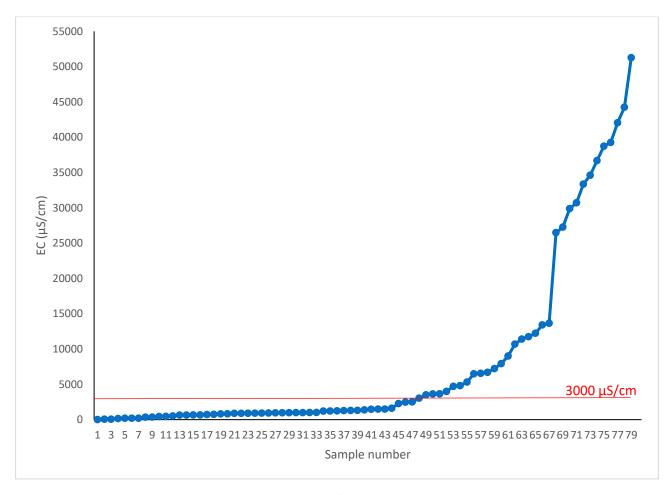
10.1071/MF23014

Marine and Freshwater Research

Supplementary Material


Salinity as a major influence on groundwater microbial communities in agricultural landscapes

Tess Nelson^A, Grant C. Hose^{A,*}, Jodie Dabovic^B, and Kathryn L. Korbel^A

^ASchool of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.

^BDepartment of Planning and Environment, Water, Parramatta, NSW 2124, Australia.

*Correspondence to: Grant C. Hose School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia Email: grant.hose@mq.edu.au

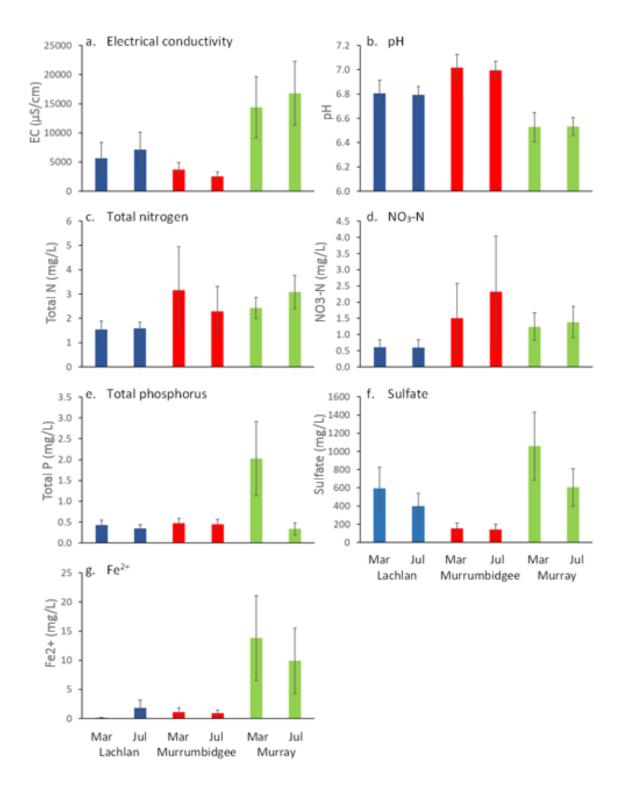
Fig. S1. Ranked distribution plot of EC (μ S cm⁻¹).

Variable	Units	Method used
Total nitrogen	mg L^{-1}	4500B
Nitrate	mg L^{-1}	4500F
Ammonia	mg L^{-1}	4500G
Total phosphorus	mg L^{-1}	4500BF
Sulphate	mg L^{-1}	4110B
Dissolved organic carbon	mg L^{-1}	5310C
Manganese	mg L^{-1}	3120B
Total dissolved ferrous iron	mg L^{-1}	3120B

Table S1. Standard method protocols used for chemical analyses.

Method used are based on American Public Health Association *et al.* (2012). Analysis completed by Sydney Analytical Lab, Sydney, NSW, Australia.

