Supplementary material

Contrasting population structures of three *Pristis* sawfishes with different patterns of habitat use

N. M. Phillips^{A,B,E}, J. A. Chaplin^A, S. C. Peverell^C and D. L. Morgan^D

^ACentre for Fish and Fisheries Research, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.

^BDepartment of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.

^CQueensland Department of Primary Industries and Fisheries, Sustainable Fisheries,

Northern Fisheries Centre, Cairns, Qld 4870, Australia.

^DFreshwater Fish Group and Fish Health Unit, Centre for Fish and Fisheries Research,

School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.

^ECorresponding author. Email: n.phillips@usm.edu

Fig. S1. Approximate sampling locations for *Pristis clavata, P. zijsron* and *P. pristis* across Australia. From Phillips *et al.* (2011).

Table S1. Number of individuals of each of Pristis clavata, P. zijsron, and P. pristis collected from each locality

The sites were located in the following four geographic regions: the western coast (WC), northern coast

(west of the Gulf of Carpentaria, NC), the Gulf of Carpentaria (GoC) and eastern coast (EC)

Samp	ling location	P. zijsron	P. clavata	P. pristis
WC	Cape Naturaliste	_	_	1
	Coral Bay	2	-	_
	Exmouth Bay	1	_	_
	Port Hedland area	1	-	_
	Cape Keraudren	13	2	_
	80 Mile Beach	6	6	_
	Roebuck Bay	1	_	_
	Goodenough Bay	_	2	_
	King Sound	_	11	2
	Fitzrov River	_	6	33
	Collier Bay	_	5	_
	York Sound	_	2	_
NC	Fog Bay	_	_	_
110	Daly River	_	_	3
	Darwin area	_	8	-
	Adelaide River	_	_	3
	Chambers Bay	_	_	1
	South Alligator River		2	1
GoC	Groote Evlandt	3	2	1
000	McArthur Divor	5	_	4
	Waaryan Piyar	—	—	4
	Robinson River	—	—	—
	Western gulf	_	—	—
	Cin Arm Croals	_	—	- 1
	Jahr Creek	_	-	1
	Albert Disser	-	2 1	—
	Albert River	1	1	-
	Leichnardt River	_	1	8
	Disaster Inlet	_	-	1
	Flinders/Bynoe/Norman Rivers	-	1	10
	Karumba area	3	-	-
	Smithburne River	-	1	3
	Gilbert River	-	-	9
	Staaten River	-	2	_
	Nassau River	-	-	5
	Mitchell River–Walsh River	-	2	14
	Kirke River	-	_	3
	Archer River	_	_	7
	Weipa	4	5	1
	Mangrove Island	-	2	—
	Port Musgrave	1	2	1
	Mapoon	2	—	—
	Wenlock River	1	-	—
	Skardon	1	_	_
	Gulf of Carpentaria	2	6	1
EC	Goose Creek	3	-	—
	Normanby River	-	-	—
	Walker Bay		_	—
	East coast	3	-	_

Table S2.Summary statistics for eight microsatellite loci in *Pristis clavata* from the western coast
(WC), northern coast (NC) and the Gulf of Carpentaria (GoC) in Australia

N, number of individuals; A, number of alleles; k, total number of alleles; H_E , expected heterozygosity;

Ho, observed heterozygosity; P, outcome of tests for Hardy-Weinberg equilibrium; no values were

Region	Parameter	Ppe4	Ppe5	Ppe69	Ppe122	Ppe152	Ppe165	Ppe179	Ppe186
WC	Ν	34	34	34	34	29	26	31	31
	A	14	19	10	9	16	16	13	11
	$H_{ m E}$	0.915	0.925	0.795	0.793	0.928	0.933	0.879	0.880
	$H_{\rm O}$	1.000	0.912	0.853	0.824	0.897	1.000	0.871	0.871
	Р	0.983	0.873	0.658	0.423	0.112	0.439	0.504	0.969
NC	Ν	10	9	10	10	2	2	9	4
	Α	10	10	5	7	3	4	7	6
	$H_{ m E}$	0.911	0.922	0.442	0.884	0.833	1.000	0.817	0.929
	$H_{\rm O}$	0.600	1.000	0.400	1.000	1.000	1.000	0.556	0.750
GoC	N	22	23	23	25	18	18	21	23
	Α	11	16	5	8	12	10	10	14
	$H_{ m E}$	0.910	0.935	0.566	0.834	0.910	0.887	0.856	0.879
	$H_{\rm O}$	1.000	0.957	0.696	0.720	0.889	0.667	0.783	0.739
	Р	0.417	0.005	0.699	0.106	0.144	0.003	0.057	0.019
Overall	k	16	23	12	9	17	16	15	16
	$H_{ m E}$	0.912	0.927	0.601	0.837	0.890	0.940	0.855	0.896
	$H_{\rm O}$	0.867	0.956	0.650	0.848	0.929	0.889	0.851	0.787

statistically significant after a Bonferroni correction: P < 0.002

Table S3.Summary statistics for eight microsatellite loci in *Pristis zijsron* from the western coast
(WC), the Gulf of Carpentaria (GoC) and the eastern coast (EC) of Australia

