International Journal of Wildland Fire 20-Year Author Index

Vol. 1(1) 1991 – vol. 20(8) 2011

Abatzoglou, JT

Relative importance of weather and climate on wildfire growth in interior Alaska 2011, 20(4), 479-486

Abbott, KN

Predicting forest floor moisture for burned and unburned Pinus banksiana forests in the Canadian Northwest Territories **2007**, 16(1), 71-80

Absher, JD

The role of trust in residents' fire wise actions 2011, 20(2), 318-325

Abt, KL

Economic optimisation of wildfire intervention activities 2010, 19(5), 659-672

Acem, Z

Spectral emission of flames from laboratory-scale vegetation fires 2009, 18(7), 875-884

Achtemeier, G

Smoke incursions into urban areas: simulation of a Georgia prescribed burn **2009**, 18(3), 336-348

Achtemeier, GL

Planned Burn-Piedmont. A local operational numerical meteorological model for tracking smoke on the ground at night: model development and sensitivity tests

2005, 14(2), 85-98

Achtemeier, GL

Measurements of moisture in smoldering smoke and implications for fog 2006, 15(4), 517-525

Ackerly, DD

Post-fire regeneration strategies and flammability traits of California chaparral shrubs 2010, 19(7), 984-989

Adamowicz, WL

A Logit Model for Predicting the Daily Occurrence of Human Caused Forest-Fires 1995, 5(2), 101-111

Adams, IT

Songbird communities in a pyrogenic habitat mosaic 2002, 11(1), 75-84

Adams, IT

Small mammal communities in a pyrogenic habitat mosaic **2007**, 16(6), 728-740

Adams, R

Does firefighting foam affect the growth of some Australian native plants? **2004**, *13*(3), 335-341

Adar, M

The Effects of Post-Fire Management on Bird Community Succession **1997**, 7(4), 335-342

Book Review - Fire and Vegetation Dynamics: Studies from the North American Boreal Forest. **1994**, 4(2), 127-134

Agee, JK

Heat content variation of interior Pacific Northwest conifer foliage 2002, 11(1), 91-94

Simulation of long-term landscape-level fuel treatment effects on large wildfires 2007, 16(6), 712-727

Agee, JK

Ecological effects of large fires on US landscapes: benefit or catastrophe? **2008**, *17*(6), 696-712

Ager, AA

Simulation of long-term landscape-level fuel treatment effects on large wildfires 2007, 16(6), 712-727

Aguado, I

Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment 2007, 16(4), 390-397

Aguado, I

Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem 2009, 18(4), 430-441

Albini, FA

Modeling Ignition and Burning Rate of Large Woody Natural Fuels 1995, 5(2), 81-91

Albini, FA

Calibration of a Large Fuel Burnout Model **1995**, 5(3), 173-192

Albini, FA

Improved Calibration of a Large Fuel Burnout Model **1997**, 7(1), 21-28

Albini, FA

Aerial and Surface Fuel Consumption in Crown Fires **1997**, 7(3), 259-264

Alboreca, AR

Optimal management of Pinus pinaster in Galicia (Spain) under risk of fire 2010, 19(7), 937-948

Alessio, GA

Influence of water and terpenes on flammability in some dominant Mediterranean species

2008, 17(2), 274-286

Alexander, JD

Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California

2006, 15(2), 237-245

Alexander, ME

Physical properties of dead and downed round-wood fuels in the Boreal forests of western and Northern Canada **1999**, 9(2), 85-99

Alexander, ME

Fire, climate change, carbon and fuel management in the Canadian boreal forest 2001, 10(3&4), 405-413

Alexander, ME

Forecasting diurnal variations in fire intensity to enhance wildland firefighter safety 2002, 11(3&4), 173-182

Alexander, ME

Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America 2003, 12(1), 39-50

Alexander, ME

Science, technology, and human factors in fire danger rating: the Canadian experience. **2006**, 15(1), 121-135

Alexander, ME

Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization 2006, 15(1), 47-60

Alexander, ME

Predicting the ignition of crown fuels above a spreading surface fire. Part II: model evaluation 2006, 15(1), 61-72

Alexander, ME

Predicting forest floor moisture for burned and unburned Pinus banksiana forests in the Canadian Northwest Territories 2007, 16(1), 71-80

Alexander, ME

Predicting sustained smouldering combustion in trembling aspen duff in Elk Island National Park, Canada 2007, 16(6), 690-701

Alexander, ME

Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies 2010, 19(4), 377-398

Alexandridis, A

Wildland fire spread modelling using cellular automata: evolution in large-scale spatially heterogeneous environments under fire suppression tactics 2011, 20(5), 633-647

Ali, AA

Effects of vegetation zones and climatic changes on fireinduced atmospheric carbon emissions: a model based on paleodata

2010, 19(8), 1015-1025

Ali, AA

Resilience of the boreal forest in response to Holocene firefrequency changes assessed by pollen diversity and population dynamics

2010, 19(8), 1026-1039

Ali, AA

Wildfires in boreal ecosystems: past, present and some emerging trends 2010, 19(8), 991-995

Allan, G

A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia 2001, 10(1), 79-89

Application of NDVI for predicting fuel curing at landscape scales in northern Australia: can remotely sensed data help schedule fire management operations? 2003, 12(3&4), 299-308

Allan, G

Fire-created patchiness in Australian savannas 2003, 12(3&4), 323-331

Allan, G

Large fires, fire effects and the fire-regime concept **2008**, 17(6), 688-695

Allan, GE

Contemporary fire regimes of northern Australia, 1997-2001: change since Aboriginal occupancy, challenges for sustainable management 2003, 12(3&4), 283-297

Allan, GE

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning 2007, 16(4), 361-377

Allen, CD

Effects of seeding ryegrass (Lolium multiflorum) on vegetation recovery following fire in a ponderosa pine (Pinus ponderosa) forest **2004**, 13(2), 183-194

Allen, CD

Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites **2008**, *17*(1), 115-130

Allen, CD

Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA **2008**, *17*(1), 96-114

Allen, FL

Influence of Simulated Burning of Soil-Litter From Low Sagebrush, Squirreltail, Cheatgrass, and Medusahead on Water-Soluble Anions and Cations

1996, 6(3), 137-143

Allen, JL

Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results **2008**, *17*(4), 443-462

Allen, JL

Assessing the differenced Normalized Burn Ratio's ability to map burn severity in the boreal forest and tundra ecosystems of Alaska's national parks

2008, *17*(4), 463-475

Allen, KK

Development of post-fire crown damage mortality thresholds in ponderosa pine **2010**, 19(5), 583-588

Alloza, JA

Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain) 2007, 16(5), 619-632

Alloza, JA

Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel **2010**, *19*(1), 75-93

Almeida, A

Linear model for spread rate and mass loss rate for mixedsize fuel beds **2010**, 19(5), 531-540

Almeida, M

Effect of particle orientation and of flow velocity on the combustibility of *Pinus pinaster* and *Eucalyptus globulus* firebrand material **2011**, 20(8), 946-962

Alonso, I

First Phases of Regeneration of Cistus Laurifolius and Cistus Ladanifer After Burning and Cutting in Experimental Plots 1992, 2(1), 7-14

Alonso,

Seedling Regeneration of Two *Cistus* Species After Experimental Disturbances **1996**, *6*(1), 13-19

Alonso, M

Effects of soil burn severity on germination and initial establishment of maritime pine seedlings, under greenhouse conditions, in two contrasting experimentally burned soils **2011**, 20(2), 209-222

Alpert, J

Medium-range fire weather forecasts

1991, 1(3), 159-176

Alvarado, E

Extrapolation Problems in Modeling Fire Effects at Large Spatial Scales: a Review 1996, 6(4), 165-176

Alvarado, EC

Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire **2010**, *19*(6), 795-799

Alvarado, EC

The combustion of sound and rotten coarse woody debris: a review

2011, 20(2), 163-174

Álvarez González, JG

Construction of empirical models for predicting *Pinus* sp. dead fine fuel moisture in NW Spain. I: Response to changes in temperature and relative humidity

2009, 18(1), 71-83

Alvarez, R

Influence of tree age on seed germination response to environmental factors and inhibitory substances in *Pinus pinaster*

2005, 14(3), 277-284

Alvarez, R

Effect of high temperatures on seed germination and seedling survival in three pine species (*Pinus pinaster*, *P. sylvestris* and *P. nigra*) **2007**, *16*(1), 63-70

Amacher, GS

Economic analysis of geospatial technologies for wildfire suppression

2010, 19(4), 468-477

Amaral, JMP

Flame characteristics, temperature–time curves, and rate of spread in fires propagating in a bed of *Pinus pinaster* needles **2003**, *12*(1), 67-84

Amiro, BD

Fire, climate change, carbon and fuel management in the Canadian boreal forest **2001**, *10*(3&4), 405-413

Amiro, BD

Fire weather index system components for large fires in the Canadian boreal forest **2004**, *13*(4), 391-400

Amorim, JH

Smoke measurements during Gestosa-2002 experimental field fires

2005, 14(2), 107-116

Amorim, JH

Numerical modelling of the aerial drop of firefighting agents by fixed-wing aircraft. Part I: model development **2011**, *20*(3), 384-393

Amorim, JH

Numerical modelling of the aerial drop of firefighting agents by fixed-wing aircraft. Part II: model validation **2011**, 20(3), 394-406

Andersen, AN

Fire experiments in northern Australia: contributions to ecological understanding and biodiversity conservation in tropical savannas

2003, *12*(3&4), 391-402

Andersen, AN

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Anderson, DE

Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

2011, 20(1), 125-141

Anderson, E

Analysis of Experimental Simulation of Ground Surface Heating During a Prescribed Burn

1991, 1(2), 125-146

Anderson, J

Assessing the susceptibility of semiarid rangelands to wildfires using Terra MODIS and Landsat Thematic Mapper data **2011**, 20(5), 690-701

Anderson, JE

Initial Floristics in Lodgepole Pine (*Pinus contorta*) Forests Following the 1988 Yellowstone Fires **1991**, *I*(2), 119-124

Anderson, K

A model to predict lightningcaused fire occurrences **2002**, *11*(3&4), 163-172

Anderson, K

Fire-growth modelling using meteorological data with random and systematic perturbations **2007**, *16*(2), 174-182

Anderson, K

A climatologically based longrange fire growth model **2010**, *19*(7), 879-894

Anderson, KR

Estimating direct carbon emissions from Canadian wildland fires **2007**, *16*(5), 593-606

Anderson, KR

Predicting sustained smouldering combustion in trembling aspen duff in Elk Island National Park, Canada **2007**, 16(6), 690-701

Anderson, KR

An approach to operational forest fire growth predictions for Canada **2009**, *18*(8), 893-905

Anderson, KR

An evaluation of spatial and temporal patterns of lightningand human-caused forest fires in Alberta, Canada, 1980–2007 **2010**, 19(8), 1059-1072

Anderson, KR

Landscape composition influences local pattern of fire size in the eastern Canadian boreal forest: role of weather and landscape mosaic on fire size distribution in mixedwood boreal forest using the Prescribed Fire Analysis System

2010, 19(8), 1099-1109

Anderson, M

A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia **2001**, 10(1), 79-89

Anderson, PJ

Effects of fire retardant chemical and fire suppressant foam on shrub steppe vegetation in northern Nevada **1999**, *9*(2), 115-127

Anderson, RS

Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites **2008**, *17*(1), 115-130

Anderson, RS

Fire Climatology in the western United States: introduction to special issue **2008**, *17*(1), 1-7

Anderson, RS

Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA **2008**, *17*(1), 96-114

Anderson, SAJ

Ignition and fire spread thresholds in gorse (*Ulex europaeus*) **2010**, *19*(5), 589-598

Anderson, SAJ

A simple method for field-based grassland curing assessment **2011**, *20*(6), 804-814

Anderson, WR

Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation **2008**, *17*(5), 628-637

Anderson, WR

Convective heat transfer in fire spread through fine fuel beds **2010**, *19*(3), 284-298

Anderson, WR

The initiation of fire spread in shrubland fuels recreated in the laboratory **2010**, 19(4), 512-520

Anderson, WR

Ignition and fire spread thresholds in gorse (*Ulex europaeus*) **2010**, *19*(5), 589-598

Anderson, WR

A simple method for field-based grassland curing assessment **2011**, 20(6), 804-814

André, JC

Laboratory fire spread analysis using visual and infrared images **2006**, *15*(2), 179-186

André, JCS

Estimation of the radiation extinction coefficient of natural fuel beds

2004, 13(1), 65-71

Andreae, MO

A new look at the role of firereleased moisture on the dynamics of atmospheric pyroconvection **2009**, *18*(5), 554-562

Andreu, V

Postfire Effects on Soil Properties and Nutrient Losses **1996**, 6(2), 53-58

Andrews, DA

Water quality, substratum and biotic responses of five central Idaho (USA) streams during the first year following the Mortar Creek fire **2001**, *10*(2), 185-199

Andrews, DA

Benthic macroinvertebrate assemblages in five central Idaho (USA) streams over a 10-year period following disturbance by wildfire **2001**, *10*(2), 201-213

Andrews, PL

Fire modeling and information system technology **2001**, *10*(3&4), 343-352

Andrews, PL

Evaluation of fire danger rating indexes using logistic regression and percentile analysis **2003**, *12*(2), 213-226

_---,--(-),

Andrews, PL Obituary: Frank Albini, 1936– 2005

2006, 15(1), 1-2

Angeler, DG

Landscape structural features control fire size in a Mediterranean forested area of central Spain **2009**, *18*(5), 575-583

Angers, VA

Effect of fire severity on longterm occupancy of burned boreal conifer forests by saproxylic insects and woodforaging birds **2010**, 19(4), 500-511

Angers, VA

Tree mortality and snag dynamics in North American boreal tree species after a wildfire: a long-term study **2011**, 20(6), 751-763

Anhold, JA

Development of post-fire crown damage mortality thresholds in ponderosa pine **2010**, *19*(5), 583-588

Ansley, RJ

Honey Mesquite Canopy Responses to Single Winter Fires: Relation to Herbaceous Fuel, Weather and Fire Temperature 1998, 8(4), 241-252

Arbaugh, MJ

Postfire Growth of Pseudotsuga menziesii and *Pinus contorta* in the Northern Rocky Mountains, USA 1991, 1(1), 63-71

Arca, B

Evaluation of FARSITE simulator in Mediterranean maquis **2007**, *16*(5), 563-572

Archibald, S

Confronting complexity: fire policy choices in South African savanna parks

2003, 12(3&4), 381-389

Archibald, S

Grazer movements: spatial and temporal responses to burning in a tall-grass African savanna **2004**, *13*(3), 377-385

Archibald, S

Methods to determine the impact of rainfall on fuels and burned area in southern African savannas

2010, 19(6), 774-782

Archibald, S

Southern African fire regimes as revealed by remote sensing **2010**, *19*(7), 861-878

