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Abstract. Identifying and protecting shark nurseries is a common management strategy used to help rebuild overfished
stocks, yet we know little about connectivity between juvenile and adult populations. By analysing trace metals

incorporated into vertebral cartilage, it may be possible to infer natal origin based on nursery-specific chemical signatures.
To assess the efficacy of this approach, we collected juvenile blacktip sharks (Carcharhinus limbatus; n¼ 93) from four
regions in the Gulf of Mexico in 2012 and 2013 and analysed their vertebral centra with laser ablation–inductively coupled
plasma–mass spectrometry. We observed significant regional differences in six element : Ca ratios in both 2012 and 2013.

Multi-element chemical signatureswere significantly different among regions and between year-classes. Year-class-specific
linear discriminant function analysis yielded regional classification accuracies of 81% for 2012 and 85% for 2013, although
samples were not obtained from all four regions in 2012. Combining year-classes resulted in an overall classification

accuracy of 84%, thus demonstrating the usefulness of this approach. These results are encouraging yet highlight a need for
more research to better evaluate the efficacy of vertebral chemistry to study elasmobranch population connectivity.
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Introduction

Nurseries are areas that contribute a disproportionate number of
juvenile recruits to adult populations, thus the conservation

benefit of protecting nurseries is evident. However, inconsistent
application of the term ‘nursery’ prompted the development of
guidelines to empirically compare the value of different habitats

or systems in the context of population maintenance and growth
(Beck et al. 2001; Heupel et al. 2007). Proxies that indicate an
area provides favourable conditions for subsequent recruitment

to the adult population (e.g. high juvenile density, growth rate
and survival) are important for understanding the ecological
processes of source versus sink regions (for a review, see Beck
et al. 2001). However, the ultimate character that distinguishes a

functional nursery is a disproportionately high contribution of
recruits to the adult population, thus determining where adults
spent their early life is the ultimate test of whether a given

habitat or system is, in fact, a nursery.

Identifying nursery areas based on estimates of connectivity
to adult populations is particularly challenging for coastal shark
species. Conventional mark–recapture studies are limited

because recapture rates are typically low (e.g. #10%; Kohler
and Turner 2001) and home ranges in the order of tens of square
kilometres (e.g. Yeiser et al. 2008) make it difficult to mark

enough individuals to compensate for high mortality during the
first year of life. In the case of bony fishes, natural biogeochemical
tags based on chemical constituents of calcified structures (e.g.

otoliths, scales, fin rays and bone) provide an alternative approach
to study movement patterns and population connectivity (for a
review, see Elsdon et al. 2008). During the biomineralisation
process, divalent cations, such as Sr2þ and Ba2þ, substitute for

Ca2þ relative to their environmental availability (Wells et al.

2000), whereas other elements may become incorporated intersti-
tially or associatedwith the proteinmatrix (Campana 1999). Thus,

the chemical constituents of calcified structures are representative
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of environmental conditions at the time of deposition. In bony
fishes, otoliths are the preferred structure for chemical analysis of

natural biogeochemical tags because they are inert once formed
and their biomineralisation pattern produces alternating trans-
lucent and opaque zones that provide a chronometer that accom-

panies the recorded chemical histories (Campana 1999). Material
at the core of the otolith represents deposition during the first year
of life; thus, chemical signatures found in the core can act as a

natural tag to be used to estimate the proportion of adults derived
from different nurseries (e.g. Vasconcelos et al. 2011).