Variable	Scale used		
Volume of sediment ^A	1, Very low (<100 mL of sediment)		
	2, Low (100-500 mL of sediment)		
	3, Medium (0.5–2 L)		
	4, High (2–5 L)		
	5, Very high (>5 L)		
Sediment categories ^B (indicating mode particle size)	Very fine sand (0.062–0.125 mm)		
	Fine sand (0.125–0.25 mm)		
	Medium sand (0.25–0.5 mm)		
	Coarse sand (0.5–1 mm)		
	Organic sediment		
Land use categories	Cropping – irrigated		
Dominant land use within 5-km radius of sampling bore	Cropping – non-irrigated		
	Grazing (sheep or cattle)		
	Conservation (land or national park)		
Tree cover	0, no tree cover		
Number of trees >5 m tall within a 50-m radius from bore.	1, 1–2 trees surrounding bore		
	2, 3–4 trees surrounding bore		
	$3, \ge 5$ trees surrounding bore		


Table S2. Categories of environmental variables recorded at each site on each sampling occasion.

^AIndicative sediment volumes used as an ordinal variable in analyses. ^BBased on the Wentworth (1922) scale and used as discrete categorical variables in analyses.

Order	Group	Mean	Tukey	Order	Group	Mean	Tukey
Woesearchaeota				Rhodospirillales			
Catchment \times EC	ΜH	0.66	В	Catchment	М	1.76	А
interaction	ML	1.69	А	F = 4.19, P = 0.019	MB	1.29	AB
<i>F</i> =4.43, <i>P</i> = 0.016	MB H	1.16	AB		L	1.23	В
	MB L	1.02	AB	EC	Н	1.71	Α
	LH	1.71	А	F = 11.84, P = 0.001	L	1.14	В
	LL	1.45	AB	Chromatiales			
Nitrosophaerales				EC	Н	1.24	А
Catchment \times EC	ΜH	0.20	А	F = 22.71, P < 0.001	L	0.52	В
interaction	ML	2.29	В	Burkholderiales			
F = 9.13, P < 0.01	MB H	0.32	А	EC	Н	0.74	А
	MB L	0.47	А	F = 5.82, P = 0.019	L	1.24	В
	LH	0.47	А	Season	MARCH	0.74	Α
I	LL	0.64	А	F = 5.71, P = 0.02	JULY	1.24	В
Acidobacteria				Anaerolineales			
Catchment \times EC	ΜH	1.14	С	EC	Н	2.3	А
interaction	M L	3.42	А	F=15.85, P<0.001	L	1.18	В
r I	MB H	2.53	AB	Season	MARCH	2.08	Α
	MB L	1.99	BC	F = 4.88, P = 0.031	JULY	1.44	В
	LH	2.12	BC	Chloroflexi			
	LL	2.16	BC	Catchment	М	0.79	А
Desulfobacterales				F = 5.13, 0.008	MB	1.34	В
Catchment \times EC	ΜH	1.53	А		L	1.04	AB
Interaction	ML	0.21	В	Season	MARCH	1.23	Α
,	MB H	0.79	AB	F = 5.77, P = 0.019	JULY	0.89	В
	MB L	1.08	AB	Myxococcales			
	LH	1.59	А	Catchment	М	0.86	А
	LL	1.12	AB	F = 5.41, P = 0.007	MB	1.35	В
					L	1.07	AB
				Betaproteobacteria			
				Catchment	М	0.49	А
				F = 8.07, P = 0.001	MB	1.50	В
					L	0.91	А

Table S3. ANOVA tables and summary of *post hoc* test on significant taxa.

Group: catchment: M, Murray; MB, Murrumbidgee; L, Lachlan. EC: H, High; L, Low. Mean and Tukey's *post hoc* comparison (means that share a letter are not significantly different). EC, electrical conductivity.

Figure S2. Water quality variables (a) electrical conductivity (EC), (b) total phosphorus (total P), (c) sulphate (SO₄²⁻), (d) ferrous iron (Fe²⁺), (e) pH and (f) nitrogen (NO₃⁻), by sampling period (March–July) and catchment. Within each plot columns with letters identify a significant difference between catchments, columns with different letters are significantly different (P < 0.05).

References

American Public Health Association, American Water Works Association, Water Environment Federation (2012) 'Standard Methods for the Examination of Water and Waste Water', 22nd edn. (APHA, AWWA, WEF)

Wentworth CK (1922) A scale of grade and class terms for clastic sediments. *The Journal of Geology* **30**, 377–392.