Arena, C

Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy **2005**, *14*(4), 365-377

Argyropoulou, MD

Effects of Fire on Soil Macroinvertebrates in a Mediterranean Phryganic Ecosystem **1995**, 5(2), 113-121

Arianoutsou, M

Legumes in the Fire-Prone Mediterranean Regions: an Example From Greece 1996, 6(2), 77-82 Arianoutsou, M

Vegetation Composition in a Post-Fire Successional Gradient of *Pinus Halepensis* Forests in Attica, Greece **1996**, *6*(2), 83-91

Armitage, OB

Impact of climate change on area burned in Alberta's boreal forest

2007, 16(2), 153-160

Armstrong, DW

Wildland firefighter load carriage: effects on transit time and physiological responses during simulated escape to safety zone

2003, 12(1), 111-116

Armstrong, G

The post-fire response of an obligate seeding *Triodia* species (Poaceae) in the fire-prone Kimberley, north-west Australia **2011**, 20(8), 974-981

Armstrong, M

A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia **2001**, 10(1), 79-89

Arnaldos, J

Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations **2004**, *13*(1), 1-15

Arno, SF

Comparing the Prescribed Natural Fire Program With Presettlement Fires in the Selway-Bitterroot Wilderness 1994, 4(3), 157-168

Arno, SF

Fire Ecology of Pacific Northwest Forests, by J.K. Agee. **1994**, *4*(3), 195-200

Arroyo, J

Postfire Regeneration of a Mediterranean Heathland in Southern Spain **1996**, *6*(4), 191-198

Arrue, BC

Laboratory fire spread analysis using visual and infrared images

2006, 15(2), 179-186

Ascoli, D

Developing an Adaptive Management approach to prescribed burning: a long-term heathland conservation experiment in north-west Italy **2009**, 18(6), 727-735

Ashmun, LE

Measuring duff moisture content in the field using a portable meter sensitive to dielectric permittivity **2004**, *13*(3), 343-353

Assael, F

Seedling Mortality in Regeneration of Aleppo Pine Following Fire and Attack by the Scale Insect *Matsucoccus josephi* **1997**, 7(4), 327-333

Atkinson, D

Implementation of quantitative bushfire risk analysis in a GIS environment **2010**, *19*(5), 649-658

Auld, TD

Persistence of obligate-seeding species at the population scale: effects of fire intensity, fire patchiness and long fire-free intervals

2006, 15(2), 261-269

Auld, TD

Soil heating and germination: investigations using leaf scorch on graminoids and experimental seed burial

2006, 15(4), 509-516

Azuma, DL

Bare soil and rill formation following wildfires, fuel reduction treatments, and pine plantations in the southern Sierra Nevada, California, USA **2010**, 19(4), 478-489

Bação, FL

Modeling and mapping wildfire ignition risk in Portugal **2009**, *18*(8), 921-931

Badia-Perpinyá, A

Spatial distribution of ignitions in Mediterranean periurban and rural areas: the case of Catalonia **2006**, *15*(2), 187-196

Baeza, MJ

Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands **2004**, *13*(1), 79-87

Baeza, MJ

Fuel structural traits modulating soil temperatures in different species patches of Mediterranean Basin shrublands 2011, 20(5), 668-677

Bafas, GV

Wildland fire spread modelling using cellular automata: evolution in large-scale spatially heterogeneous environments under fire suppression tactics **2011**, *20*(5), 633-647

Bahre, CJ

Wildland Fire and Chaparral Succession Along the California Baja-California Boundary 1995, 5(1), 13-24

Bahro, B

Simulation of long-term landscape-level fuel treatment effects on large wildfires **2007**, *16*(6), 712-727

Bailey, JD

Modeling interactions between fire and atmosphere in discrete element fuel beds 2005, 14(2), 37-48

Bailey, JD

Fluctuations in fuel moisture across restoration treatments in semi-arid ponderosa pine forests of northern Arizona, USA

2007, 16(1), 119-127

Bair, AN

Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA

2008, 17(1), 96-114

Fire Planning for Wildlife Management - a Decision-Support System for Nadgee-Nature-Reserve, Australia **1994**, 4(2), 107-121

Baird, IA

Fire Planning for Wildlife Management: A Reply to Whelan and Baker (1996). **1996**, 6(1), 3-4

Baisan, CH

Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites **2008**, 17(1), 115-130

Baker, JR

Modelling Reservations: A Comment on Baird et al. (1994).**1996**, 6(1), 1-3

Baker, MM

Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools **1997**, 7(2), 105-118

Baker, MM

Project Aquarius 6. Heat Load From Exertion, Weather, and Fire in Men Suppressing Wildland Fires **1997**, 7(2), 119-131

Baker, MM

Project Aquarius 7. Physiological and Subjective Responses of Men Suppressing Wildland Fires 1997, 7(2), 133-144

Baker, MM

Project Aquarius 8. Sweating, Drinking, and Dehydration in Men Suppressing Wildland Fires **1997**, 7(2), 145-158

Baker, MM

Project Aquarius 9. Relative Influence of Job Demands and Personal Factors on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 159-166

Baker, MM

Project Aquarius 10. Effects of Work, Weather, and Fire on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 167-180

Baker, MM

Project Aquarius 11. Effects of Fitness, Fatness, Body Size, and Age on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 181-199

Baker, MM

Project Aquarius 12. Effects of Style, Fabric, and Flame-Retardant Treatment on the Effectiveness and Acceptability of Wildland Firefighters' Clothing 1997, 7(2), 201-206

Baker, MM

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing **1997**, 7(2), 207-218

Baker, MM

Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer **Bushfires With Hand Tools:** Background, Objectives, and Methods **1997**, 7(2), 69-76

Baker, MM

Project Aquarius 2. Limitations of Maximum Oxygen Uptake for Predicting the Strains of Building Fireline With a Rakehoe **1997**, 7(2), 77-85

Baker, MM

Project Aquarius 3. Effects of Work Rate on the Productivity, Energy Expenditure, and Physiological Responses of Men Building Fireline With a Rakehoe in Dry Eucalypt Forest **1997**, 7(2), 87-98

Baker, MM

Project Aquarius 4. Experimental Bushfires, Suppression Procedures, and Measurements **1997**, 7(2), 99-104

Baker, PJ

The impacts of large-scale, lowintensity fires on the forests of continental South-east Asia 2008, 17(6), 782-792

Baker, WI.

Fire history in ponderosa pine landscapes of Grand Canyon National Park: is it reliable enough for management and restoration? 2006, 15(3), 433-437

Baker, WL

Accurate estimation of mean fire interval for managing fire 2006, 15(4), 489-495

Baker, WL

Environmental and climatic variables as potential drivers of post-fire cover of cheatgrass (Bromus tectorum) in seeded and unseeded semiarid ecosystems **2009**, 18(2), 191-202

Balbi, JH

Dynamic modelling of fire spread across a fuel bed 1999, 9(4), 275-284

Balbi, JH

Dynamic modelling of upslope fire growth **1999**, 9(4), 285-292

Balbi, JH

A two-dimensional model of fire spread across a fuel bed including wind combined with slope conditions 2002, 11(1), 53-63

Balfour, VN

The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA 2008, 17(5), 535-548

Ball, GL

Improved Fire Growth Modeling **1992**, 2(2), 47-54

Banfield, E

Estimating direct carbon emissions from Canadian wildland fires 2007, 16(5), 593-606

Bar Massada, A

Allocating fuel breaks to optimally protect structures in the wildland-urban interface 2011, 20(1), 59-68

Volatile and semi-volatile organic compounds in smoke exposure of firefighters during prescribed burning in the Mediterranean region 2010, 19(5), 606-612

Emission of biogenic volatile organic compounds involved in eruptive fire: implications for the safety of firefighters **2011**, 20(1), 152-161

Barclay, AD

Effects of seeding ryegrass (Lolium multiflorum) on vegetation recovery following fire in a ponderosa pine (Pinus ponderosa) forest 2004, 13(2), 183-194

Barmore, WJ

Seventeen Years of Forest Succession Following the Waterfalls Canyon Fire in Grand Teton National Park, Wyoming **1998**, 8(1), 45-55

Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystem province 2002, 11(3&4), 257-266

Barrett, SW

Fire Regimes on Andesitic Mountain Terrain in Northeastern Yellowstone-National-Park, Wyoming **1994**, 4(2), 65-76

Barrett, SW

Comparing the Prescribed Natural Fire Program With Presettlement Fires in the Selway-Bitterroot Wilderness 1994, 4(3), 157-168

Barry, D

Analysis of the patterns of large fires in the boreal forest region of Alaska 2002, 11(2), 131-144

Bartlein, P

Long-term relations among fire, fuel, and climate in the northwestern US based on lakesediment studies 2008, 17(1), 72-83

Bartlein, PJ

Temporal and spatial structure in a daily wildfire-start data set from the western United States (1986-96)2008, 17(1), 8-17

Bartlein, PJ

Peak detection in sedimentcharcoal records: impacts of alternative data analysis methods on fire-history interpretations 2010, 19(8), 996-1014

Bartlette, R

Soil moisture dynamics and smoldering combustion limits of pocosin soils in North Carolina, USA 2009, 18(3), 326-335

Başaran, MA

Long-term post-fire succession of Pinus brutia forest in the east Mediterranean 2010, 19(5), 599-605

Başaran, S

Long-term post-fire succession of Pinus brutia forest in the east Mediterranean 2010, 19(5), 599-605

Battaglia, M

Predicting mortality of ponderosa pine regeneration after prescribed fire in the Black Hills, South Dakota, USA 2009, 18(2), 176-190

Effects of fire frequency on prescribed fire behaviour and soil temperatures in dry dipterocarp forests **2011**, 20(1), 35-45

Bautista, S

Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel 2010, 19(1), 75-93

Development of a laboratory protocol for fire performance of landscape plants **2004**, 13(4), 479-488

Beall, FC

Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation 2005, 14(3), 321-338

Beasley, FA

Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools **1997**, 7(2), 105-118

Beasley, FA

Project Aquarius 6. Heat Load From Exertion, Weather, and Fire in Men Suppressing Wildland Fires **1997**, 7(2), 119-131

Beasley, FA

Project Aquarius 7. Physiological and Subjective Responses of Men Suppressing Wildland Fires **1997**, 7(2), 133-144

Beasley, FA

Project Aquarius 8. Sweating, Drinking, and Dehydration in Men Suppressing Wildland Fires **1997**, 7(2), 145-158

Beasley, FA

Project Aquarius 9. Relative Influence of Job Demands and Personal Factors on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 159-166

Beasley, FA

Project Aquarius 10. Effects of Work, Weather, and Fire on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 167-180

Beasley, FA

Project Aquarius 11. Effects of Fitness, Fatness, Body Size, and Age on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 181-199

Beasley, FA

Project Aquarius 12. Effects of Style, Fabric, and Flame-Retardant Treatment on the Effectiveness and Acceptability of Wildland Firefighters Clothing

1997, 7(2), 201-206

Beasley, FA

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing **1997**, 7(2), 207-218

Beasley, FA

Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer **Bushfires With Hand Tools:** Background, Objectives, and Methods **1997**, 7(2), 69-76

Beasley, FA

Project Aquarius 2. Limitations of Maximum Oxygen Uptake for Predicting the Strains of Building Fireline With a Rakehoe **1997**, 7(2), 77-85

Beasley, FA

Project Aquarius 3. Effects of Work Rate on the Productivity, Energy Expenditure, and Physiological Responses of Men Building Fireline With a Rakehoe in Dry Eucalypt Forest **1997**, 7(2), 87-98

Beasley, FA

Project Aquarius 4. Experimental Bushfires, Suppression Procedures, and Measurements **1997**, 7(2), 99-104

Beaver, AK

Forecasting diurnal variations in fire intensity to enhance wildland firefighter safety 2002, 11(3&4), 173-182

Beck, JA

Forecasting diurnal variations in fire intensity to enhance wildland firefighter safety 2002, 11(3&4), 173-182

Predicting forest floor moisture for burned and unburned Pinus banksiana forests in the Canadian Northwest Territories 2007, 16(1), 71-80

Bedward, M

Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather

2009, 18(8), 932-943

Beer, T

The Speed of a Fire Front and Its Dependence on Wind-Speed **1993**, 3(4), 193-202

Beer, T

Fire Propagation in Vertical Stick Arrays - the Effects of Wind **1995**, 5(1), 43-49

Beghin, R

Developing an Adaptive Management approach to prescribed burning: a long-term heathland conservation experiment in north-west Italy 2009, 18(6), 727-735

Bégin, Y

Effects of vegetation zones and climatic changes on fireinduced atmospheric carbon emissions: a model based on paleodata **2010**, 19(8), 1015-1025

Behm, AL

Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildlandurban interface 2004, 13(3), 355-365

Bekker, SJ

Shrubland fire regime scenarios in the Swartberg Mountain Range, South Africa: implications for fire management 2007, 16(1), 81-95

Belillas, CM

Relationships Between Fire Severity and Atmospheric and Leaching Nutrient Losses in British Columbia's Coastal Western Hemlock Zone Forests **1998**, 8(2), 87-101

Bell, T

Effects of the fire retardant Phos-Chek on vegetation in eastern Australian heathlands 2005, 14(2), 199-211

Bellia, E

Great tit (Parus major) breeding in fire-prone oak woods: differential effects of post-fire conditions on reproductive stages 2011, 20(4), 605-611

Benedict, JM

Physical Properties of Woody Fuel Particles of Sierra Nevada Conifers

1996, 6(3), 117-123

Benedict, JM

Seventeen Years of Forest Succession Following the Waterfalls Canyon Fire in Grand Teton National Park, Wyoming **1998**, 8(1), 45-55

Benedict, JM

Heat Content Variation of Sierra Nevada Conifers **1998**, 8(3), 147-158

Benito, E.

Heat-Induced Degradation Processes in Forest Soils **1991**, 1(3), 147-152

Benito, E.

Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils 2004, 13(2), 195-199

Benjelloun, H

Alternative equations to estimate the surface-to-volume ratio of different forest fuel particles

2011, 20(5), 648-656

Benoit, JW

Probability based models for estimation of wildfire risk 2004, 13(2), 133-142

Benoit, JW

Wildland fire probabilities estimated from weather modeldeduced monthly mean fire danger indices 2008, 17(3), 305-316

Bensch, RR

Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: model evaluation and comparison with National Fire Danger Rating System algorithms 2007, 16(2), 204-216

Benscoter, BW

Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils **2011**, 20(3), 418-429

Benson, NC

Remote sensing techniques to assess active fire characteristics and post-fire effects 2006, 15(3), 319-345

Benson, NC

FFI: a software tool for ecological monitoring **2009**, 18(3), 310-314

Berg, NH

Bare soil and rill formation following wildfires, fuel reduction treatments, and pine plantations in the southern Sierra Nevada, California, USA **2010**, 19(4), 478-489

Bergeron, Y

Fire impacts and crowning in the boreal forest: study of a large wildfire in western Quebec

2001, 10(2), 119-127

Bergeron, Y

A 229-year dendroclimaticinferred record of forest fire activity for the Boreal Shield of Canada

2006, 15(3), 375-388

Bergeron, Y

Historical fire regime shifts related to climate teleconnections in the Waswanipi area, central Quebec, Canada **2007**, 16(5), 607-618

Bergeron, Y

Dendroclimatic inference of wildfire activity in Quebec over the 20th century and implications for natural disturbance-based forest management at the northern limit of the commercial forest 2008, 17(3), 348-362

Bergeron, Y

Does the post-fire organic layer compress beneath the snowpack? **2010**, 19(5), 673-676

Bergeron, Y

Effects of vegetation zones and climatic changes on fireinduced atmospheric carbon emissions: a model based on paleodata **2010**, 19(8), 1015-1025

Bergeron, Y

Resilience of the boreal forest in response to Holocene firefrequency changes assessed by pollen diversity and population dynamics

2010, 19(8), 1026-1039

Bergeron, Y

Variation in local weather explains differences in fire regimes within a Québec southeastern boreal forest landscape 2010, 19(8), 1073-1082

Bergeron, Y

The effects of surficial depositdrainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada

2010, 19(8), 1083-1098

Bergeron, Y

Landscape composition influences local pattern of fire size in the eastern Canadian boreal forest: role of weather and landscape mosaic on fire size distribution in mixedwood boreal forest using the Prescribed Fire Analysis System **2010**, 19(8), 1099-1109

Bergeron, Y

Spatial pattern analyses of postfire residual stands in the black spruce boreal forest of western Quebec

2010, 19(8), 1110-1126

Bergeron, Y

Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data

2010, 19(8), 1127-1139

Bergeron, Y

Tree mortality and snag dynamics in North American boreal tree species after a wildfire: a long-term study 2011, 20(6), 751-763

Beringer, J

Biomass Burning and Resulting Emissions in the Northern Territory, Australia **1995**, 5(4), 229-235

Beringer, J

Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia 2003, 12(3&4), 333-340

Bernia, S

Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain) 2005, 14(4), 379-384

Mapping the Location of Wildfires in Alaskan Boreal Forests Using AVHRR Imagery **1995**, 5(2), 55-62

Betancourt, JL

Effects of seeding ryegrass (Lolium multiflorum) on vegetation recovery following fire in a ponderosa pine (Pinus ponderosa) forest **2004**, 13(2), 183-194

Beverly, JL

Modelling the probability of sustained flaming: predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions **2007**, 16(2), 161-173

Beverly, JL

Stand-specific litter moisture content calibrations for the Canadian Fine Fuel Moisture Code

2007, 16(4), 463-472

Beverly, JL

Assessing the exposure of the built environment to potential ignition sources generated from vegetative fuel

2010, 19(3), 299-313

Beyers, JL

Evaluating the effectiveness of contour-felled log erosion barriers as a post-fire runoff and erosion mitigation treatment in the western United States 2008, 17(2), 255-273

Beyers, JL

Recent trends in post-wildfire seeding in western US forests: costs and seed mixes 2011, 20(5), 702-708

Bian, X

Climatological and statistical characteristics of the Haines Index for North America 2007, 16(2), 139-152

Turbulent kinetic energy during wildfires in the north central and north-eastern US 2010, 19(3), 346-363

Bian, X

A North American regional reanalysis climatology of the Haines Index

2011, 20(1), 91-103

Biggs, HC

A patch mosaic burning system for conservation areas in southern African savannas 2001, 10(2), 169-183

Biggs, HC

The contribution of fire research to fire management: a critical review of a long-term experiment in the Kruger National Park, South Africa 2007, 16(5), 519-530

A Dynamic Fuel Model for Use in Managed Even-Aged Stands **1994**, 4(3), 177-185

Effect of heat on seed germination of Pinus sylvestris and Pinus nigra ssp. PallasianA 2006, 15(2), 283-286

Bilgili, E

Estimating crown fuel loading for calabrian pine and Anatolian black pine

2008, 17(1), 147-154

Bilskie, J

Measuring duff moisture content in the field using a portable meter sensitive to dielectric permittivity **2004**, 13(3), 343-353

Bindi, M

The meteorological conditions associated with extreme fire risk in Italy and Greece: relevance to climate model studies

2008, 17(2), 155-165

Bishop, I

Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains,

2007, 16(1), 34-44

Bisquert, MM

Fire danger estimation from MODIS Enhanced Vegetation Index data: application to Galicia region (north-west Spain)

2011, 20(3), 465-473

Bissonette, JA

The effects of fire on avian communities: spatio-temporal attributes of the literature 1912-2003

2009, 18(5), 609-622

Black, A

Career stages in wildland firefighting: implications for voice in risky situations 2011, 20(1), 115-124

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia 2003, 12(3&4), 271-281

Blake, WH

Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures

2004, 13(2), 157-163

Meteorological conditions and wildfire-related houseloss in Australia

2010, 19(7), 914-926

Blank, RR

Influence of Simulated Burning of Soil-Litter From Low Sagebrush, Squirreltail, Cheatgrass, and Medusahead on Water-Soluble Anions and Cations

1996, 6(3), 137-143

Blank, RR

The Influence of Wildfire on Aqueous-Extractable Soil Solutes in Forested and Wet Meadow Ecosystems Along the Eastern Front of the Sierra-Nevada Range, California **1998**, 8(2), 79-85

Blank, RR

Combustion properties of Bromus tectorum L.: influence of ecotype and growth under four CO2 concentrations 2006, 15(2), 227-236

Blodgett, N

Effect of fire weather, fuel age and topography on patterns of remnant vegetation following a large fire event in southern California, USA 2010, 19(4), 415-426

Bobanuba, WE

Remote sensing of fire regimes in semi-arid Nusa Tenggara Timur, eastern Indonesia: current patterns, future prospects

2006, 15(3), 307-317

Bobbe, T

A primer on mapping vegetation using remote sensing 2001, 10(3&4), 277-287

Bobbitt, MJ

Remote sensing for prediction of 1-year post-fire ecosystem condition

2009, 18(5), 594-608

Bond, WJ

Confronting complexity: fire policy choices in South African savanna parks **2003**, 12(3&4), 381-389

Bond, WJ

Grazer movements: spatial and temporal responses to burning in a tall-grass African savanna 2004, 13(3), 377-385

Bond, WJ

Physically motivated empirical models for the spread and intensity of grass fires **2008**, 17(5), 595-601

Physical, chemical and hydrological properties of Ponderosa pine ash **2011**, 20(3), 443-452

Borchert, M.

The effects of fire on avian communities: spatio-temporal attributes of the literature 1912-2003

2009, 18(5), 609-622

Borén, R

Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment 2007, 16(4), 390-397

Boring, LR

Season of burn and nutrient losses in a longleaf pine ecosystem 2004, 13(4), 443-453

Bork, EW

Predicting sustained smouldering combustion in trembling aspen duff in Elk Island National Park, Canada 2007, 16(6), 690-701

Borrego, C

A Prognostic Meteorological Model Applied to the Study of a Forest Fire

1996, 6(4), 157-163

Borrego, C

Smoke measurements during Gestosa-2002 experimental field fires 2005, 14(2), 107-116

Borrego, C

Local-scale modelling system to simulate smoke dispersion **2007**, 16(2), 196-203

Borrego, C

Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System

2008, 17(3), 328-338

Bosch, EM

Spatial patterns of forest fires in Canada, 1980-1999 2006, 15(3), 361-374

Boschetti, L

Field estimation of ash and char colour-lightness using a standard grey scale 2010, 19(6), 698-704

Boschetti, L

Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product **2010**, 19(6), 705-709

Boschetti, L

Southern African fire regimes as revealed by remote sensing **2010**, 19(7), 861-878

Botelho, HS

A review of prescribed burning effectiveness in fire hazard reduction

2003, 12(2), 117-128

Botelho, HS

Empirical modelling of surface fire behaviour in maritime pine

2009, 18(6), 698-710

Botha, EJ

A simple method for fieldbased grassland curing assessment

2011, 20(6), 804-814

Bothwell, P

Assessing the exposure of the built environment to potential ignition sources generated from vegetative fuel

2010, 19(3), 299-313

Bouanane, F

Alternative equations to estimate the surface-to-volume ratio of different forest fuel particles

2011, 20(5), 648-656

Boulet, AK

Temporal patterns of solute loss following wildfires in Central Portugal

2005, 14(4), 401-412

Boulet, P

Spectral emission of flames from laboratory-scale vegetation fires **2009**, 18(7), 875-884

Bourgeau-Chavez, LL

Mapping the Location of Wildfires in Alaskan Boreal Forests Using AVHRR Imagery **1995**, 5(2), 55-62

Bourgeau-Chavez, LL Evaluation of ERS SAR data for prediction of fire danger in a

Boreal region 1999, 9(3), 183-194

Bourgeau-Chavez, LL

Development of calibration algorithms for selected water content reflectometry probes for burned and non-burned organic soils of Alaska

2010, 19(7), 961-975

Bourkas, PD

A model for calculating the temperature of aluminium particles ejected from overhead low-voltage lines owing to a short-circuit

2009, 18(6), 722-726

Boutin, S

Road network density correlated with increased lightning fire incidence in the Canadian western boreal forest 2009, 18(8), 970-982

Prediction and measurement of thermally induced cambial tissue necrosis in tree stems 2006, 15(1), 3-17

Bova, AS

An inverse method to estimate stem surface heat flux in wildland fires 2009, 18(6), 711-721

Bovio, G

Land Zoning Based on Fire **1997**, 7(3), 249-258

Bovio, G

Comparative study of various methods of fire danger evaluation in southern Europe 1999, 9(4), 235-246

Bovio, G

Developing an Adaptive Management approach to prescribed burning: a long-term heathland conservation experiment in north-west Italy **2009**, 18(6), 727-735

Living with fire: homeowner assessment of landscape values and defensible space in Minnesota and Florida, USA 2004, 13(4), 413-425

Bowman, DMJS

Experimental comparison of four remote sensing techniques to map tropical savanna firescars using Landsat-TM imagery

2003, 12(3&4), 341-348

Bowman, DMJS

Customary use of fire by indigenous peoples in northern Australia: its contemporary role in savanna management 2003, 12(3&4), 415-425

Bowman, DMJS

Frequency and season of fires varies with distance from settlement and grass composition in Eucalyptus miniata savannas of the Darwin region of northern Australia 2009, 18(1), 61-70

Boxall, PC

The development of fireinduced damage functions for forest recreation activity in Alberta, Canada 2010, 19(1), 63-74

Bradshaw, L

Evaluation of MM5 model resolution when applied to prediction of National Fire Danger Rating indexes **2006**, 15(2), 147-154

Bradshaw, LS

Comparisons of Particulate-**Emissions and Smoke Impacts** From Presettlement, Full Suppression, and Prescribed Natural Fire Period in the Selway-Bitterroot Wilderness **1994**, 4(3), 143-155

Bradshaw, LS

Evaluation of fire danger rating indexes using logistic regression and percentile analysis 2003, 12(2), 213-226

Bradshaw, LS

Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: model evaluation and comparison with National Fire Danger Rating System algorithms 2007, 16(2), 204-216

Bradshaw, RHW

The role of fire in southern Scandinavian forests during the late Holocene 2010, 19(8), 1040-1049

Bradstock, R

Indices of fire characteristics in sandstone heath near Sydney, Australia 1999, 9(2), 145-153

Bradstock, R

Editorial 2002, 11(1), i-i

Bradstock, RA

Fire in Semiarid, Mallee Shrublands - Size of Flames From Discrete Fuel Arrays and Their Role in the Spread of Fire **1993**, 3(1), 3-12

Bradstock, RA

Theoretical fire-interval distributions 2001, 10(1), 73-77

Bradstock, RA

Remote sensing of fire severity in the Blue Mountains: influence of vegetation type and inferring fire intensity **2006**, 15(2), 213-226

Bradstock, RA

Simulation of prescribed burning strategies in south-west Tasmania, Australia: effects on unplanned fires, fire regimes, and ecological management values

2006, 15(4), 527-540

Bradstock, RA

Large fires and their ecological consequences: introduction to the special issue 2008, 17(6), 685-687

Bradstock, RA

Effects of large fires on biodiversity in south-eastern Australia: disaster or template for diversity?

2008, 17(6), 809-822

Bradstock, RA

Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape-fire-succession models 2009, 18(2), 147-156

Bradstock, RA

Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather **2009**, 18(8), 932-943

Bradstock, RA

The effect of fuel age on the spread of fire in sclerophyll forest in the Sydney region of Australia 2010, 19(1), 35-45

Bradstock, RA

The initiation of fire spread in shrubland fuels recreated in the laboratory **2010**, 19(4), 512-520

Bradstock, RA

Quantifying the influence of fuel age and weather on the annual extent of unplanned fires in the Sydney region of Australia 2011, 20(1), 142-151

Bradstock, RA

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Bradstock, RA

Bayes Nets as a method for analysing the influence of management actions in fire planning **2011**, 20(8), 909-920

Characterizing and mapping fuels for Malaysia and western Indonesia

2004, 13(3), 323-334

Bramer, DJ

A Synoptic Climatology for Forest-Fires in the NE US and Future Implications From GCM Simulations

1994, 4(4), 217-224

Brandis, K

Estimation of vegetative fuel loads using Landsat TM imagery in New South Wales, Australia **2003**, *12*(2), 185-194

Brauer, M

The validity and utility of MODIS data for simple estimation of area burned and aerosols emitted by wildfire events

2010, 19(7), 844-852

Braun, CC

Effect of fire shelters on perceived fire danger: implications for risk compensation **2005**, *14*(3), 297-306

Bravo, S

Fire regime of a *Elionorus* muticus Spreng. savanna, western Chaco region, Argentina **2001**, 10(1), 65-72

Bravo, VA

Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA **2004**, *13*(1), 119-129

Bremond, L

Effects of vegetation zones and climatic changes on fireinduced atmospheric carbon emissions: a model based on paleodata

2010, 19(8), 1015-1025

Brenkert-Smith, H

Building bridges to fight fire: the role of informal social interactions in six Colorado wildland—urban interface communities

2010, 19(6), 689-697

Brennan, TJ

Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California **2011**, 20(6), 764-775

Brenner, G

Prediction of delayed mortality of fire-damaged ponderosa pine following prescribed fires in eastern Oregon, USA **2006**, *15*(1), 19-29

Brenner, J

Southern Oscillation Anomalies and Their Relationship to Wildfire Activity in Florida **1991**, *I*(1), 73-78

Brewer, S

Relationships between prescribed burning and wildfire occurrence and intensity in pine–hardwood forests in north Mississippi, USA 2006, 15(2), 203-211

Bridges, WC

Fuel characterization in the southern Appalachian Mountains: an application of Landscape Ecosystem Classification **2009**, *18*(4), 423-429