The incorporation of trace metal impurities into calcified
structures of other marine organisms has also been shown to

reflect the environmental conditions at the time of mineralisa-
tion (e.g. Pitts and Wallace 1994) and may be used to address a
variety of ecological questions. Results from recent field

(Scharer et al. 2012) and experimental (Smith et al. 2013)
studies show some elements deposited in the hydroxyapatite
matrix (Ca10(PO4)6(OH)2) of elasmobranch vertebrae are also

influenced by abiotic factors (e.g. salinity, water chemistry and
temperature). These results indicate that chemical signatures in
vertebrae may serve as natural biogeochemical tags of elasmo-
branch juvenile habitat that could be used to examine sources of

recruits to adult populations. However, their usefulness for
studying connectivity between juvenile and adult populations
is contingent on our ability to accurately classify individuals to

their natal nurseries based on vertebral chemical signatures.
In the present study, blacktip sharks (Carcharhinus limbatus)

were examined as a model coastal shark species to test whether

vertebral chemical signatures distinguish nursery regions in the
northern Gulf of Mexico (Gulf) and whether differences can be
used to infer nursery origin. The blacktip shark is a cosmopolitan

species that is found throughout coastal waters of the Gulf and is
one of the more economically important shark species in the
region (Southeast Data, Assessment, and Review 2012).
Females reproduce biennially following a gestation period of

,12 months, with parturition peaking from March to May in
coastal nurseries throughout the Gulf (Baremore and Passerotti
2013). Juvenile blacktips remain in natal coastal embayments up

to the first 6 months of life before migrating to wintering grounds
(Heupel et al. 2004; Hueter and Tyminski 2007). Tagging data
indicate individuals up to the age of 3 years return to their

nurseries during summer months (Heupel and Simpfendorfer
2002; Hueter et al. 2005), whereas analysis of mitochondrial
(mt)DNA and nuclear DNA microsatellites indicates restricted
gene flow that is consistentwith female philopatry to natal regions

(Keeney et al. 2005). Development of region-specific natural
biogeochemical tags based on vertebral chemistry may permit
further testing of site fidelity and philopatry for this species, as

well as facilitate examination of connectivity between juvenile
and adult populations.

Materials and methods

Sample collection and preparation

Juvenile blacktip sharks were collected opportunistically in 2012
and 2013 (Table 1) during the Gulf of Mexico States Shark
Pupping and Nursery Survey (GULFSPAN). The GULFSPAN
survey is a fisheries-independent gill net survey that was initiated

by the National Marine Fisheries Service (NMFS) Laboratory in

Panama City (FL, USA) in 2003 and occurs annually within
several coastal areas of theGulf. Sampleswere also obtained from

fisheries-independent surveys by the Mote Marine Laboratory
(Sarasota, FL,USA), Florida StateUniversityCoastal andMarine
Laboratory (St Teresa, FL, USA), Dauphin Island Sea Laboratory

(Dauphin Island, AL, USA), University of Southern Mississippi
Gulf Coast Research Laboratory (Ocean Springs, MS, USA) and
Texas Parks andWildlife Department (Port O’Connor, TX,USA)

using gill nets or longlines. Samples of the 2012 and 2013 year-
classes were collected from four regions in the Gulf (Fig. 1):
(1) the eastern Gulf (EG) off the south-west coast of Florida;
(2) the north-easternGulf (NEG) from the Big Bendwest through

the Florida panhandle; (3) the north-central Gulf (NCG) within
the state boundaries of Alabama and Mississippi; and (4) the
western Gulf (WG) in San Antonio Bay, Texas.

Thoracic vertebrae were removed in the field or in the
laboratory and stored frozen until processed. Excess tissue and
haemal and neural arches were excised with a scalpel (Fig. 2a).

Individual vertebraewere sectioned along the sagittal planewith a
Buehler (LakeBluff, IL,USA) Isomet low-speed saw, resulting in
,0.5-mm sections (Fig. 2b). Vertebral sections were placed in
acid-leached polystyrene cells filled with ultrapure water (18MO
cm�1) and sonicated for 1 h. Following sonication, sections were
rinsed with ultrapure water, transferred to acid-leached cell wells
and dried under a Class 10 laminar flow clean hood.

Sample analysis

Vertebral chemistry was analysed with laser ablation–
inductively coupled plasma–mass spectrometry (LA-ICP-MS).

