Nitrogen and carbon isotope fractionations of zooplankton consumers in ponds: potential effects of seston C : N stoichiometry
Hideyuki Doi A B F , Kwang-Hyeon Chang C D and Shin-ichi Nakano A EA LAFWEDY, Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama 790-8566, Ehime, Japan.
B Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany.
C Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
D Department of Environmental Science and Engineering, Kyung Hee University, Seochen-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea.
E Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Shiga, Japan.
F Corresponding author. Email: hideyuki.doi@uni-oldenburg.de
Marine and Freshwater Research 62(1) 66-71 https://doi.org/10.1071/MF10090
Submitted: 9 April 2010 Accepted: 5 November 2010 Published: 18 January 2011
Abstract
C : N stoichiometry in food sources is known to influence nitrogen isotope fractionation of consumers, but the relationship between C : N stoichiometry and isotope fractionation has never been tested in the field. In this study, we investigated the effects of the C : N ratio of food sources on nitrogen and carbon isotope fractionation (Δδ15N and Δδ13C) of consumers, using zooplankton communities in 15 ponds in Japan. The fractionation variations we found contradicted the assumption of a 3.4‰ enrichment in δ15N of consumers per trophic level. However, the negative relationships between Δδ15N of filter-feeding zooplankton and the C : N ratio of seston supported the isotope homeostasis hypothesis, which predicts isotopic homeostasis of consumers to vary with respect to their body nutrient composition. The Δδ15N of Eodiaptomus sp. and cyclopoid copepods did not correlate with the C : N ratio of the seston. Further studies should pay attention to the isotope fractionation of consumers in the field, especially given the increased use of isotope fractionation to elucidate the structure of natural food webs.
Keywords: Δδ13C, Δδ15N, C : N, filter-feeding, food quality.
References
Aberle, N., and Malzahn, A. M. (2007). Interspecific and nutrient-dependent variations in stable isotope fractionation: experimental studies simulating pelagic multitrophic systems. Oecologia 154, 291–303.| Interspecific and nutrient-dependent variations in stable isotope fractionation: experimental studies simulating pelagic multitrophic systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2snmtlGltQ%3D%3D&md5=9aee8e5e239205621b9ae37df0b0c75eCAS | 17943319PubMed |
Abrantes, K., and Sheaves, M. (2009). Sources of nutrition supporting juvenile penaeid prawns in an Australian dry tropics estuary. Marine and Freshwater Research 60, 949–959.
| Sources of nutrition supporting juvenile penaeid prawns in an Australian dry tropics estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGhs77L&md5=c248d6fc7aa151bc33b4f4d8e2173980CAS |
Adams, T. S., and Sterner, R. W. (2000). The effect of dietary nitrogen content on trophic level 15N enrichment. Limnology and Oceanography 45, 601–607.
| The effect of dietary nitrogen content on trophic level 15N enrichment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsV2ltb4%3D&md5=c9199960e9f9a8c0b4063ba613a2ec0dCAS |
Claybrook D. L. (1983). Nitrogen metabolism. In ‘The Biology of Crustacea, Volume 5. Internal Anatomy and Physiological Regulation’. (Ed. L. H. Mantel.) pp. 163–213. (Academic Press: New York.)
Demott W. R. (1989). The role of competition in zooplankton succession. In ‘Plankton Ecology: Succession in Plankton Communities’. (Ed. U. Sommer.) pp. 195–252. (Springer Verlag: Berlin.)
DeNiro, M. J., and Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 48, 1135–1140..
Doi, H., Zuykova, E., Kikuchi, E., Shikano, S., Kanou, K., et al. (2006a). Spatial changes in carbon and nitrogen stable isotopes of the plankton food web in a saline lake ecosystem. Hydrobiologia 571, 395–400.
| Spatial changes in carbon and nitrogen stable isotopes of the plankton food web in a saline lake ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVerur0%3D&md5=8d70fa440817d587f80a6d7501a0d513CAS |
Doi, H., Kikuchi, E., Takagi, S., and Shikano, S. (2006b). Selective assimilation of the deposit feeders: experimental evidence using stable isotope ratios. Basic and Applied Ecology 7, 159–166.
| Selective assimilation of the deposit feeders: experimental evidence using stable isotope ratios.Crossref | GoogleScholarGoogle Scholar |
Doi, H., Chang, K. H., Ando, T., Imai, H., Ninomiya, I., et al. (2009). Resource availability and ecosystem size predict food-chain lengths in pond ecosystems. Oikos 118, 138–144.
| Resource availability and ecosystem size predict food-chain lengths in pond ecosystems.Crossref | GoogleScholarGoogle Scholar |
Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, A., Folarin, A., et al. (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature 408, 578–580.
| Nutritional constraints in terrestrial and freshwater food webs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFWrsLs%3D&md5=ea528237c8ea91c05cdf5af8831b4268CAS | 11117743PubMed |
Fantle, M. S., Dittel, A. I., Schwalm, S. M., Epifanio, C. E., and Fogel, M. L. (1999). A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120, 416–426.
| A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids.Crossref | GoogleScholarGoogle Scholar |
Fry B. (2006). ‘Stable Isotope Ecology.’ (Springer: New York.)