Briles, C

Long-term relations among fire, fuel, and climate in the north-western US based on lake-sediment studies **2008**, *17*(1), 72-83

Brillinger, DR

Probability based models for estimation of wildfire risk **2004**, *13*(2), 133-142

Briones, O

Effect of heat shock on germination of 23 plant species in pine—oak and montane cloud forests in western Mexico **2010**, *19*(6), *759-773*

Brock, JT

Water quality, substratum and biotic responses of five central Idaho (USA) streams during the first year following the Mortar Creek fire

2001, 10(2), 185-199

Brock, JT

Benthic macroinvertebrate assemblages in five central Idaho (USA) streams over a 10-year period following disturbance by wildfire **2001**, *10*(2), 201-213

Brockett, BH

A patch mosaic burning system for conservation areas in southern African savannas **2001**, *10*(2), 169-183

Brocklehurst, P

Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications **2009**, *18*(1), 1-18

Broncano, MJ

Topography and forest composition affecting the variability in fire severity and post-fire regeneration occurring after a large fire in the Mediterranean basin **2004**, *13*(2), 209-216

Broncano, MJ

Post-dispersal seed predation in *Pinus halepensis* and consequences on seedling establishment after fire **2008**, *17*(3), 407-414

Brotherhood, JR

Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools 1997, 7(2), 105-118

Brotherhood, JR

Project Aquarius 6. Heat Load From Exertion, Weather, and Fire in Men Suppressing Wildland Fires 1997, 7(2), 119-131

Brotherhood, JR

Project Aquarius 7. Physiological and Subjective Responses of Men Suppressing Wildland Fires 1997, 7(2), 133-144

Brotherhood, JR

Project Aquarius 8. Sweating, Drinking, and Dehydration in Men Suppressing Wildland Fires 1997, 7(2), 145-158

Brotherhood, JR

Project Aquarius 9. Relative Influence of Job Demands and Personal Factors on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 159-166

Brotherhood, JR

Project Aquarius 10. Effects of Work, Weather, and Fire on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 167-180

Brotherhood, JR

Project Aquarius 11. Effects of Fitness, Fatness, Body Size, and Age on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 181-199

Brotherhood, JR

Project Aquarius 12. Effects of Style, Fabric, and Flame-Retardant Treatment on the Effectiveness and Acceptability of Wildland Firefighters' Clothing 1997, 7(2), 201-206

Brotherhood, JR

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing 1997, 7(2), 207-218

Brotherhood, JR

Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer Bushfires With Hand Tools: Background, Objectives, and Methods 1997, 7(2), 69-76

Brotherhood, JR

Project Aquarius 2. Limitations of Maximum Oxygen Uptake for Predicting the Strains of Building Fireline With a Rakehoe 1997, 7(2), 77-85

Brotherhood, JR

Project Aquarius 3. Effects of Work Rate on the Productivity, Energy Expenditure, and Physiological Responses of Men Building Fireline With a Rakehoe in Dry Eucalypt Forest 1997, 7(2), 87-98

Brotherhood, JR

Project Aquarius 4. Experimental Bushfires, Suppression Procedures, and Measurements **1997**, 7(2), 99-104

Brotherhood, JR

Corrigendum to: Stress, strain, and productivity in men suppressing wildland fires with hand tools. International Journal of Wildland Fire, 7(2) (June 1997), pp. 69–218. Special Issue: 'Project Aquarius. Stress, strain and productivity in wildland firefighters' **2004**, *13*(3), 387-390

Brovkin, V

Strategy for a Fire Module in Dynamic Global Vegetation Models 1999, 9(1), 79-84

Brown, CD

How does increased fire frequency affect carbon loss from fire? A case study in the northern boreal forest **2011**, *20*(7), 829-837

Brown, D

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia **2009**, *18*(1), 84-95

Brown, JK

Comparisons of Particulate-Emissions and Smoke Impacts From Presettlement, Full Suppression, and Prescribed Natural Fire Period in the Selway-Bitterroot Wilderness 1994, 4(3), 143-155

Brown, JK

Comparing the Prescribed Natural Fire Program With Presettlement Fires in the Selway-Bitterroot Wilderness 1994, 4(3), 157-168

Brown, JK

Calibration of a Large Fuel Burnout Model **1995**, *5*(3), 173-192

Brown, JK

Modeling fire effects **2001**, *10*(3&4), 373-380

Brown, NAC

Seed Germination in the Fynbos Fire Ephemeral, Syncarpha vestita (L) B-Nord Is Promoted by Smoke, Aqueous Extracts of Smoke and Charred Wood Derived From Burning the Ericoid-Leaved Shrub, Passerina vulgaris Thoday 1993, 3(4), 203-206

Brown, PM

Fire History in Interior Ponderosa Pine Communities of the Black Hills, South Dakota, USA

1996, *6*(3), 97-105

Brown, PM

Climate effects on historical fires (1630–1900) in Utah **2008**, *17*(1), 28-39

Brown, PM

Fire and stand history in two limber pine (*Pinus flexilis*) and Rocky Mountain bristlecone pine (*Pinus aristata*) stands in Colorado

2008, 17(3), 339-347

Brown, PM

Comparing selected fire regime condition class (FRCC) and LANDFIRvegetation model results with tree-ring data **2010**, *19*(1), 1-13

Brown, RE

Evaluating the effectiveness of contour-felled log erosion barriers as a post-fire runoff and erosion mitigation treatment in the western United States **2008**, *17*(2), 255-273

Brown, TJ

Preface to 'Fire and Forest Meteorology' **2002**, *11*(3&4), v-v

Brown, TJ

Evaluation of the Experimental Climate Prediction Center's fire danger forecasts with remote automated weather station observations **2005**, *14*(2), 19-36

Brown, TJ

Preface to 'Fire and Forest Meteorology' **2005**, *14*(2), iii-iii

Brown, TJ

Preface to 'Fire and Forest Meteorology' **2007**, *16*(2), iii-iii

Brown, TJ

Beyond wildfire: perspectives of climate, managed fire and policy in the USA **2010**, *19*(3), 364-373

Broza, M

Post-Fire Arthropod Assemblages in Mediterranean Forest Soils in Israel **1997**, 7(4), 317-325

Brummel, RF

Interpreting federal policy at the local level: the wildland–urban interface concept in wildfire protection planning in the eastern United States **2009**, *18*(3), 278-289

Brummel, RF

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

2011, 20(3), 350-363

Brunelle, A

Long-term relations among fire, fuel, and climate in the north-western US based on lake-sediment studies **2008**, *17*(1), 72-83

Bryant, R

Effect of oxygen deprivation on soil hydrophobicity during heating

2005, *14*(4), 449-455

Bryce, RW

A Computer Algorithm for Simulating the Spread of Wildland Fire Perimeters for Heterogeneous Fuel and Meteorological Conditions **1995**, 5(2), 73-79

Ru F

Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China

2007, 16(1), 34-44

Budd, GM

Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools **1997**, 7(2), 105-118

Budd, GM

Project Aquarius 6. Heat Load From Exertion, Weather, and Fire in Men Suppressing Wildland Fires 1997, 7(2), 119-131

Budd, GM

Project Aquarius 7. Physiological and Subjective Responses of Men Suppressing Wildland Fires **1997**, 7(2), 133-144

Budd, GM

Project Aquarius 8. Sweating, Drinking, and Dehydration in Men Suppressing Wildland Fires 1997, 7(2), 145-158

Budd, GM

Project Aquarius 9. Relative Influence of Job Demands and Personal Factors on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 159-166

Budd, GM

Project Aquarius 10. Effects of Work, Weather, and Fire on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 167-180

Budd, GM

Project Aquarius 11. Effects of Fitness, Fatness, Body Size, and Age on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 181-199

Budd, GM

Project Aquarius 12. Effects of Style, Fabric, and Flame-Retardant Treatment on the Effectiveness and Acceptability of Wildland Firefighters' Clothing 1997, 7(2), 201-206

Budd, GM

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing 1997, 7(2), 207-218

Budd, GM

Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer Bushfires With Hand Tools: Background, Objectives, and Methods

1997, 7(2), 69-76

Budd, GM

Project Aquarius 2. Limitations of Maximum Oxygen Uptake for Predicting the Strains of Building Fireline With a Rakehoe 1997, 7(2), 77-85

Budd, GM

Project Aquarius 3. Effects of Work Rate on the Productivity, Energy Expenditure, and Physiological Responses of Men Building Fireline With a Rakehoe in Dry Eucalypt Forest 1997, 7(2), 87-98

Budd, GM

Project Aquarius 4. Experimental Bushfires, Suppression Procedures, and Measurements 1997, 7(2), 99-104

Budd, GM

Corrigendum to: Stress, strain, and productivity in men suppressing wildland fires with hand tools. International Journal of Wildland Fire, 7(2) (June 1997), pp. 69–218. Special Issue: 'Project Aquarius. Stress, strain and productivity in wildland firefighters' 2004, 13(3), 387-390

Bugmann, H

Environmental determinants of lightning- v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland

2010, 19(5), 541-557

Bujak, A

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

2011, 20(3), 350-363

Bunnell, DL

Fire and land management planning and implementation across multiple scales **2001**, *10*(3&4), 389-403

Bunting, SC

Postfire Defoliation Response of Agropyron spicatum and Sitanion hystrix 1994, 4(2), 77-82

Bunting, SC

Length and Timing of Grazing on Postburn Productivity of Two Bunchgrasses in an Idaho Experimental Range 1998, 8(1), 15-20

Bunting, SC

Relationships between landscape patterns and fire occurrence within a successional gradient in sagebrush steppe–juniper woodland

2011, 20(1), 69-77

Bunyavejchewin, S

The impacts of large-scale, low-intensity fires on the forests of continental South-east Asia **2008**, *17*(6), 782-792

Burgan, R

Influence of Sample Processing Techniques and Seasonal Variation on Quantities of Volatile Compounds of Gallberry, Saw-Palmetto, and Wax Myrtle
1991, 1(1), 57-62

Burgan, R

Fuel Models and Fire Potential From Satellite and Surface Observations 1998, 8(3), 159-170

Burgan, R

Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling

2001, 10(3&4), 301-319

Burgan, R

Seasonal fire danger forecasts for the USA **2005**, *14*(2), 1-18

Burgan, RE

The Oklahoma Fire Danger Model: An operational tool for mesoscale fire danger rating in Oklahoma **2002**, *11*(3&4), 183-191

Burgan, RE

Assessing forest fire potential in Kalimantan Island, Indonesia, using satellite and surface weather data **2003**, *12*(2), 175-184

Burgan, RE

Probability based models for estimation of wildfire risk **2004**, *13*(2), 133-142

Burgan, RE

Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information **2009**, *18*(5), 508-516

Burke, IC

Post-fire soil fluxes of CO₂, CH₄ and N₂O along the Colorado Front Range **2011**, 20(7), 838-846

Burkholder, BJ

The validity and utility of MODIS data for simple estimation of area burned and aerosols emitted by wildfire events

2010, 19(7), 844-852

Burns, S

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

2011, 20(3), 350-363

Burrows, ND

Patch-Burning Desert Nature Reserves in Western Australia Using Aircraft 1991, 1(1), 49-55 Burrows, ND

Flame residence times and rates of weight loss of eucalypt forest fuel particles

2001, 10(2), 137-143

Burton, PJ

Large fires as agents of ecological diversity in the North American boreal forest **2008**, *17*(6), 754-767

Busse, MD

Lethal soil temperatures during burning of masticated forest residues

2005, 14(3), 267-276

Busse, MD

Behaviour and effects of prescribed fire in masticated fuelbeds

2011, 20(8), 932-945

Butcher, G

Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat **2009**, *18*(8), 1010-1020

Butler, BW

Firefighter Safety Zones: A Theoretical Model Based on Radiative Heating 1998, 8(2), 73-77

Butler, BW

Fire shelter performance in simulated wildfires: an exploratory study **2001**, *10*(1), 29-44

Butler, BW

Prediction and measurement of thermally induced cambial tissue necrosis in tree stems **2006**, *15*(1), 3-17

Butler, BW

Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization **2006**, *15*(1), 47-60

Butler, BW

Predicting the ignition of crown fuels above a spreading surface fire. Part II: model evaluation **2006**, *15*(1), 61-72

Butler, BW

Flame interactions and burning characteristics of two live leaf samples

2009, 18(7), 865-874

Butler, BW

Experimental measurements during combustion of moist individual foliage samples **2010**, *19*(2), 153-162

Butler BW

Convective heat transfer in fire spread through fine fuel beds **2010**, *19*(3), 284-298

Butler, D

The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado **2011**, 20(3), 430-442

Butry, D

The wildland–urban interface fire problem – current approaches and research needs **2010**, 19(2), 238-251

Butry, DT

Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida **2006**, *15*(1), 87-97

Butry, DT

Economic optimisation of wildfire intervention activities **2010**, *19*(5), 659-672

Butz, R.