The LA-ICP-MS system consisted of a Nd :YAG NWR213
(Electro Scientific Industries, Portland, OR, USA) laser ablation
system coupled with an Agilent Technologies (Santa Clara, CA,

USA) 7700x ICP-MS. Helium (flow rate 0.7 L min�1) was used
to sweep ablated material from the ablation cell then mixed with
argon (flow rate 0.79 L min�1) and transported the ICP-MS.
Sample order was randomised and LA-ICP-MS analysis

consisted of three parallel laser ablation transects through the
corpus calcareum (Fig. 2c). Transects were spaced 120 mmapart
and each transect was preablated (laser spot size 100 mm, speed

110mms�1, repetition rate 5Hz, and fluence 0.41 J cm�2) before
analysis. Ablation transects consisted of a spot size of 80 mm, a
scan speed of 11 mms�1, a repetition rate of 10Hz and fluence of

Table 1. Sample size and size ranges of juvenile blacktip sharks (2012

and 2013 year-classes) from four nursery regions in the northernGulf of

Mexico (Gulf)

Average size at birth for blacktip sharks in the Gulf is 380-mm fork length

(FL) (Baremore and Passerotti 2013). EG, eastern Gulf; NEG, north-eastern

Gulf; NCG, north-central Gulf; WG, western Gulf

Year-class Region Sample size Size range (mm FL)

2012 NEG 14 465–610

NCG 15 530–660

WG 11 604–693

2013 EG 19 420–580

NEG 10 430–570

NCG 7 499–589

WG 16 503–666
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4.0 J cm�2. Background counts were collected 30 s before each
transect and subtracted from the signal. Reference materials

from the United States Geological Survey (USGS MACS3) and
National Institute of Standards and Technology (NIST 612)
were ablated every 45 min to evaluate analytical precision and

correct for instrument drift. Counts per second (CPS) were
converted to units of concentration using the Trace_ElementIS
data reduction scheme in Iolite (version 2.5, School of Earth

Sciences, University ofMelbourne,Melbourne, Australia) using
Ca (35 wt% in shark vertebrae; Tillett et al. 2011) as an internal
standard. We monitored eight elements (7Li, 24Mg, 43Ca, 44Ca,

31P, 55Mn, 88Sr, 137Ba and 208Pb). Because the concentration of
31P is not certified in the MACS3, it was excluded from

subsequent analyses. The concentrations of the remaining
elements were normalised to 43Ca (element : Ca) and are
expressed as micromoles per mole (Li : Ca, Mn :Ca, Ba : Ca,

Pb : Ca) or millimoles per mole (Mg :Ca and Sr : Ca).

Data analysis

The portion of each transect that represented postnatal growth
was measured with a Nikon (Tokyo, Japan) SMZ1500 dissec-
ting microscope and Nikon’s NIS-elements BR 4.00.07 imaging
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Fig. 1. Sampling locations of juvenile blacktip sharks in the Gulf of Mexico.
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Fig. 2. Digital images of a vertebral centrum from a juvenile blacktip shark. (a) Cleanedwhole centrum, (b) sagittal section and (c) the

corpus calcareum, with white lines denoting ablation transects.
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software. The minimum amount of postnatal vertebral tissue
analysed among samples was 170 mm. Therefore, data from the

first 170 mm immediately following the birth mark were
averaged among the three transects of each vertebral section to
estimate chemical signatures. Assuming a mean birthday of

1 May (Carlson et al. 2006), this region represents ,1 month
of life.

Univariate normality was assessed graphically and homo-

geneity of variance was tested using Levene’s test. Individual
element : Ca ratios that did not meet parametric assumptions
were natural log transformed, but transformation of Li : Ca and
Pb : Ca for the 2013 year-class did not result in equal variances

among regions. Because the results of non-parametric and
parametric univariate tests yielded the same significance and
produced identical multiple comparison results, we only present

the results of parametric tests. One multivariate outlier was
identified and removed from the dataset. Graphical assessment of
multivariate dispersion using the Euclidian distances confirmed

that homogeneity of variances was met for the multivariate
dataset when using raw data of Li : Ca and Pb :Ca.