Gaebler, O. H., Vitti, T. G., and Vukmirovich, R. (1966). Isotope effects in metabolism of 14N and 15N from unlabeled dietary proteins. Canadian Journal of Biochemistry 44, 1249–1257.
| Isotope effects in metabolism of 14N and 15N from unlabeled dietary proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XksF2hsrg%3D&md5=043ff360a3853b2c714b7a4d679285f8CAS | 6008218PubMed |
Grey, J., and Jones, R. I. (1999). Carbon stable isotopes reveal complex trophic interactions in lake plankton. Rapid Communications in Mass Spectrometry 13, 1311–1314.
| Carbon stable isotopes reveal complex trophic interactions in lake plankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVKrtLk%3D&md5=53468a9451086db66820aa68aac0a132CAS | 10407316PubMed |
Grey, J., Jones, R. I., and Sleep, D. (2001). Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnology and Oceanography 46, 505–513.
| Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis.Crossref | GoogleScholarGoogle Scholar |
Hall, S. R., Leibold, M. A., Lytle, D. A., and Smith, V. H. (2004). Stoichiometry and planktonic grazer composition over gradients of light, nutrients, and predation risk. Ecology 85, 2291–2301.
| Stoichiometry and planktonic grazer composition over gradients of light, nutrients, and predation risk.Crossref | GoogleScholarGoogle Scholar |
Matthews, B., and Mazumder, A. (2003). Compositional and interlake variability of zooplankton affect baseline stable isotope signatures. Limnology and Oceanography 48, 1977–1987.
| Compositional and interlake variability of zooplankton affect baseline stable isotope signatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFCqsro%3D&md5=707421f7bcdacb0b4afd1fac47c36bfdCAS |
McCutchan, J. H., Lewis, W. M., Kendall, C., and McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390.
| Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsl2qurg%3D&md5=b2ea71c7379fee798030efc05327b9e0CAS |
Minagawa, M., and Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48, 1135–1140.
| Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktlOms7w%3D&md5=8014370630b333f7918647bd3db23c67CAS |
Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718.
| Using stable isotopes to estimate trophic position: models, methods, and assumptions.Crossref | GoogleScholarGoogle Scholar |
R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Saintilan, N., and Mazumder, D. (2010). Fine-scale variability in the dietary sources of grazing invertebrates in a temperate Australian saltmarsh. Marine and Freshwater Research 61, 615–620.
| Fine-scale variability in the dietary sources of grazing invertebrates in a temperate Australian saltmarsh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Omur0%3D&md5=fad4728ba3f9b5ee4a143f0bd48d454fCAS |
Sterner B. W., and Elser J. J. (2002). ‘Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere.’ (Princeton University Press: Princeton, NJ, USA.)
Vander Zanden, M. J., and Rasmussen, J. B. (2001). Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46, 2061–2066.
| Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht12ltA%3D%3D&md5=9d1e2b40c6d6dbc6fc14e2a14eb3aeadCAS |
Vanderklift, M., and Ponsard, S. (2003). Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136, 169–182.
| Sources of variation in consumer-diet δ15N enrichment: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 12802678PubMed |
Wetzel R. G. (2001). ‘Limnology Lake and River Ecosystems.’ 3rd edn. (Academic Press: San Diego.)
Yoshida, T., Gurung, T. B., Kagami, M., and Urabe, J. (2001). Contrasting effects of a cladoceran (Daphnia galeata) and a calanoid copepod (Eodiaptomus japonicus) on algal and microbial plankton in a Japanese lake, Lake Biwa. Oecologia 129, 602–610..
Zhang, J., Yu, Z. G., Liu, S. M., Xu, H., Wen, Q. B., et al. (1997). Dominance of terrigenous particulate organic carbon in the high-turbidity Shuangtaizihe estuary. Chemical Geology 138, 211–219.
| Dominance of terrigenous particulate organic carbon in the high-turbidity Shuangtaizihe estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFGlt74%3D&md5=8bda694929c4295495e4227ec5761524CAS |
Zohary, T., Erez, J., Gophen, M., Berman-Frank, I., and Stiller, M. (1994). Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnology and Oceanography 39, 1030–1043.
| Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVWjs7k%3D&md5=c0984ba2fdf941297d89b048a6e620b0CAS |