Traditional fire management: historical fire regimes and land use change in pastoral East Africa 2009, 18(4), 442-450

Cain, MD

A 10-Year Evaluation of Prescribed Winter Burns in Uneven-Aged Stands of *Pinus-Taeda* L and *P. Echinata* Mill -Woody Understorey Vegetation Response

1993, *3*(1), 13-20

Cain, MD

Viability of Litter-Stored Quercus falcata Michx. Acorns After Simulated Prescribed Winter Burns 1998, 8(4), 199-203

Calera, A

Application of remote sensing and GIS to locate priority intervention areas after wildland fires in Mediterranean systems: a case study from south-eastern Spain

2004, 13(3), 241-252

Calkin, DE

Factors influencing large wildland fire suppression expenditures **2008**, *17*(5), 650-659

Calkin, DE

Built structure identification in wildland fire decision support **2011**, *20*(1), 78-90

Calkin, DE

Accommodating non-market values in evaluation of wildfire management in the United States: challenges and opportunities **2011**, *20*(3), 327-339

Call. CA

Effects of targeted cattle grazing on fire behavior of cheatgrass-dominated rangeland in the northern Great Basin, USA

2009, 18(8), 944-950

Call, PT

Aerial and Surface Fuel Consumption in Crown Fires 1997, 7(3), 259-264

Calvo I

Regeneration in *Quercus Pyrenaica* Ecosystems After Surface Fires **1991**, *1*(4), 205-210

Calvo, L

Influence of tree age on seed germination response to environmental factors and inhibitory substances in *Pinus pinaster*

2005, 14(3), 277-284

Calvo, L

Effect of high temperatures on seed germination and seedling survival in three pine species (*Pinus pinaster*, *P. sylvestris* and *P. nigra*)

2007, 16(1), 63-70

Camia, A

Land Zoning Based on Fire History **1997**, *7*(3), 249-258

Campar de Almeida, A
Regional forest-fire
susceptibility analysis in central
Portugal using a probabilistic
ratings procedure and artificial
neural network weights

2011, 20(6), 776-791

assignment

Campbell, J

Implementation of mid-scale fire regime condition class mapping

2008, 17(3), 390-406

Campobello, D

Great tit (*Parus major*) breeding in fire-prone oak woods: differential effects of post-fire conditions on reproductive stages **2011**, 20(4), 605-611

Cannac, M

Volatile and semi-volatile organic compounds in smoke exposure of firefighters during prescribed burning in the Mediterranean region **2010**, *19*(5), 606-612

Cannac, M

Emission of biogenic volatile organic compounds involved in eruptive fire: implications for the safety of firefighters **2011**, 20(1), 152-161

Cannell, CE

Mixmaster exposure to dust during mixing of wildland fire retardant chemicals **2002**, 11(1), 65-73

Caraglio, Y

Validation studies of EUMETSAT's active fire monitoring product over Turkey **2009**, 18(5), 517-526

Caratti, JF

FFI: a software tool for ecological monitoring **2009**, *18*(3), 310-314

Caratti, JF

A surface fuel classification for estimating fire effects **2009**, *18*(7), 802-814

Carcaillet, C

Effects of vegetation zones and climatic changes on fireinduced atmospheric carbon emissions: a model based on paleodata

2010, 19(8), 1015-1025

Carcaillet, C

Resilience of the boreal forest in response to Holocene firefrequency changes assessed by pollen diversity and population dynamics **2010**, *19*(8), 1026-1039

Carcaillet, C

Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data **2010**, 19(8), 1127-1139

Cardille, JA

Occurrence of wildfire in the northern Great Lakes Region: Effects of land cover and land ownership assessed at multiple scales

2001, 10(2), 145-154

Carlson, DH

Impacts of wildfire on soil hydrological properties of steep sagebrush-steppe rangeland **2002**, *11*(2), 145-151

Carlson, JD

The Oklahoma Fire Danger Model: An operational tool for mesoscale fire danger rating in Oklahoma **2002**, *11*(3&4), 183-191

Carlson, JD

Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: model evaluation and comparison with National Fire Danger Rating System algorithms

2007, 16(2), 204-216

Carlson, JM

Modelling long-term fire regimes of southern California shrublands **2011**, *20*(1), 1-16

Carmel Y

Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel **2010**, *19*(1), 75-93

Carni, A

Long-term post-fire succession of *Pinus brutia* forest in the east Mediterranean **2010**, 19(5), 599-605

Carr, RJ

First year survival of *Pinus hartwegii* following prescribed burns at different intensities and different seasons in central Mexico **2007**, *16*(1), 54-62

Carrega, P

A Meteorological Index of Forest Fire Hazard in Mediterranean France **1991**, 1(2), 79-86

Carrega, P

Instantaneous and Automatic Identification of Weather Types for a Forest Fire Decision Support System **1997**, 7(3), 265-274

Carreiras, JMB

Structural-Properties and Dimensional Relations of Some Mediterranean Shrub Fuels **1995**, 5(1), 35-42

Carroll, MS

Adoption and perceptions of shelter-in-place in California's Rancho Santa Fe Fire Protection District 2010, 19(6), 677-688

Cartalis, C

Temporal simulation of diurnal temperature and relative humidity evolution at a forested mountainous site in Attica, Greece **2002**, 11(2), 95-106

Carter, E

Internal-Combustion Engine Performance in the Fireground 1994, 4(2), 83-91

Carthew, S

Post-fire ephemerals and spinifex-fuelled fires: a decision model for bilby habitat management in the Tanami Desert, Australia 2007, 16(6), 741-754

Carvalho Jr, JA

Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire 2010, 19(6), 795-799

Carvalho, A

Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System

2008, 17(3), 328-338

Carvalho, A

Regional-scale weather patterns and wildland fires in central Portugal **2009**, 18(1), 36-49

Carvalho, EO

Fire ignition patterns affect production of charcoal in southern forests 2011, 20(3), 474-477

Cary, GJ

Using simulation to map fire regimes: an evaluation of approaches, strategies, and limitations 2003, 12(3&4), 309-322

Cary, GJ

Simulation of prescribed burning strategies in south-west Tasmania, Australia: effects on unplanned fires, fire regimes, and ecological management values

2006, 15(4), 527-540

Cary, GJ

The relative importance of finescale fuel mosaics on reducing fire risk in south-west Tasmania, Australia 2008, 17(3), 421-430

Cary, GJ

Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape-fire-succession models

2009, 18(2), 147-156

Cary, GJ

The effect of fire on birds of mulga woodland in arid central Australia

2010, 19(7), 949-960

Cary, GJ

Fire and carbon dynamics under climate change in south-eastern Australia: insights from FullCAM and FIRESCAPE modelling 2011, 20(4), 563-577

Cary, GJ

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Casady, GM

Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel **2010**, 19(1), 75-93

Casal, M

Influence of heat and smoke treatments on the germination of six leguminous shrubby species

2006, 15(1), 73-80

Caselles, V

Fire danger estimation from MODIS Enhanced Vegetation Index data: application to Galicia region (north-west Spain)

2011, 20(3), 465-473

Castaldi, S

Post-fire stimulation of soil biogenic emission of CO2 in a sandy soil of a Mediterranean shrubland 2007, 16(5), 573-583

Castaldi, S

Soil N2O emissions in a Mediterranean shrubland disturbed by experimental fires 2011, 20(7), 847-855

Castaño, S

Application of remote sensing and GIS to locate priority intervention areas after wildland fires in Mediterranean systems: a case study from south-eastern Spain

2004, *13*(3), 241-252

Castellnou, M

Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain) 2005, 14(4), 379-384

Castro Rego, FC

Modelling the effects of distance on the probability of fire detection from lookouts

2006, 15(2), 197-202

Castro-Solis, UB

First year survival of Pinus hartwegii following prescribed burns at different intensities and different seasons in central Mexico

2007, 16(1), 54-62

Catchpole, EA

Modelling Moisture Damping for Fire Spread in a Mixture of Live and Dead Fuels **1991**, 1(2), 101-106

Catchpole, EA

Estimating Fuel Moisture Response Times From Field Observations **1991**, 1(4), 211-214

Catchpole, EA

Fire Behavior Experiments in Mixed Fuel Complexes **1993**, 3(1), 45-57

Catchpole, EA

Estimating fuel response time and predicting fuel moisture content from field data 2001, 10(2), 215-222

Catchpole, EA

Convective heat transfer in fire spread through fine fuel beds **2010**, 19(3), 284-298

Catchpole, WR

Modelling Moisture Damping for Fire Spread in a Mixture of Live and Dead Fuels **1991**, 1(2), 101-106

Catchpole, WR

The Influence of Fuel, Weather and Fire Shape Variables on Fire-Spread in Grasslands **1993**, 3(1), 31-44

Catchpole, WR

Fire Behavior Experiments in Mixed Fuel Complexes **1993**, 3(1), 45-57

Catchpole, WR

Fire Behaviour Modelling in Tasmanian Buttongrass Moorlands, I. Fuel Characteristics **1995**, 5(4), 203-214

Catchpole, WR

Fire Behaviour Modelling in Tasmanian Buttongrass Moorlands. II. Fire Behaviour **1995**, 5(4), 215-228

Catchpole, WR

Prediction of Fire Spread in Grasslands **1998**, 8(1), 1-13

Catchpole, WR

Estimating fuel response time and predicting fuel moisture content from field data **2001**, 10(2), 215-222

Catchpole, WR

Fire modelling in Tasmanian buttongrass moorlands. III. Dead fuel moisture 2001, 10(2), 241-253

Catchpole, WR

Fire modelling in Tasmanian buttongrass moorlands. IV. Sustaining versus nonsustaining fires **2001**, 10(2), 255-262

Catling, PC

Fire Planning for Wildlife Management - a Decision-Support System for Nadgee-Nature-Reserve, Australia **1994**, 4(2), 107-121

Catling, PC

Fire Planning for Wildlife Management: A Reply to Whelan and Baker (1996). **1996**, 6(1), 3-4

Catry, F

Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard 2009, 18(5), 563-574

Catry, FX

Modelling the effects of distance on the probability of fire detection from lookouts 2006, 15(2), 197-202

Catry, FX

Modeling and mapping wildfire ignition risk in Portugal **2009**, 18(8), 921-931

Cavallero, A

Developing an Adaptive Management approach to prescribed burning: a long-term heathland conservation experiment in north-west Italy **2009**, 18(6), 727-735

Cavieres, LA

Litter burning does not equally affect seedling emergence of native and alien species of the Mediterranean-type Chilean matorral 2009, 18(2), 213-221

Cayan, DR

Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystem province **2002**, 11(3&4), 257-266

Ceccato, R

Developing an Adaptive Management approach to prescribed burning: a long-term heathland conservation experiment in north-west Italy 2009, 18(6), 727-735

Cecilia Arienti, MC

Road network density correlated with increased lightning fire incidence in the Canadian western boreal forest 2009, 18(8), 970-982

Cerdá, A

Fire effects on soil system functioning: new insights and future challenges 2005, 14(4), 339-342

Influence of vegetation recovery on soil hydrology and erodibility following fire: an 11-year investigation 2005, 14(4), 423-437

Postfire Effects on Soil Properties and Nutrient Losses **1996**, 6(2), 53-58

Cesaraccio, C

Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species **2007**, 16(2), 232-241

The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires

2004, 13(2), 227-240

Chambers, JC

Influence of a native legume on soil N and plant response following prescribed fire in sagebrush steppe 2009, 18(6), 665-675

Chambers, JC

Abiotic and biotic influences on Bromus tectorum invasion and Artemisia tridentata recovery after fire

2011, 20(4), 597-604

Champ, PA

The economic cost of adverse health effectsfrom wildfiresmoke exposure: a review 2010, 19(7), 803-817

Chang, C-H

A critical assessment of the Burning Index in Los Angeles County, California 2007, 16(4), 473-483

Chang, Y

Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China

2007, 16(1), 34-44

Chapman, J

Simulation of prescribed burning strategies in south-west Tasmania, Australia: effects on unplanned fires, fire regimes, and ecological management values

2006, 15(4), 527-540

Chapman, J

The relative importance of finescale fuel mosaics on reducing fire risk in south-west Tasmania, Australia 2008, 17(3), 421-430

Charney, JJ

The importance of fireatmosphere coupling and boundary-layer turbulence to wildfire spread **2009**, 18(1), 50-60

Charney, JJ

Mesoscale model simulation of the meteorological conditions during the 2 June 2002 Double Trouble State Park wildfirE 2010, 19(4), 427-448

Charney, JJ

A North American regional reanalysis climatology of the Haines Index

2011, 20(1), 91-103

Relating Burning Index to Wildfire Workload Over Broad Geographic Areas **1991**, 1(4), 235-238

Chase, R

Modeling Wildland Fire Containment With Uncertain Flame Length and Fireline Width

1993, 3(3), 179-185

Assessing the susceptibility of semiarid rangelands to wildfires using Terra MODIS and Landsat Thematic Mapper data 2011, 20(5), 690-701

Seasonal fire danger forecasts for the USA 2005, 14(2), 1-18

Chen, S

NCEP-ECPC monthly to seasonal US fire danger forecasts 2010, 19(4), 399-414

Chen, SC

Medium-range fire weather forecasts **1991**, 1(3), 159-176

Wildland fire probabilities estimated from weather modeldeduced monthly mean fire danger indices

2008, 17(3), 305-316

Cheney, NP

The Influence of Fuel, Weather and Fire Shape Variables on Fire-Spread in Grasslands 1993, 3(1), 31-44

Cheney, NP

Fire Growth in Grassland Fuels **1995**, 5(4), 237-247

Cheney, NP

Fire Growth and Acceleration **1997**, 7(1), 1-5

Cheney, NP

Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools **1997**, 7(2), 105-118

Cheney, NP

Project Aquarius 6. Heat Load From Exertion, Weather, and Fire in Men Suppressing Wildland Fires **1997**, 7(2), 119-131

Cheney, NP

Project Aquarius 7. Physiological and Subjective Responses of Men Suppressing Wildland Fires **1997**, 7(2), 133-144

Cheney, NP

Project Aquarius 8. Sweating, Drinking, and Dehydration in Men Suppressing Wildland Fires **1997**, 7(2), 145-158

Cheney, NP

Project Aquarius 9. Relative Influence of Job Demands and Personal Factors on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 159-166

Cheney, NP

Project Aquarius 10. Effects of Work, Weather, and Fire on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 167-180

Cheney, NP

Project Aquarius 11. Effects of Fitness, Fatness, Body Size, and Age on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 181-199

Cheney, NP

Project Aquarius 12. Effects of Style, Fabric, and Flame-Retardant Treatment on the Effectiveness and Acceptability of Wildland Firefighters' Clothing **1997**, 7(2), 201-206

Cheney, NP

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing **1997**, 7(2), 207-218

Cheney, NP

Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer **Bushfires With Hand Tools:** Background, Objectives, and Methods **1997**, 7(2), 69-76

Cheney, NP

Cheney, NP

Rakehoe

Cheney, NP

Project Aquarius 4. Experimental Bushfires, Suppression Procedures, and Measurements **1997**, 7(2), 99-104

Project Aquarius 2. Limitations

of Maximum Oxygen Uptake

Project Aquarius 3. Effects of

Energy Expenditure, and

Physiological Responses of

Men Building Fireline With a

Rakehoe in Dry Eucalypt Forest

Work Rate on the Productivity,

for Predicting the Strains of

Building Fireline With a

1997, 7(2), 77-85

1997, 7(2), 87-98

Cheney, NP

Prediction of Fire Spread in Grasslands **1998**, 8(1), 1-13

Cheney, NP

Corrigendum to: Stress, strain, and productivity in men suppressing wildland fires with hand tools. International Journal of Wildland Fire, 7(2) (June 1997), pp. 69-218. Special Issue: 'Project Aquarius. Stress, strain and productivity in wildland firefighters' 2004, 13(3), 387-390

Cheney, P

A physics-based approach to modelling grassland fires **2007**, 16(1), 1-22

Cheng, AS

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

2011, 20(3), 350-363

Chiaramonti, N

Volatile and semi-volatile organic compounds in smoke exposure of firefighters during prescribed burning in the Mediterranean region 2010, 19(5), 606-612

Chiaramonti, N

Emission of biogenic volatile organic compounds involved in eruptive fire: implications for the safety of firefighters **2011**, 20(1), 152-161

Chladil, M

Implementation of quantitative bushfire risk analysis in a GIS environment 2010, 19(5), 649-658

Chladil, MA

Assessing Grassland Moisture and Biomass in Tasmania - the Application of Remote-Sensing and Empirical-Models for a Cloudy Environment **1995**, 5(3), 165-171

Chong, GW

Establishment of non-native plant species after wildfires: effects of fuel treatments, abiotic and biotic factors, and post-fire grass seeding treatments