Differences in multi-elemental signatures among regions
(excluding the EG, which was only sampled in 2013) and

between years were tested with a two-way multivariate analysis
of variance (MANOVA) with Pillai’s Trace as the test statistic.
Regional and year-class differences for individual element : Ca

ratios were tested with a two-way analysis of variance
(ANOVA), again for all regions except the EG. A second
MANOVA was computed among all regions sampled in 2013,

which was followed by an ANOVA for individual element : Ca
ratios. Significant pairwise differences in element : Ca ratios
within year-classes were identified with Tukey’s honestly

significant difference (HSD) tests. A linear discriminant
function analysis (LDFA) was computed for each year-class
separately, and then for all data combined, to assess the ability of
vertebral chemical signatures to distinguish sample regions. The

accuracy of LDFA models was assessed via cross-validated
classification accuracies. Initial LDFAs included all six
elements; however, previous studies of the abiotic and biotic

factors that influence vertebral chemistry suggest Mn :Ca is
primarily derived from dietary sources and may be influenced
by internal nutrient reserves (see Discussion). Thus, LDFAs

were also run without Mn : Ca. All statistical analyses were
performed in R version 3.2.1 (R Foundation for Statistical
Computing, Vienna, Austria).

Results

Each element assayed was consistently above detection limits,

with the exception of Pb. Values of Pb below detection were not
common (0.1%) within the region of interest and, when present,
were replaced with the limits of detection (LOD; Table 2).

Relative standard deviations (%RSD) were 3.7–5.1% for the
NIST 612 standard and 8.8–10.1% for the MACS3 standard
(Table 2).

Multi-element chemical signatures differed significantly
among the three regions sampled in 2012 and 2013
(F12,126¼ 29.5, P, 0.001) and between years (F6,62¼ 6.66,
P, 0.001), with a significant interaction between factors

(F12,126¼ 2.43,P¼ 0.007; Table 3). Therewas also a significant

difference in multi-element signatures among regions sampled
in 2013 (F18,135¼ 14.43, P, 0.001; Table 3).

Results of the two-way ANOVA (Table 4) indicated all

elemental ratios were significantly different among regions
(P, 0.001), but only Mg :Ca exhibited a significant difference
between year-classes (P, 0.001). There were significant inter-

actions between region and year-class for Li : Ca and Mn : Ca
(P# 0.03). Regional differences in mean element : Ca were also
observed among the four regions sampled in 2013 (Table 5) and

showed the same general trend observed in 2012 (Fig. 3). Sharks
from the NCG tended to have the lowest mean Li : Ca, Mg : Ca
and Sr : Ca and highest mean for Mn : Ca, whereas sharks from
theWGhad the highest mean Li : Ca, Ba : Ca and Pb : Ca. Sharks

from the NEG had the highest mean vertebral Mg : Ca and
Sr : Ca and lowest values for Ba : Ca and Pb : Ca. Both NEG
and EG exhibited similar element : Ca ratios, with the exception

of Mn :Ca (P, 0.001). In fact, Mn : Ca was the only elemental
ratio that was unique for each region within year-class
(P, 0.05).

Table 2. Estimated precision (relative standard deviation (%RSD))

and limits of detection (LOD) for elements analysed in blacktip shark

vertebrae with laser ablation–inductively coupled plasma mass

spectrometry

%RSD was computed for the glass bead standard produced by the National

Institute of Standards andTechnology (NIST 612,Charleston, SC,USA) and

pressed carbonate standard produced by theUnited StatesGeological Survey

(USGSMACS3,Denver, CO, USA), and LODwas computed usingMACS3

Element %RSD LOD

NIST 612 MACS3 (mmol mol�1)

