
Y = 2.234 + 0.984X; (b) Chl-a BBE: Y = 1.536 + 0.453X.

Relative fluorescence units

Table 5 shows the fluorescence emission bands combination 
results. Among the various combinations, equation 9, with the 
525- and 570-nm bands, had the overall best result, with a 
Pearson correlation value (r) of 0.88 and a coefficient of 
determination (R2) of 0.78. In contrast to what was found 
here, other studies have shown different spectral bands for 
selective excitation of Chl-a. Suggett et al. (2010), Seppälä 
et al. (2007) and Lohrenz et al. (2003) used the band combina-
tions of 453–440, 620–635 and 672–675 nm respectively. 

Blockstein and Yadid-Pecht (2014) also used a different 
wavelength (465 nm) for the estimation of Chl-a concentra-
tions using a self-made portable, and Gosset et al. (2018) used 
470 nm as the excitation wavelength, which is the suggested 
value to be used with the bbe FluoroProbe fluorometer 

The 525- and 570-nm spectral bands, which showed the 
best results here, are generally related to fluorescence peaks 
that occur in brown (Bacillariophyceae and Dinophyceae) and 
mixotrophic (Cryptophyceae) algae groups, which contain 
accessory pigments, other than chlorophyll-a, such as 
chlorophyll-c and phycobiliproteins (bbe Moldaenke 2017). 

7

www.publish.csiro.au/mf


L. Souza de Barros et al. Marine and Freshwater Research 75 (2024) MF22212

Table 5. Statistical results of fluorescence emission bands combinations.

Combinations r R2 Combinations r R2

1: (525) 0.85 0.72 7: (525–570) ÷ (570 ÷ 525) 0.85 0.73

1: (610) 0.83 0.69 7: (570–590) ÷ (590 ÷ 570) 0.83 0.69

1: (370) 0.83 0.69 8: (525 + 590) ÷ (525 ÷ 590) 0.78 0.61

1: (590) 0.86 0.73 8: (570 + 590) ÷ (570 ÷ 590) 0.78 0.61

1: (470) 0.79 0.62 8: (610 + 370) ÷ (610 ÷ 370) 0.79 0.62

2: (log10 470) 0.79 0.63 8: (610 + 590) ÷ (610 ÷ 590) 0.86 0.74

2: (log10 525) 0.83 0.69 8: (370 + 470) ÷ (370 ÷ 470) 0.77 0.60

2: (log10 610) 0.83 0.70 9: (525 + 570) ÷ (570 ÷ 525) 0.88 0.78

2: (log10 370) 0.84 0.71 9: (525 + 590) ÷ (590 ÷ 525) 0.82 0.67

2: (log10 590) 0.85 0.73 9: (610 + 590) ÷ (590 ÷ 610) 0.81 0.65

3: (525–570) 0.87 0.76 9: (370 + 590) ÷ (590 ÷ 370) 0.77 0.60

3: (590–570) 0.81 0.66 9: (525 + 610) ÷ (610 ÷ 525) 0.78 0.61

6: (525–570) ÷ (525 ÷ 570) 0.81 0.65 9: (370 + 470) ÷ (470 ÷ 370) 0.86 0.73

Equation combinations 1, 2, 3, 6, 7, 8 and 9 are those used in Table 2. The bold data are the best results. r, Pearson correlation; R2, coefficient of determination.

Batista and Fonseca (2018) found Bacillariophyceae, 
Chlorophyceae and Cryptophyceae as the predominant 
microalgae groups in Paranoá lake, and Roriz et al. (2019) 
had previously observed the invasive Dinophyceae species 
Ceratium furcoides (Levander) Langhans in this lake. 

In a marine environment, Ling et al. (2018) found good 
results using fluorescence emission spectral channels at 550 
and 700 nm to distinguish marine microalgae, which, along 
with the present study, corroborates the idea that using flexibly 
chosen specific spectral channels is a promising approach to the 
characterisation and quantification of phytoplankton. 
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Fig. 4. Linear regression (y= 0.135+ 0.068x) analysis for chlorophyll-
a (Chl-a) estimation based on fluorometric measurement combinations
and laboratory Chl-a determinations.

Fig. 4 shows the linear regression for model values 
(fluorometric measurements combinations) and laboratory 
Chl-a determinations. Results show a high correlation 
between values (r = 0.88), as well as a good model fit 
(R2 = 0.77), which show a stronger correlation than what 
was found by Leboulanger et al. (2002), who obtained 
r = 0.77 for waters with maximum Chl-a values of 20 μg L–1. 
However, other studies have shown higher correlation values, 
such as Gregor et al. (2005) (r = 0.95, n = 96) and Catherine 
et al. (2012) (r = 0.97, n = 50). Also, it was observed in the 
present study that relative values provided a better estimate 
of Chl-a than AFU values (FluoroProbe: R2 = 0.63, r = 0.78). 

Other indicators, such as the RMSE, MAPE and BIAS, were 
used to analyse the method's performance for estimating the 
concentration of Chl-a. For the best performing model, the 
statistical values were: RMSE = 1.27, MAPE = 26.72 and 
BIAS = −6.32 (Fig. 4). The RMSE for RFU was lower than 
for AFU (BBE probe: RMSE = 3.34). Previous studies from 
Ferreira et al. (2012) and Ling et al. (2018) also showed 
the efficiency of fluorescence relative measurements for the 
quantification and identification of phytoplankton. Both 
brought improvements to the estimation model. 