2006, 15(2), 271-281

Chou, YH

Spatial Autocorrelation Analysis and Weighting Functions in the Distribution of Wildland Fires 1992, 2(4), 169-176

Chou, YH

Wildland Fire Patch Dynamics in the Chaparral of Southern California and Northern Baja California

1997, 7(3), 221-248

Christie, FJ

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Christopherson, G

Integrating values and risk perceptions into a decision support system

2010, 19(1), 123-136

Chronopoulou-Sereli, A

Wildland Fire Danger Zoning a Methodology **1998**, 8(1), 37-43

Chu, P-S

Fire-climate relationships and long-lead seasonal wildfire prediction for Hawaii 2002, 11(1), 25-31

Chu, P-S

Natural variability of the Keetch-Byram Drought Index in the Hawaiian Islands **2009**, 18(4), 459-475

Chung, J

Temporal and spatial characteristics of forest fires in South Korea between 1970 and

2006, 15(3), 389-396

Chuvieco, E

Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging **2007**, 16(3), 341-348

Chuvieco, E

Estimation of dead fuel moisture content from meteorological data in Mediterranean areas Applications in fire danger assessment

2007, 16(4), 390-397

Chuvieco, E

Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem 2009, 18(4), 430-441

Clancy, CG

Effects of wildfire on stream temperatures in the Bitterroot River Basin, Montana 2011, 20(2), 240-247

Clark, DL

Simulation of Crown Fire Effects on Canopy Seed Bank in Lodgepole Pine **1996**, 6(1), 45-49

Clark, KL

Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens 2009, 18(3), 268-277

Clark, MM

A sub-grid, mixture-fractionbased thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results **2010**, 19(2), 202-212

A Coupled Atmosphere-Fire Model: Role of the Convective Froude Number and Dynamic Fingering at the Fireline 1996, 6(4), 177-190

Clark, TL

Description of a coupled atmosphere-fire model 2004, 13(1), 49-63

Clarke, HG

Regional signatures of future fire weather over eastern Australia from global climate models

2011, 20(4), 550-562

Clarke, PJ

Resprouting responses of Acacia shrubs in the Western Desert of Australia - fire severity, interval and season influence survival 2007, 16(3), 317-323

Clayton, MK

Predicting spatial patterns of fire on a southern California landscape

2008, 17(5), 602-613

Cleary, TG

Ignition of mulch and grasses by firebrands in wildland-urban interface fires

2006, 15(3), 427-431

Cleland, DT

Human and biophysical factors influencing modern fire disturbance in northern Wisconsin 2007, 16(4), 398-413

Clemente, AS

Demographic Patterns and Productivity of Post-Fire Regeneration in Portuguese Mediterranean Maquis **1996**, 6(1), 5-12

Clements, CB

In situ measurements of water vapor, heat, and CO2 fluxes within a prescribed grass fire **2006**, 15(3), 299-306

Clements, CB

Thermodynamic structure of a grass fire plume

2010, 19(7), 895-902

Clerc, JP

Spectral emission of flames from laboratory-scale vegetation fires 2009, 18(7), 875-884

Cocke, AE

Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data 2005, 14(2), 189-198

Coelho, CDA

Wildfire Impacts on Soil-Erosion and Hydrology in Wet Mediterranean Forest, Portugal **1993**, 3(2), 95-110

Coelho, COA

Temporal patterns of solute loss following wildfires in Central 2005, 14(4), 401-412

Description of a coupled atmosphere-fire model **2004**, 13(1), 49-63

Coen, J

Generation of synthetic infrared remote-sensing scenes of wildland fire 2009, 18(3), 302-309

Coen. IL.

A Coupled Atmosphere-Fire Model: Role of the Convective Froude Number and Dynamic Fingering at the Fireline **1996**, 6(4), 177-190

Coen, JL

Simulation of the Big Elk Fire using coupled atmosphere-fire modeling

2005, 14(2), 49-59

Analysis of Experimental Simulation of Ground Surface Heating During a Prescribed **1991**, 1(2), 125-146

Cohen, JD

Firefighter Safety Zones: A Theoretical Model Based on Radiative Heating **1998**, 8(2), 73-77

Cohen, JD

An examination of fire spread thresholds in discontinuous fuel

2010, 19(2), 163-170

Cohen, JD

An examination of flame shape related to convection heat transfer in deep-fuel beds 2010, 19(2), 171-178

Cohn, JS

Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather 2009, 18(8), 932-943

Cole, J

Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens 2009, 18(3), 268-277

Cole, WJ

The effects of wind on the flame characteristics of individual leaves 2011, 20(5), 657-667

Coleman, J

A Fire Perimeter Expansion Algorithm-Based on Huygens Wavelet Propagation **1993**, 3(2), 73-84

Collin, A

Spectral emission of flames from laboratory-scale vegetation fires 2009, 18(7), 875-884

Colman, JJ

Studying wildfire behavior using FIRETEC 2002, 11(3&4), 233-246

Colman, JJ

Modeling interactions between fire and atmosphere in discrete element fuel beds **2005**, 14(2), 37-48

Colman, JJ

Coupled influences of topography and wind on wildland fire behaviour 2007, 16(2), 183-195

Colman, JJ

Separating combustion from pyrolysis in HIGRAD/FIRETEC 2007, 16(4), 493-502

Colquhoun, JR

The Sydney Australia Wildfires of January 1994 -Meteorological Conditions and High Resolution Numerical Modeling Experiments **1996**, 6(3), 145-154

Comrie, AC

Interactions between antecedent climate and wildfire variability across south-eastern Arizona 2004, 13(4), 455-466

Conard, S

Obituary: Andi Lavender Koonce, 1951-2010 2010, 19(7), iii-iii

Conard, SG

Modeling Tree Mortality Following Wildfire in Pinus ponderosa Forests in the Central Sierra-Nevada of California **1993**, 3(3), 139-148

Conard, SG

Changing fuel management strategies - The challenge of meeting new information and analysis needs

2001, 10(3&4), 267-275

Condon, L

Abiotic and biotic influences on *Bromus tectorum* invasion and *Artemisia tridentata* recovery after fire **2011**, 20(4), 597-604

Conedera, M

Environmental determinants of lightning- v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland

2010, 19(5), 541-557

Congalton, RG

Accuracy assessment and validation of remotely sensed and other spatial information **2001**, *10*(3&4), 321-328

Conner, JCR

Assessing the exposure of the built environment to potential ignition sources generated from vegetative fuel **2010**, *19*(3), 299-313

Consalvi, JL

Spectral emission of flames from laboratory-scale vegetation fires **2009**, *18*(7), 875-884

Cook, GD

Contemporary fire regimes of northern Australia, 1997–2001: change since Aboriginal occupancy, challenges for sustainable management **2003**, *12*(3&4), 283-297

Cook, GD

Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications **2009**, 18(1), 1-18

Cooke, P

Contemporary fire regimes of northern Australia, 1997–2001: change since Aboriginal occupancy, challenges for sustainable management **2003**, *12*(3&4), 283-297

Cooke, P

Customary use of fire by indigenous peoples in northern Australia: its contemporary role in savanna management **2003**, *12*(3&4), 415-425

Cooke, WH

Spatial and temporal characteristics of wildfires in Mississippi, USA **2010**, *19*(1), 14-28

Cooley, HC

Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests **2006**, *15*(4), 463-478

Coops, NC

The transferability of a dNBR-derived model to predict burn severity across 10 wildland fires in western Canada **2011**, 20(4), 518-531

Correia, OA

Demographic Patterns and Productivity of Post-Fire Regeneration in Portuguese Mediterranean Maquis **1996**, *6*(1), 5-12

Costa, JJ

On the Temperature Distribution Inside a Tree Under Fire Conditions **1991**, *I*(2), 87-96

Costin, BP

Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools 1997, 7(2), 105-118

Costin, BP

Project Aquarius 6. Heat Load From Exertion, Weather, and Fire in Men Suppressing Wildland Fires 1997, 7(2), 119-131

Costin, BP

Project Aquarius 7. Physiological and Subjective Responses of Men Suppressing Wildland Fires **1997**, 7(2), 133-144

Costin, BP

Project Aquarius 8. Sweating, Drinking, and Dehydration in Men Suppressing Wildland Fires 1997, 7(2), 145-158

Costin, BP

Project Aquarius 9. Relative Influence of Job Demands and Personal Factors on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 159-166

Costin, BP

Project Aquarius 10. Effects of Work, Weather, and Fire on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 167-180

Costin, BP

Project Aquarius 11. Effects of Fitness, Fatness, Body Size, and Age on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 181-199

Costin, BP

Project Aquarius 12. Effects of Style, Fabric, and Flame-Retardant Treatment on the Effectiveness and Acceptability of Wildland Firefighters' Clothing 1997, 7(2), 201-206

Costin, BP

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing **1997**, 7(2), 207-218

Costin, BP

Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer Bushfires With Hand Tools: Background, Objectives, and Methods 1997, 7(2), 69-76

Costin, BP

Project Aquarius 2. Limitations of Maximum Oxygen Uptake for Predicting the Strains of Building Fireline With a Rakehoe 1997, 7(2), 77-85

Costin, BP

Project Aquarius 3. Effects of Work Rate on the Productivity, Energy Expenditure, and Physiological Responses of Men Building Fireline With a Rakehoe in Dry Eucalypt Forest 1997, 7(2), 87-98

Costin, BP

Project Aquarius 4. Experimental Bushfires, Suppression Procedures, and Measurements 1997, 7(2), 99-104

Cotterman, JS

Detection and growth of an Alaskan forest fire using GOES-9 3.9 µm imagery **1999**, *9*(2), 129-136

Couto-Vázquez, A

Long-term effects of fire and three firefighting chemicals on a soil–plant system **2011**, 20(7), 856-865

Coutts, A

Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia **2003**, *12*(3&4), 333-340

Covington, WW

Double Sampling Increases the Efficiency of Forest Floor Inventories for Arizona Ponderosa Pine Forests **1994**, *4*(1), 3-10

Covington, WW

Assessing fire regimes on Grand Canyon landscapes with fire-scar and fire-record data **2003**, *12*(2), 129-145

Covington, WW

Fire history and stand structure of two ponderosa pine-mixed conifer sites: San Francisco Peaks, Arizona, USA **2005**, *14*(3), 307-320

Covington, WW

Fire histories in ponderosa pine forests of Grand Canyon are well supported: reply to Baker **2006**, *15*(3), 439-445

Covington, WW

Landscape-scale changes in canopy fuels and potential fire behaviour following ponderosa pine restoration treatments **2008**, *17*(2), 293-303

Covington, WW

Future climate affects management strategies for maintaining forest restoration treatments **2010**, 19(7), 903-913

Cowan, PD

Post-fire regeneration strategies and flammability traits of California chaparral shrubs **2010**, *19*(7), 984-989

Cox, JR

Influence of Canopy Removal by Burning or Clipping on Emergence of *Eragrostis lehmanniana* Seedlings **1991**, *I*(1), 35-40

$Craggs,\,L$

A fuel treatment reduces fire severity and increases suppression efficiency in a mixed conifer forest **2007**, *16*(6), 673-678

Craig, R

Contemporary fire regimes of northern Australia, 1997–2001: change since Aboriginal occupancy, challenges for sustainable management **2003**, *12*(3&4), 283-297

Craig, R

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning **2007**, *16*(4), 361-377

Cramer, W

Strategy for a Fire Module in Dynamic Global Vegetation Models **1999**, *9*(1), 79-84

Cramer, W

Spatial variation of trends in wildfire and summer drought in British Columbia, Canada, 1920–2000 **2010**, *19*(3), 272-283

Crane, M

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia **2009**, *18*(1), 84-95

Crews, TE

Predicting and mitigating weed invasions to restore natural post-fire succession in Mesa Verde National Park, Colorado, USA

2006, 15(2), 247-259

Cridland, S

Application of NDVI for predicting fuel curing at landscape scales in northern Australia: can remotely sensed data help schedule fire management operations? **2003**, *12*(3&4), 299-308

Cridland, S

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning 2007, 16(4), 361-377

Crimmins, MA

Interactions between antecedent climate and wildfire variability across south-eastern Arizona 2004, 13(4), 455-466

Cronan, JB

Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA 2011, 20(2), 255-271

Cropper, WP

Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics 2009, 18(6), 676-685

Crouse, JE

Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data

2005, 14(2), 189-198

Crowley, GM

Manager-based valuations of alternative fire management regimes on Cape York Peninsula, Australia 2008, 17(5), 660-673

Cruz, A

Effects of a long-term fire retardant chemical (Fire-Trol 934) on seed viability and germination of plants growing in a burned Mediterranean area **2007**, 16(3), 349-359

Cruz, MG

Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America 2003, 12(1), 39-50

Cruz, MG

Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization 2006, 15(1), 47-60

Cruz, MG

Predicting the ignition of crown fuels above a spreading surface fire. Part II: model evaluation 2006, 15(1), 61-72

Development of fuel models for fire behaviour prediction in maritime pine (Pinus pinaster Ait.) stands

2008, 17(2), 194-204

Cruz, MG

Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies 2010, 19(4), 377-398

Monte Carlo-based ensemble method for prediction of grassland fire spread 2010, 19(4), 521-530

Csiszar, I

A review of current space-based fire monitoring in Australia and the GOFC/GOLD program for international coordination 2003, 12(3&4), 247-258

Csiszar, I

Global fire activity from two years of MODIS data 2005, 14(2), 117-130

Cui, W

Assessing the impact of standlevel harvests on the flammability of forest landscapes **2007**, 16(5), 584-592

Cui, W

What do we know about forest fire size distribution, and why is this knowledge useful for forest management?