Li 5.0 8.9 0.039

Mg 4.5 8.8 0.084

Mn 3.7 9.5 0.027

Sr 4.4 8.5 0.016

Ba 5.1 9.3 0.006

Pb 4.8 10.1 0.008

Table 3. Two-way and one-way multivariate analysis of variance

(MANOVA) results for tests of regional and interannual differences in

multi-element signatures for juvenile blacktip sharks

Both multivariate analyses included Li : Ca, Mg : Ca, ln(Mn : Ca), Sr : Ca,

Ba : Ca and Pb : Ca. The two-wayMANOVA includes age-0 sharks collected

in the north-eastern Gulf of Mexico (NEG), north-central Gulf of Mexico

(NCG) and western Gulf of Mexico (WG) in 2012 and 2013, whereas the

one-way MANOVA includes sharks collected from the eastern Gulf of

Mexico, NEG, NCG and WG in 2013 P-values in bold indicate significant

differences. d.f., degrees of freedom

Test or factor Pillai’s trace F d.f. P-value

Two-way MANOVA

Region 1.47 29.5 12, 126 ,0.001

Year 0.40 6.66 6, 62 ,0.001

Region� year 0.39 2.43 12, 126 0.007

One-way MANOVA

Region 1.97 14.43 18, 135 ,0.001
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Mean cross-validated classification accuracies from LDFAs
including all elemental ratios were 80, 90 and 88% for 2012,

2013 and both year-classes combined respectively (Fig. 4).
Excluding Mn : Ca yielded a slightly higher mean classification
accuracy of 81% for 2012. However, the exclusion of Mn : Ca

yielded lower mean classification accuracies of 84 and 85% for
the 2013 year-class and both year-classes combined respectively

(Fig. 4). The lowest classification accuracy was observed for
WG samples of the 2012 year-class (54%), whereas the highest
classification accuracy was for NCG samples of the 2013 year-

class (100%).

Discussion

Results from the present study demonstrate the potential of
using natural biogeochemical tags in juvenile blacktip shark

vertebrae to distinguish Gulf nursery regions. Although water
chemistry and other environmental factors that likely drive these
biogeochemical signatures were not available for all regions,
spatial differences in environmental conditions were clearly

sufficient to produce distinct signatures among regions of
interest (for a review, see Elsdon et al. 2008). Earlier attempts to
distinguish shark nursery regions based on vertebral biogeo-

chemical signatures had mixed success at similar spatial scales
(e.g. hundreds to thousands of kilometres). Smith (2013)
reported that vertebral signatures of juvenile scalloped ham-

merhead sharks (Sphyrna lewini) collected from three nursery
areas along the Pacific coast of Mexico produced site-specific
classification accuracies ranging from 26 to 80%. Tillett et al.

(2011) reported significant differences among the vertebral
chemistry of bull sharks (Carcharhinus leucas) among six