N, number of individuals; A, number of alleles; k, total number of alleles; $H_{\rm E}$, expected heterozygosity;

 H_0 , observed heterozygosity; P, outcome of tests for Hardy–Weinberg equilibrium; no values were statistically significant after a Bonferroni correction: P < 0.002

Region	Parameter	Ppe4	Ppe88	Ppe152	Ppe165	Ppe172	Ppe179	Ppe180	Ppe186
WC	Ν	23	23	23	24	23	24	24	23
	А	13	22	4	17	10	12	12	7
	$H_{ m E}$	0.870	0.962	0.274	0.930	0.879	0.902	0.865	0.752
	$H_{\rm O}$	0.783	1.000	0.304	1.000	0.826	0.958	0.917	0.870
	Р	0.371	0.812	1.000	0.344	0.581	0.599	0.151	0.216
GoC	Ν	14	15	18	15	15	15	16	16
	А	8	17	4	13	12	10	12	9
	$H_{ m E}$	0.831	0.949	0.303	0.924	0.885	0.892	0.879	0.853
	$H_{\rm O}$	0.929	0.933	0.333	0.867	0.867	1.000	0.813	0.875
	Р	0.903	0.341	1.000	0.126	0.535	0.510	0.225	0.629
EC	Ν	6	6	5	6	6	6	5	5
	А	6	7	2	7	6	5	4	2
	$H_{ m E}$	0.848	0.879	0.467	0.894	0.818	0.848	0.778	0.556
	$H_{\rm O}$	1.000	1.000	0.600	0.833	0.833	0.833	0.800	1.000
Overall	k	14	29	6	19	16	13	18	10
	$H_{ m E}$	0.850	0.930	0.348	0.916	0.861	0.881	0.841	0.720
	$H_{\rm O}$	0.904	0.978	0.412	0.900	0.842	0.930	0.843	0.915

Table S4.Summary statistics for seven microsatellite loci in *Pristis pristis* from the western coast
(WC), northern coast (NC) and the Gulf of Carpentaria (GoC) in Australia

N, number of individuals; A, number of alleles; k, total number of alleles; $H_{\rm E}$, expected heterozygosity;

 H_0 , observed heterozygosity; P, outcome of tests for Hardy–Weinberg equilibrium; statistically significant values after a Bonferroni correction: *, P < 0.002

Region	Parameter	Ppe4	Ppe5	Ppe122	Ppe167	Ppe172	Ppe180	Ppe186
WC	Ν	35	33	36	27	29	29	32
	A	12	23	7	20	18	13	17
	$H_{ m E}$	0.890	0.952	0.677	0.935	0.940	0.767	0.938
	$H_{\rm O}$	0.914	0.879	0.556	0.926	0.897	0.655	0.906
	Р	0.219	0.152	0.156	0.021	0.055	0.116	0.308
NC	N	8	8	7	5	6	3	7
	Α	8	11	5	6	7	4	9
	$H_{ m E}$	0.758	0.950	0.824	0.889	0.879	0.867	0.934
	$H_{\rm O}$	0.750	1.000	0.857	0.800	0.833	0.667	0.857
	Р	0.702	0.440	0.412	0.619	0.760	0.467	0.509
GoC	Ν	67	65	68	61	66	63	63
	Α	13	31	7	23	21	18	19
	$H_{ m E}$	0.864	0.957	0.706	0.945	0.926	0.842	0.918
	$H_{\rm O}$	0.836	0.969	0.765	0.951	0.908	0.794	0.905
	Р	0.581	0.298	0.272	0.001*	0.062	0.032	0.108
Overall	k	14	33	7	27	21	20	24
	$H_{ m E}$	0.837	0.953	0.736	0.923	0.915	0.825	0.930
	$H_{\rm O}$	0.833	0.949	0.726	0.892	0.879	0.705	0.889

References

Phillips, N. M., Chaplin, J. A., Morgan, D. L., and Peverell, S. C. (2011). Population genetic structure and genetic diversity of three critically endangered *Pristis* sawfishes in Australian Waters. *Marine Biology* 158, 903–915. doi:10.1007/s00227-010-1617-z