2008, 17(2), 234-244

Cuiñas, P

Effects of soil burn severity on germination and initial establishment of maritime pine seedlings, under greenhouse conditions, in two contrasting experimentally burned soils 2011, 20(2), 209-222

Cumming, SG

Road network density correlated with increased lightning fire incidence in the Canadian western boreal forest 2009, 18(8), 970-982

Cunha, L

Regional forest-fire susceptibility analysis in central Portugal using a probabilistic ratings procedure and artificial neural network weights assignment **2011**, 20(6), 776-791

Cunningham, P

Coherent vortical structures in numerical simulations of buoyant plumes from wildland fires

2005, 14(2), 61-75

Cunningham, RB

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia

2009, 18(1), 84-95

Curcio, G

Soil moisture dynamics and smoldering combustion limits of pocosin soils in North Carolina, USA 2009, 18(3), 326-335

Cushon, GH

Characterizing fuels in the 21st

2001, 10(3&4), 381-387

Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data **2010**, 19(8), 1127-1139

da Luz Mathias, M

Post-fire recolonisation of a montado area by the endangered Cabrera vole (Microtus cabrerae) 2007, 16(4), 450-457

Daniels, LD

Climate drivers of regionally synchronous fires in the inland Northwest (1651-1900) 2008, 17(1), 40-49

Daniels, LD

The transferability of a dNBRderived model to predict burn severity across 10 wildland fires in western Canada 2011, 20(4), 518-531

D'Ascoli, R

Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires 2005, 14(4), 355-363

Daskalakou, EN

Aleppo Pine (Pinus Halepensis) Postfire Regeneration: the Role of Canopy and Soil Seed Banks **1996**, 6(2), 59-66

Davies, GM

Using visual obstruction to estimate heathland fuel load and structure 2008, 17(3), 380-389

Davies, ID

Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape-fire-succession models

2009, 18(2), 147-156

Dawson, MP

Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools **1997**, 7(2), 105-118

Dawson, MP

Project Aquarius 6. Heat Load From Exertion, Weather, and Fire in Men Suppressing Wildland Fires 1997, 7(2), 119-131

Dawson, MP

Project Aquarius 7. Physiological and Subjective Responses of Men Suppressing Wildland Fires 1997, 7(2), 133-144

Dawson, MP

Project Aquarius 8. Sweating, Drinking, and Dehydration in Men Suppressing Wildland **1997**, 7(2), 145-158

Dawson, MP

Project Aquarius 9. Relative Influence of Job Demands and Personal Factors on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 159-166

Dawson, MP

Project Aquarius 10. Effects of Work, Weather, and Fire on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 167-180

Dawson, MP

Project Aquarius 11. Effects of Fitness, Fatness, Body Size, and Age on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 181-199

Dawson, MP

Project Aquarius 12. Effects of Style, Fabric, and Flame-Retardant Treatment on the Effectiveness and Acceptability of Wildland Firefighters' Clothing 1997, 7(2), 201-206

Dawson, MP

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing **1997**, 7(2), 207-218

Dawson, MP

Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer **Bushfires With Hand Tools:** Background, Objectives, and Methods

1997, 7(2), 69-76

Dawson, MP

Project Aquarius 2. Limitations of Maximum Oxygen Uptake for Predicting the Strains of Building Fireline With a Rakehoe **1997**, 7(2), 77-85

Dawson, MP

Project Aquarius 3. Effects of Work Rate on the Productivity, Energy Expenditure, and Physiological Responses of Men Building Fireline With a Rakehoe in Dry Eucalypt Forest **1997**, 7(2), 87-98

Dawson, MP

Project Aquarius 4. Experimental Bushfires, Suppression Procedures, and Measurements **1997**, 7(2), 99-104

Dawson, MP

Corrigendum to: Stress, strain, and productivity in men suppressing wildland fires with hand tools. International Journal of Wildland Fire, 7(2) (June 1997), pp. 69-218. Special Issue: 'Project Aquarius. Stress, strain and productivity in wildland firefighters 2004, 13(3), 387-390

de Blas, E

Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils **2004**, 13(2), 195-199

de Castro, AJ

Thermal infrared emissiontransmission measurements in flames from a cylindrical forest fuel burner

2007, 16(3), 324-340

de Dios Benavides-Solorio, J Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range 2005, 14(4), 457-474

de Groot, WJ

Betula glandulosa Michx. Response to burning and postfire growth temperature and implications of climate change **1999**, 9(1), 51-64

de Groot, WJ

Physical properties of dead and downed round-wood fuels in the Boreal forests of western and Northern Canada **1999**, 9(2), 85-99

de Groot, WJ

Effects of fire severity and season of burn on Betula glandulosa growth dynamics 2004, 13(3), 287-295

de Groot, WJ

Calibrating the Fine Fuel Moisture Code for grass ignition potential in Sumatra, Indonesia 2005, 14(2), 161-168

de Groot, WJ

Estimating direct carbon emissions from Canadian wildland fires 2007, 16(5), 593-606

de Groot, WJ

Remote sensing of burn severity: experience from western Canada boreal fires 2008, 17(4), 476-489

de Groot, WJ

Implications of changing climate for global wildland fire 2009, 18(5), 483-507

de Groot, WJ

Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils **2011**, 20(3), 418-429

de Klerk, H

A pragmatic assessment of the usefulness of the MODIS (Terra and Aqua) 1-km active fire (MOD14A2 and MYD14A2) products for mapping fires in the fynbos biome **2008**, 17(2), 166-178

De Las Heras, J

Natural post-fire dynamics and serotiny in 10-year-old Pinus halepensis Mill. stands along a geographic gradient 2008, 17(2), 287-292

De Las Heras, J

Is the net new carbon increment of coppice forest stands of Quercus ilex ssp. ballota affected by post-fire thinning treatments and recurrent fires? 2010, 19(5), 637-648

de Ligt, RM

Fire and carbon dynamics under climate change in south-eastern Australia: insights from FullCAM and FIRESCAPE modelling **2011**, 20(4), 563-577

De Lillis, M Influence of water and terpenes on flammability in some dominant Mediterranean species

2008, 17(2), 274-286

De Lillis, M

The influence of leaf water content and isoprenoids on flammability of some Mediterranean woody species 2009, 18(2), 203-212

De Luis, M

Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands 2004, 13(1), 79-87

de Luís, M

Fire and torrential rainfall: effects on seedling establishment in Mediterranean gorse shrublands 2005, 14(4), 413-422

De Marco, A

Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy 2005, 14(4), 365-377

De Marco, A

Post-fire stimulation of soil biogenic emission of CO2 in a sandy soil of a Mediterranean shrubland 2007, 16(5), 573-583

de Pablo, F

Prediction of the daily number of forest fires **1999**, 9(3), 207-211

De Pascale, RA

Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires 2005, 14(4), 355-363

de Zea Bermudez, P

Spatial and temporal extremes of wildfire sizes in Portugal (1984-2004)2009, 18(8), 983-991

Decker, VD

Estimating direct carbon emissions from Canadian wildland fires 2007, 16(5), 593-606

Defosse, GE

The Relative Sensitivity of Two Bunchgrass Species to Fire **1995**, 5(3), 127-134

Defosse, GE

Length and Timing of Grazing on Postburn Productivity of Two Bunchgrasses in an Idaho Experimental Range **1998**, 8(1), 15-20

Delasheras, J

Stages of Bryophyte Succession After Fire in Mediterranean Forests (SE Spain) **1994**, 4(1), 33-44

Demir, F

Validation studies of EUMETSAT's active fire monitoring product over Turkey 2009, 18(5), 517-526

den Ouden, J

Fuel load, humus consumption and humus moisture dynamics in Central European Scots pine stands

2005, 14(2), 153-159

Denis, L

Global fire activity from two years of MODIS data 2005, 14(2), 117-130

Dennis, MH

The effects of wind on the flame characteristics of individual leaves 2011, 20(5), 657-667

Dennison, PE

Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains, California 2008, 17(1), 18-27

Dennison, PE

Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation 2009, 18(8), 1021-1027

Dennison, PE

Modelling long-term fire regimes of southern California shrublands **2011**, 20(1), 1-16

Deskins, A

Economic analysis of geospatial technologies for wildfire suppression 2010, 19(4), 468-477

Despain, DG

Simulation of Crown Fire Effects on Canopy Seed Bank in Lodgepole Pine **1996**, 6(1), 45-49

Devoe, N

Effects of targeted cattle grazing on fire behavior of cheatgrass-dominated rangeland in the northern Great Basin, USA 2009, 18(8), 944-950

Dexter, N

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia 2009, 18(1), 84-95

Dey, DC

Fire scars reveal source of New England's 1780 Dark Day **2007**, 16(3), 266-270

Deyrup, MA

Postfire survival in south Florida slash pine: interacting effects of fire intensity, fire season, vegetation, burn size, and bark beetles 2001, 10(1), 53-63

Dhir, VK

Analysis of Experimental Simulation of Ground Surface Heating During a Prescribed Burn 1991, 1(2), 125-146

Diamond, JM

Effects of targeted cattle grazing on fire behavior of cheatgrass-dominated rangeland in the northern Great Basin, USA

2009, 18(8), 944-950

Díaz-Delgado, R

Statistical analysis of fire frequency models for Catalonia (NSpain), 1975-1998) based on fire scar maps from Landsat MSS data 2004, 13(1), 89-99

Diaz-Fierros, F

Heat-Induced Degradation Processes in Forest Soils **1991**, 1(3), 147-152

Diaz-Fierros, F

Interactions Between Plant Ash Leachates and Soil **1993**, 3(4), 207-216

Combustion characteristics of north-eastern USA vegetation tested in the cone calorimeter: invasive versus non-invasive plants

2007, 16(4), 426-443

Dickinson, JD

Validation studies of EUMETSAT's active fire monitoring product over Turkey **2009**, 18(5), 517-526

Dickinson, MB

Prediction and measurement of thermally induced cambial tissue necrosis in tree stems 2006, 15(1), 3-17

Dickinson, MB

An inverse method to estimate stem surface heat flux in wildland fires 2009, 18(6), 711-721

Dickman, CR

The fire history of an arid grassland: the influence of antecedent rainfall and ENSO 2009, 18(6), 631-639

Dickmann, DI

Surface burning in a mature stand of Pinus resinosa and Pinus strobus in Michigan: effects on understory vegetation **2001**, *10*(1), 91-101

Dietenberger, MA

Ignition and flame-growth modelling on realistic building and landscape objects in changing environments 2010, 19(2), 228-237

Díez, C

Flammability descriptors of fine dead fuels resulting from two mechanical treatments in shrubland: a comparative laboratory study **2010**, 19(3), 314-324

Diggins, C

Future climate affects management strategies for maintaining forest restoration treatments

2010, 19(7), 903-913

Dimitrakopoulos, AP Pyric properties of some dominant Mediterranean vegetation species

2001, 10(1), 23-27

Dimitrakopoulos, AP

A statistical classification of Mediterranean species based on their flammability components **2001**, 10(2), 113-118

Dimitrakopoulos, AP

Mediterranean fuel models and potential fire behaviour in Greece

2002, 11(2), 127-130

Dimitrakopoulos, AP

Allometric equations for crown fuel biomass of Aleppo pine (Pinus halepensis Mill.) in Greece

2007, 16(5), 642-647

Dimitrakopoulos, AP

Assessing ignition probability and moisture of extinction in a Mediterranean grass fuel 2010, 19(1), 29-34

Dimuccio, LA

Regional forest-fire susceptibility analysis in central Portugal using a probabilistic ratings procedure and artificial neural network weights assignment

2011, 20(6), 776-791

Dixon, E

Chino well fire: a hydrologic evaluation of rainfall and runoff from the Mud Canyon watershed **1999**, 9(1), 1-8

Dlugogorski, BZ

The role of extinction on the reignition potential of woodbased embers in bushfires 2007, 16(5), 547-555

do Rosário, IT

Post-fire recolonisation of a montado area by the endangered Cabrera vole (Microtus cabrerae) **2007**, 16(4), 450-457

Dodson, EK

Impacts of erosion control treatments on native vegetation recovery after severe wildfire in the Eastern Cascades, USA 2010, 19(4), 490-499

Doerr, SH

Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures

2004, 13(2), 157-163

Doerr, SH

Fire effects on soil system functioning: new insights and future challenges **2005**, 14(4), 339-342

Doerr, SH

Influence of vegetation recovery on soil hydrology and erodibility following fire: an 11-year investigation 2005, 14(4), 423-437

Doerr, SH

Effect of oxygen deprivation on soil hydrophobicity during heating

2005, 14(4), 449-455

Dolling, K

Natural variability of the Keetch-Byram Drought Index in the Hawaiian Islands 2009, 18(4), 459-475

Donohue, J

Mechanical mastication and prescribed fire in coniferhardwood chaparral: differing responses of ectomycorrhizae and truffles

2011, 20(7), 888-896

Donovan, GH

The economic cost of adverse health effectsfrom wildfiresmoke exposure: a review **2010**, 19(7), 803-817

Douguedroit, A

A Satellite Index of Risk of Forest Fire Occurrence in Summer in the Mediterranean Area

1998, 8(4), 173-182

Doyle, KM

Seventeen Years of Forest Succession Following the Waterfalls Canyon Fire in Grand Teton National Park. Wyoming **1998**, 8(1), 45-55

Drapeau, P

Effect of fire severity on longterm occupancy of burned boreal conifer forests by saproxylic insects and woodforaging birds 2010, 19(4), 500-511

Drapeau, P

Tree mortality and snag dynamics in North American boreal tree species after a wildfire: a long-term study **2011**, 20(6), 751-763

Draper, TM

The effects of seeding sterile triticale on a native plant community after wildfire in a pinyon pine-mountain mahogany woodland 2009, 18(6), 659-664

Dray, G

Experimental validation in Mediterranean shrub fuels of seven wildland fire rate of spread models

2001, 10(1), 15-22

Drewa, PB

Effects of fire season and intensity on Prosopis glandulosa Torr. var. glandulosa 2003, 12(2), 147-157

Drobyshev, I

A 400-year history of fires on lake islands in south-east Sweden 2010, 19(8), 1050-1058

Drobyshev, I

Variation in local weather explains differences in fire regimes within a Québec southeastern boreal forest landscape 2010, 19(8), 1073-1082

Drucker, AG

Manager-based valuations of alternative fire management regimes on Cape York Peninsula, Australia 2008, 17(5), 660-673

Duce, P

Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species 2007, 16(2), 232-241

Duce, P

Evaluation of FARSITsimulator in Mediterranean maquis 2007, 16(5), 563-572

Duce, P

Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin 2007, 16(5), 633-641

Duchesne, LC

Predicting the Height to Live Crown Base in Plantations of Four Boreal Forest Species 1994, 4(2), 103-106

Duchesne, LC

Soil Seed Bank of a Jack Pine (Pinus Banksiana) Ecosystem **1998**, 8(2), 67-71

Duchesne, LC

Effect of clear-cutting, prescribed burning and scarification on litter decomposition in an Eastern Ontario jack pine (Pinus banksiana) ecosystem **1999**, 9(3), 195-201

Duffy, PA

Analysis of Alaskan burn severity patterns using remotely sensed data 2007, 16(3), 277-284

Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain) **2007**, 16(5), 619-632

Dull, C

A primer on mapping vegetation using remote sensing 2001, 10(3&4), 277-287

Dupont, S

Validation of FIRETEC windflows over a canopy and a fuelbreak

2009, 18(7), 775-790

Dupuy, JL

Slope and Fuel Load Effects on Fire Behavior: Laboratory Experiments in Pine Needles Fuel Beds 1995, 5(3), 153-164

Dupuy, JL

Dynamic modelling of fire spread across a fuel bed **1999**, 9(4), 275-284

Dupuy, JL

Dynamic modelling of upslope fire growth **1999**, 9(4), 285-292

Dupuy, J-L

Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects 1999, 9(3), 155-172

Dupuy, J-L

Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model

2005, 14(2), 141-151

Dupuy, J-L

Thermal infrared emissiontransmission measurements in flames from a cylindrical forest fuel burner

2007, 16(3), 324-340

Dupuy, J-L

Validation studies of EUMETSAT's active fire monitoring product over Turkey 2009, 18(5), 517-526