Table 4. Two-way analysis of variance (ANOVA) results for tests of

regional and interannual differences in element : Ca ratios for juvenile

blacktip sharks

The two-way ANOVA includes age-0 sharks collected in the north-eastern

Gulf ofMexico, north-central Gulf ofMexico andwesternGulf ofMexico in

2012 and 2013. P-values in bold indicate significant differences. d.f.,

degrees of freedom; MS, mean sum of squares

Ratio Factor d.f. MS F P-value

Li : Ca Region 2 1.19� 10�9 42.62 ,0.001

Year 1 5.94� 10�12 0.42 0.51

Region� year 2 1.71� 10�10 6.11 0.004

Residuals 67 9.39� 10�10

Mg : Ca Region 2 9.77� 10�5 11.47 ,0.001

Year 1 1.38� 10�4 32.39 ,0.001

Region� year 2 8.97� 10�6 1.05 0.35

Residuals 67 2.85� 10�4

ln(Mn : Ca) Region 2 12.91 70.6 ,0.001

Year 1 0.08 0.92 0.34

Region� year 2 0.85 4.66 0.013

Residuals 67 6.13

Sr : Ca Region 2 1.20� 10�6 50.41 ,0.001

Year 1 2.2� 10�10 0.02 0.890

Region� year 2 2.21� 10�8 0.93 0.400

Residuals 67 7.94� 10�7

Ba : Ca Region 2 1.75� 10�10 21.47 ,0.001

Year 1 6.8� 10�14 0.02 0.9

Region� year 2 4.4� 10�13 0.05 0.95

Residuals 67 2.73� 10�10

Pb : Ca Region 2 3.34� 10�13 42.73 ,0.001

Year 1 4.36� 10�15 1.11 0.29

Region� year 2 2.01� 10�14 2.67 0.08

Residuals 67 2.62� 10�13

Table 5. One-way analysis of variance (ANOVA) results for tests of

regional differences in element :Ca ratios for juvenile blacktip sharks

The one-way ANOVA includes sharks collected from the eastern Gulf of

Mexico, north-eastern Gulf of Mexico, north-central Gulf of Mexico and

western Gulf of Mexico in 2013. P-values in bold indicate significant

differences. d.f., degrees of freedom; MS, mean sum of squares

Ratio Factor d.f. MS F P-value

Li : Ca Region 3 1.22� 10�9 37.07 ,0.001

Residuals 48 5.26� 10�10

Mg : Ca Region 3 9.61� 10�5 8.01 ,0.001

Residuals 48 1.92� 10�4

ln(Mn : Ca) Region 3 26.75 97.27 ,0.001

Residuals 48 4.4

Sr : Ca Region 3 1.97� 10�6 20.64 ,0.001

Residuals 48 1.52� 10�6

Ba : Ca Region 3 7.40� 10�11 6.23 0.001

Residuals 48 1.89� 10�10

Pb : Ca Region 3 4.52� 10�13 51.23 ,0.001

Residuals 48 1.44� 10�13
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nurseries in Australia, but noted that there was no difference in

the vertebral chemistry of pigeye sharks (Carcharhinus
amboinensis). This is not too surprising considering that neonate
bull sharks frequent areas of lower salinity than the pigeye shark
(Knip et al. 2011). Similar to neonate and juvenile pigeye

sharks, blacktip and scalloped hammerhead sharks also prefer
higher salinities than neonate bull sharks (Hueter and Tyminski
2007; Parsons andHoffmayer 2007; Steiner et al. 2007). Thus, it

appears that watersheds, basin geology or local biogeochemical
cycling were more distinct among regions examined in the
present study compared with the previous work by Tillett et al.

(2011) and Smith (2013).
The high mobility of juvenile individuals can also create

problems when applying natural biogeochemical tags because

an assumption of this approach is that samples of a target group
or region have not mixed with other groups or regions (Elsdon
et al. 2008). Thus, the usefulness of these tags will be con-
strained by spatial scales over which minimal mixing occurs

between adjacent areas of interest. Heupel et al. (2004) reported
that young-of-year blacktip sharks in Terra Ceia Bay (FL, USA)
had restricted core home ranges (mean monthly 50% kernal

densities # 0.5 km2) throughout the summer, but the degree to
which they ventured outside their core home range increased in

the month of July. Given the relatively large distance between

regions in the present study and the high degree of site fidelity
and limited home ranges reported by Heupel et al. (2004) for
juvenile blacktips, the probability we sampled migrants from
adjacent regions is extremely low. Because the activity space of

juvenile blacktip sharks increases throughout their first summer
of life, focussed sample collection during the earlymonths of the
birth season will increase the probability an individual is

captured in its natal estuary. By increasing sampling effort in
and around putative nurseries, it may be possible to determine
the spatial resolution at which one can accurately assign natal

origin.
Failing to account for intra-annual variability, especially in

populations that exhibit a protracted spawning and birth season,

can have a strong effect on classification accuracies and esti-
mates of connectivity (Cook 2011; Smith 2013). In the present
study, almost all sharks exhibited temporal changes in vertebral
chemistry, which reflect temporal variability in abiotic (temper-