When converting fluorometric data into relative values of 
Chl-a, the correction factors may suffer various interferences 
and cause deviations from the spectrophotometric results. 
Several authors pointed out that light intensity, temperature, 
biomass composition and quenching effects can affect the 
fluorescence responses, resulting in changes in the fluores-
cence values obtained, which can lead to measurement 
imprecision (Catherine et al. 2012; Chang et al. 2012; Kring 
et al. 2014; Cicerelli et al. 2017; Garrido et al. 2019). 

For data validation, the model produced by RFU was fed 
with a dataset obtained in situ on 17 August 2020 (5 points, 
Table 1) and the results were compared to concentration 
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values obtained from spectrophotometric analyses in the 
laboratory. The estimated values (1.44–2.65 μg L–1) were very 
close to laboratory measurements (3.37–0.87 μg L–1), which 
reinforces the accuracy and precision of the Chl-a estimate 
model, as confirmed by a RMSE of 0.48 and correlation 
coefficient (r) of 0.80. The strong correlation, along with a 
small error value, shows the good performance of the 
model calibration. 

A bootstrap technique was then utilised. In it, the observed 
set was resampled 10 000 times. This procedure essentially 
constructs many samples from the same empirical distribu-
tion. The resulting empirical distribution of the correlation 
coefficients (Fig. 4) shows that the values found in the 
original samples are reliable. The empirical distribution of 
Pearson’s correlation coefficient presented a median of 0.88 
and varied between 0.7922 and 0.9822, with a confidence 
interval of 95%. These analyses show the high dependence 
between the concentration of Chl-a and fluorescence data. 
Regarding the values of β0 and β1, the standard deviation 
was of 0.005 and 0.389 respectively, highlighting model 
stability. 

The aim of the second validation method, which applied 
the jackknife technique, was to understand the role of each 
point in the RFU model, and to verify if the model can 
predict all the variability in Chl-a concentration. Using this 
method, generated linear coefficients ranged from −0.022 to 
0.210. That is, each model cuts the Y-axis of the cartesian 
plane in significantly different places. By contrast, the angular 
coefficient shows a stable behaviour, as there was little 
variation (0.068–0.073), which indicates a smaller variation 
of the slope of the line, reinforcing the robustness of the model. 

Escoffier et al. (2015) pointed out that, in order to improve 
estimates, it is important to apply specific fluorimetric 
calibrations that correspond to the species present in the 
aquatic environment. However, this can be a complex activity, 
that is usually carried out directly by equipment manufacturers. 
The alternative presented in this work, along with what was 
reported in Ferreira et al. (2012) and Ling et al. (2018), 
proved to be an excellent quantification tool to estimate Chl-a 
concentration in aquatic environments using field data 
calibration. 

However, it is worth mentioning the importance of 
knowing the effects of other environmental factors in Chl-a 
quantification, as these interferences may vary according 
to the species or groups of microalgae found in aquatic 
environments. For instance, a group that has a relatively high 
concentration can corrupt the determination of another group 
with lower concentration. Moreover, the model is adapted to 
specific characteristics of the environment, which means that 
the model will not be able to adjust to extreme phenomena, 
such as the occurrence of high concentration of Chl-a or even 
a mixture of other elements not foreseen in the construction of 
the regression model. 

Conclusions

The correlation between Chl-a estimates from the different 
methods and the traditional estimate (LAB) was strong, but 
the presence of outliers affected the linear regression model 
at concentrations above 5 μg L–1. These results highlight the 
importance of considering these factors and using appropriate 
approaches when studying Chl-a concentration in tropical 
aquatic environments. 

In conclusion, the results of fluorimetric measurements 
(relative data) confirm the efficiency of the model, with a 
strong correlation (r = 0.88; R2 = 0.78), further supported 
by validation parameters (RMSE = 1.27, MAPE = 26.72 and 
BIAS = −6.32). These fluorimetric measurements achieved 
good estimation accuracy and precision for Chl-a concentra-
tion, which is necessary for tropical environments with low 
concentrations in public water supply reservoirs in the cerrado 
region. The absolute model provided by manufacturers showed 
limitations in estimation, which were minimised by using 
relative models. 

The method of combining fluorescence emission bands 
and the conversion process is a good alternative for the 
quantification of Chl-a concentration, highlighting the 525-
and 570-nm wavelengths corresponding to brown and 
mixotrophic microalgae. Therefore, relative fluorometric data 
can be adapted by using empirical models and improving the 
potential in estimating Chl-a. The estimation model offered by 
the fluorometers’ manufacturers, which is based on absolute 
values, should be improved, or adapted to tropical regions, 
and that is dependent on the predominant phytoplankton 
groups in the environment. 

This alternative allows fast Chl-a quantification because 
the fluorescence results in less time and work in the analysis 
in the laboratory, which is a relevant factor for monitoring the 
water quality in the reservoirs. In addition, there is a reduc-
tion in operating costs, ease of use, stability, ease of equipment 
transportation and a small carbon footprint. Freshwater 
ecosystems researchers have an accurate and easy way to 
determine Chl-a concentration. 
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