ature and water chemistry) and biotic (expanding home range)
factors. Our limited sample size precludes statistical analysis of
how classification accuracies vary when sampling different

regions along the vertebrae or whether sharks born at different
times within an estuary have different natal signatures (Smith
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2013). The duration of the birth season for blacktip sharks in the
Gulf is ,2 months (Baremore and Passerotti 2013), which is

much shorter than that of the scalloped hammerhead population
along the Pacific coast ofMexico,which occurs betweenMay and
October (Smith 2013).Hamer et al. (2003) reported that separating

juveniles into two intra-annual cohorts had a negligible effect on
classification accuracies for age-0þ individuals of the snapper
(Pagrus auratus) that settle in coastal nurseries of Victoria,

Australia, between mid-December and March. Therefore, intra-
annual variability may have little effect on classification accu-
racies of blacktip sharks in the Gulf given the short birth season.

The usefulness of natural biogeochemical tags derived from

calcified structures stems from the relationship between water
chemistry, other environmental factors and element : Ca ratios
in the structures themselves. Under estuarine conditions, bony

fish otolith Sr : Ca generally shows a positive correlation with
salinity, whereas Ba : Ca typically shows a negative relationship
with salinity (Limburg 1995; Elsdon and Gillanders 2005;

Macdonald and Crook 2010). Because a large portion of otolith
Sr and Ba is derived from the surrounding water (Walther and
Thorrold 2006; Webb et al. 2012; Izzo et al. 2015), fluctuations
in Sr : Ca and Ba : Ca can be used to infer the relative salinity of

environments experienced by a fish during its lifetime (e.g.
Limburg 1995). Similarly, Scharer et al. (2012) reported that the
Sr : Ca in vertebral sections of the smalltooth sawfish (Pristis

pectinata) had a positive correlation with salinity, and Smith
et al. (2013) reported that the Ba : Ca in the vertebrae of round
stingray (Urobatis halleri) was correlated with Ba in seawater.

For juvenile blacktip sharks examined here, there were regional
differences in Sr : Ca and Ba : Ca that were inversely related.
However, it is difficult to attribute this pattern to regional

differences in salinity without water chemistry data because
the amount of Sr and Ba in freshwater end members will affect
the amount of Sr and Ba available at a particular salinity (Wells
et al. 2003; Kraus and Secor 2004). Moreover, several factors,

including growth rate, ontogeny, temperature and diet, can
affect the relationship between water chemistry and element :
Ca deposition in calcified structures (for a review, see Sturrock

et al. 2012). Growth rate does not appear to affect Li : Ca,
Mg : Ca, Mn : Ca, Sr : Ca and Ba : Ca deposition in the round
stingray; however, Mg :Ca, Mn : Ca and Ba : Ca were sig-

nificantly affected by water temperature (Smith et al. 2013).
The work of Smith et al. (2013) represents the only study to
focus on the relationship between water chemistry and vertebral
element : Ca in elasmobranchs; thus, we know little about the

influences mentioned above and the extent of interspecies
variability.

It is not necessary to fully elucidate the underlying abiotic

and biotic factors driving regional variability in element : Ca
ratios of calcified structures to use them as natural biogeo-
chemical tags to examine population connectivity. However,

other biologically relevant questions can be addressed if the
primary factors influencing vertebral chemistry can be deter-
mined. Previously, regional differences in otolithMn : Ca in gag

grouper (Mycteroperca microlepis) and red snapper (Lutjanus
campechanus) across the Gulf were attributed to latitudinal
differences in soil chemistry (Hanson et al. 2004; Sluis et al.
2012). However, the majority of Mn in elasmobranch soft tissue

appears to be derived from dietary sources (Mathews and Fisher

2009), which may explain observed enrichment in vertebral
Mn : Ca relative to water Mn :Ca (Smith et al. 2013). An

increase in Mn :Ca immediately following birth was present in
the vertebrae of sharks from all regions in the present study, thus
suggesting a common process influencing vertebral Mn : Ca. It

is not clear to what degree the distribution ofMn is driven by the
protein content of specific portions of vertebrae (Sturrock et al.
2012). Such transition metals do show an affinity for protein

binding sites (Miller et al. 2006) and,28% of otolithMn can be
bound to water soluble proteins (Izzo et al. 2016). However,
there may also be a physiological process at play. The neonatal
life stage is particularly stressful for elasmobranchs and can be

associated with a decline in body mass (Duncan and Holland
2006) and high mortality (Heupel and Simpfendorfer 2002;
Duncan and Holland 2006). Neonates rely on maternal nutrient

reserves in the form of an enlarged liver to compensate for the
lack of foraging experience (Hussey et al. 2010; Olin et al.

2011). Because the liver plays an important role in Mn homeo-

stasis (Aschner and Aschner 2005; Madejczyk et al. 2009),
metabolising liver tissue may result in excess Mn entering the
bloodstream that becomes deposited in the vertebrae during the
first weeks or months of life. Although Mn : Ca was the only

elemental ratio that was significantly different among regions in
both years in the present study, the possible link to food
availability and maternal investment may result in intra-annual

variability in vertebral Mn : Ca in a given area as less fit
individuals perish. Thus, it is unknown whether vertebral
Mn : Ca ratios of sharks collected early in the year would

accurately reflect that of the surviving members of a cohort.
Excluding Mn :Ca demonstrated that, although useful for
discriminating groups, one can still achieve moderate to high

classification accuracies using an array of other minor and trace
elements.

Results from the present study suggest that examining
connectivity between blacktip shark nurseries and offshore adult

populations based on vertebral biogeochemical signatures holds
some promise, but one factor that may compromise the effec-
tiveness of such an approach is the unknown metabolic stability

of vertebral tissue. Bone in higher vertebrates is constantly
remodelled owing to its high healing potential (Kalfas 2001).
The limited physiological response of elasmobranchs following

natural (Officer et al. 1995) and experimentally induced (Ashhurst
2004) trauma suggests elasmobranchs may not be capable of
extensive skeletal remodelling. However, unsuccessful attempts
to age sharks based on radionuclide decay (226Ra : 210Pb) may

indicatemetabolic instability of the tissue, but another explanation
would be exogenous uptake of 210Pb during growth band
formation (Welden et al. 1987; Fenton 2001). Furthermore,

the success of bomb radiocarbon age validation (e.g. Campana
et al. 2002; Passerotti et al. 2010, 2014), use of stable isotopes to
detect ontogenetic shifts in diet (Estrada et al. 2006) and

verification of annual bands using Sr : Ca patterns that corres-
pond to known life history characteristics (Scharer et al. 2012)
indicates the corpus calcareum likely remains relatively inert

once formed.
Important questions remain surrounding the mechanisms

governing mineral dynamics and sites of inclusion (e.g. substi-
tution in calcium phosphate hydroxyapatite matrix, bound to

proteins or incorporated interstitially), but the results of the
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present study demonstrate that vertebral biogeochemical tags
can be used to accurately distinguish nursery regions of blacktip

sharks and may provide a means to estimate the relative
contribution of different areas to the adult stock. By building
an atlas of cohort-specific vertebral chemical signatures from

different areas, it may be possible to infer the natal origin of
adult sharks. This type of information would be particularly
useful because some coastal sharks possess life history traits that

make them vulnerable to overharvest. Whether protecting
nursery areas should be the most important aspect of a manage-
ment planwill depend on the biology of the species and life stage
removed by the fishery (Kinney and Simpfendorfer 2009).

However, estimates of connectivity between juvenile and adult
populations can provide the insight necessary to evaluate the
effectiveness of nursery conservation as a management tool.
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