Dupuy, J-L

Validation of FIRETEC windflows over a canopy and a fuelbreak 2009, 18(7), 775-790

Dupuy, J-L

The effects of slope and fuel bed width on laboratory fire behaviour

2011, 20(2), 272-288

Dupuy, J-L

Slope effect on laboratory fire spread: contribution of radiation and convection to fuel bed preheating

2011, 20(2), 289-307

Dupuy, J-L

Exploring three-dimensional coupled fire-atmosphere interactions downwind of winddriven surface fires and their influence on backfires using the HIGRAD-FIRETEC model 2011, 20(6), 734-750

Duryea, ML

Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildlandurban interface

2004, 13(3), 355-365

Dusserre, G

Experimental validation in Mediterranean shrub fuels of seven wildland fire rate of spread models **2001**, *10*(1), 15-22

Duveneck, M

Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens **2009**, *18*(3), 268-277

Dyer, R

Ecological and economic assessment of prescribed burning impacts in semi-arid pastoral lands of northern Australia

2003, 12(3&4), 403-413

Dymond, CC

Characterizing and mapping fuels for Malaysia and western Indonesia

2004, 13(3), 323-334

Eby, LA

Effects of wildfire on stream temperatures in the Bitterroot River Basin, Montana **2011**, 20(2), 240-247

Edminster, C

Modeling interactions between fire and atmosphere in discrete element fuel beds **2005**, *14*(2), 37-48

Edminster, C

Coupled influences of topography and wind on wildland fire behaviour **2007**, *16*(2), 183-195

Edminster, C

A numerical study of slope and fuel structure effects on coupled wildfire behaviour **2010**, *19*(2), 179-201

Edwards, A

A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia **2001**, 10(1), 79-89

Edwards, A

Fine-scale patchiness of different fire intensities in sandstone heath vegetation in northern Australia **2003**, *12*(2), 227-236

Edwards, A

Contemporary fire regimes of northern Australia, 1997–2001: change since Aboriginal occupancy, challenges for sustainable management **2003**, *12*(3&4), 283-297

Edwards, A

Monitoring the impacts of fire regimes on vegetation in northern Australia: an example from Kakadu National Park **2003**, *12*(3&4), 427-440

Edwards, AC

Seasonality and fire severity in savanna landscapes of monsoonal northern Australia **2006**, *15*(4), 541-550

Edwards, AC

Efficacy of permanent firebreaks and aerial prescribed burning in western Arnhem Land, Northern Territory, Australia

2007, 16(3), 295-305

Edwards, AC

Big fires and their ecological impacts in Australian savannas: size and frequency matters **2008**, *17*(6), 768-781

Edwards, AC

Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications **2009**, *18*(1), 1-18

Edwards, AC

Ecological thresholds and the status of fire-sensitive vegetation in western Arnhem Land, northern Australia: implications for management **2009**, *18*(2), 127-146

Edwards, GP

The effect of fire on birds of mulga woodland in arid central Australia

2010, 19(7), 949-960

Eidenshink, JC

Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information **2009**, *18*(5), 508-516

Eitel, JUH

Spectral analysis of charcoal on soils: implicationsfor wildland fire severity mapping methods **2010**, *19*(7), 976-983

Eklund, A

Applying LiDAR technology for tree measurements in burned landscapes

2010, 19(1), 104-114

Elliot, WJ

Predicting post-fire hillslope erosion in forest lands of the western United States **2011**, 20(8), 982-999

Elliott, LP

Frequency and season of fires varies with distance from settlement and grass composition in *Eucalyptus miniata* savannas of the Darwin region of northern Australia **2009**, 18(1), 61-70

Ellis, PF

A review of radiant heat flux models used in bushfire applications

2003, 12(1), 101-110

Ellis, PFM

Fuelbed ignition potential and bark morphology explain the notoriety of the eucalypt messmate 'stringybark' for intense spotting **2011**, 20(7), 897-907

Ena, V

Recolonization of Two Burnt Quercus pyrenaica Ecosystems by Coleoptera 1998, 8(1), 21-27

Engle, DM

Fire Behavior and Fire Effects on Eastern Redcedar in Hardwood Leaf-Litter Fires **1995**, *5*(3), 135-141

Engle, DM

The Oklahoma Fire Danger Model: An operational tool for mesoscale fire danger rating in Oklahoma **2002**, *11*(3&4), 183-191

Englefield, P

Estimating direct carbon emissions from Canadian wildland fires **2007**, *16*(5), 593-606

Englefield, P

An approach to operational forest fire growth predictions for Canada **2009**, *18*(8), 893-905

Enninful, EK

A variable property heat transfer model for predicting soil temperature profiles during simulated wildland fire conditions **2008**, *17*(2), 205-213

2000, 17 (2

Entwistle,D

The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado **2011**, 20(3), 430-442

Enzler, SA

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

2011, 20(3), 350-363

Epting, J

Analysis of Alaskan burn severity patterns using remotely sensed data

2007, 16(3), 277-284

Erdi. E

Validation studies of EUMETSAT's active fire monitoring product over Turkey **2009**, 18(5), 517-526

Eriksen, C

The art of learning: wildfire, amenity migration and local environmental knowledge **2011**, 20(4), 612-624

Espelta, JM

Natural post-fire dynamics and serotiny in 10-year-old *Pinus halepensis* Mill. stands along a geographic gradient **2008**, *17*(2), 287-292

Espelta, JM

Recurrent wildfires constrain long-term reproduction ability in *Pinus halepensis* Mill. **2008**, *17*(5), 579-585

Esque, TC

The effects of seeding sterile triticale on a native plant community after wildfire in a pinyon pine—mountain mahogany woodland **2009**, 18(6), 659-664

Estiarte, M

Influence of water and terpenes on flammability in some dominant Mediterranean species

2008, 17(2), 274-286

Estrela, MJ

A mesoscale model application to fire weather winds **1999**, *9*(4), 255-263

Etlinger, M

Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation **2005**, *14*(3), 321-338

Etlinger, MG

Development of a laboratory protocol for fire performance of landscape plants **2004**, *13*(4), 479-488

Eugenio, M

Natural post-fire dynamics and serotiny in 10-year-old *Pinus halepensis* Mill. stands along a geographic gradient **2008**, *17*(2), 287-292

Eugenio, M

Recurrent wildfires constrain long-term reproduction ability in *Pinus halepensis* Mill. **2008**, *17*(5), 579-585

Evans, JS

Using fuzzy C-means and local autocorrelation to cluster satellite-inferred burn severity classes

2010, 19(7), 853-860

Everett, R

Snag dynamics in a chronosequence of 26 wildfires on the east slope of the Cascade Range in Washington State, USA 1999, 9(4), 223-234

Faiella, SM

Fluctuations in fuel moisture across restoration treatments in semi-arid ponderosa pine forests of northern Arizona, USA

2007, 16(1), 119-127

Fairfax, RJ

Assessing woody vegetation cover change in north-west Australian savanna using aerial photography

2003, 12(3&4), 359-367

Falkowski, MJ

Remote sensing techniques to assess active fire characteristics and post-fire effects **2006**, *15*(3), 319-345

Fancher, JT

Classifying fuels with aerial photography in East Texas **1999**, *9*(2), 109-113

Farrish, K

Fuel loading prediction models developed from aerial photographs of the Sangre de Cristo and Jemez mountains of New Mexico, USA 2002, 11(1), 85-90

Fast, JD

Simulations of Horizontal Roll Vortex Development Above Lines of Extreme Surface Heating 1992, 2(2), 55-68

Faulkner, H

Complexity of homeowner wildfire risk mitigation: an integration of hazard theories **2011**, *20*(8), 921-931

Faulring, J

Autonomous field-deployable wildland fire sensors **2003**, *12*(2), 237-244

Favier, C

Effects of vegetation zones and climatic changes on fireinduced atmospheric carbon emissions: a model based on paleodata

2010, 19(8), 1015-1025

Feguson, SA

Preface to 'Fire and Forest Meteorology' **2002**, *11*(3&4), v-v

Feidas, H

Temporal simulation of diurnal temperature and relative humidity evolution at a forested mountainous site in Attica, Greece

2002, 11(2), 95-106

Feller, MC

Relationships Between Fire Severity and Atmospheric and Leaching Nutrient Losses in British Columbia's Coastal Western Hemlock Zone Forests 1998, 8(2), 87-101

Feller, MC

Short-term effects of prescribed burning on radial growth of Douglas-fir trees in south central British Columbia **2011**, 20(7), 876-887

Fensham, RJ

Assessing woody vegetation cover change in north-west Australian savanna using aerial photography **2003**, *12*(3&4), 359-367

Ferguson, SA

Modeling Smoldering Emissions From Prescribed Broadcast Burns in the Pacific-Northwest

1994, 4(3), 135-142

Ferguson, SA

Measuring moisture dynamics to predict fire severity in longleaf pine forests **2002**, *11*(3&4), 267-279

Ferguson, SA

Preface to 'Fire and Forest Meteorology' **2005**, *14*(2), iii-iii

Ferguson, SA

Evaluation of MM5 model resolution when applied to prediction of National Fire Danger Rating indexes **2006**, *15*(2), 147-154

Ferguson, SA

The BlueSky smoke modeling framework **2009**, *18*(8), 906-920

Ferná:ndez, C

Effectiveness of three post-fire treatments at reducing soil erosion in Galicia (NW Spain) **2011**, *20*(1), 104-114

Fernandes, A

Feasibility of forest-fire smoke detection using lidar **2003**, *12*(2), 159-166

Fernandes, A

Eye-safe lidar measurements for detection and investigation of forest-fire smoke **2004**, *13*(4), 401-412

Fernandes, PM

A New Method to Estimate Fuel Surface Area-to-Volume Ratio Using Water Immersion 1998, 8(2), 59-66

Fernandes, PM

A New Method to Estimate Fuel Surface Area-to-Volume Ratio Using Water Immersion. **1998**, 8(3), 121-128

Fernandes, PM

A review of prescribed burning effectiveness in fire hazard reduction

2003, 12(2), 117-128

Fernandes, PM

Development of fuel models for fire behaviour prediction in maritime pine (*Pinus pinaster* Ait.) stands

2008, 17(2), 194-204

Fernandes, PM

Empirical modelling of surface fire behaviour in maritime pine stands

2009, 18(6), 698-710

Fernández, C

Flammability descriptors of fine dead fuels resulting from two mechanical treatments in shrubland: a comparative laboratory study **2010**, *19*(3), 314-324

Fernández, C

Effects of soil burn severity on germination and initial establishment of maritime pine seedlings, under greenhouse conditions, in two contrasting experimentally burned soils **2011**, 20(2), 209-222

Fernández, H

Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging **2007**, *16*(3), 341-348

Fernandez, JC

Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics **2009**, *18*(6), 676-685

Fernández, S

Analysis of the evolution of soil erosion classes using multitemporal Landsat imagery **2008**, *17*(5), 549-558

Fernández-González, F

Effects of a long-term fire retardant chemical (Fire-Trol 934) on seed viability and germination of plants growing in a burned Mediterranean area **2007**, *16*(3), 349-359

Ferrandis, P

The Role of Soil Seed Bank in the Early Stages of Plant Recovery After Fire in a *Pinus Pinaster* Forest in SSpain **1996**, 6(1), 31-35

Ferrandis, P

Influence of heat on seed germination of nine woody *Cistaceae* species **1999**, *9*(3), 173-182

Ferreira de Almeida, AMS

The Relationship of Forest Fires to Agro-Forestry and Socio-Economic Parameters in Portugal 1992, 2(1), 37-40

Ferreira, A

Comparative study of various methods of fire danger evaluation in southern Europe **1999**, *9*(4), 235-246

Ferreira, AD

Moisture Content of Fine Forest Fuels and Fire Occurrence in Central Portugal 1992, 2(2), 69-86

Ferreira, AD

Wildfire Impacts on Soil-Erosion and Hydrology in Wet Mediterranean Forest, Portugal **1993**, 3(2), 95-110

Ferreira, AJD

Temporal patterns of solute loss following wildfires in Central Portugal **2005**, *14*(4), 401-412

Ferreira, J

Smoke measurements during Gestosa-2002 experimental field fires

2005, 14(2), 107-116

Ferreira, R

Regional forest-fire susceptibility analysis in central Portugal using a probabilistic ratings procedure and artificial neural network weights assignment

2011, 20(6), 776-791

Fiddler, GO

Lethal soil temperatures during burning of masticated forest residues

2005, 14(3), 267-276

Fierens, PI

Number of sensors versus time to detection in wildfires **2009**, *18*(7), 825-829

Fierro, A

Post-fire stimulation of soil biogenic emission of CO₂ in a sandy soil of a Mediterranean shrubland **2007**, *16*(5), 573-583

Fierro, A

Soil N₂O emissions in a Mediterranean shrubland disturbed by experimental fires **2011**, 20(7), 847-855

Finkele, K

Meteorological conditions and wildfire-related houseloss in Australia **2010**, *19*(7), 914-926

Finney, MA

Calibration and Field Testing of Passive Flame Height Sensors **1992**, 2(3), 115-122

Finney, MA

The Missing Tail and Other Considerations for the Use of Fire History Models **1995**, *5*(4), 197-202

Finney, MA

Calculation of fire spread rates across random landscapes **2003**, *12*(2), 167-174

Finney, MA

A computational method for optimising fuel treatment locations **2007**, *16*(6), 702-711

Finney, MA

Simulation of long-term landscape-level fuel treatment effects on large wildfires **2007**, *16*(6), 712-727

Finney, MA

An examination of fire spread thresholds in discontinuous fuel beds

2010, 19(2), 163-170

Finney, MA

An examination of flame shape related to convection heat transfer in deep-fuel beds **2010**, *19*(2), 171-178

Fisher, R

Patterns of landscape fire and predicted vegetation response in the North Kimberley region of Western Australia **2003**, *12*(3&4), 369-379

Fisher, R

Remote sensing of fire regimes in semi-arid Nusa Tenggara Timur, eastern Indonesia: current patterns, future prospects

2006, 15(3), 307-317

Fites-Kaufman, JA

Effectiveness of prescribed fire as a fuel treatment in Californian coniferous forests 2009, 18(2), 165-175

Fitzgerald, N

Application of NDVI for predicting fuel curing at landscape scales in northern Australia: can remotely sensed data help schedule fire management operations? 2003, 12(3&4), 299-308

Flannigan, M

Preface to 'Fire and Forest Meteorology 2002, 11(3&4), v-v

Flannigan, M Editorial

2003, 12(1), iii-iii

Flannigan, M Fire and savanna landscapes in northern Australia: regional lessons and global challenges 2003, 12(3&4), v-ix

Flannigan, M

Preface to 'Fire and Forest Meteorology 2005, 14(2), iii-iii

Flannigan, M Editorial 2007, 16(1), iii-iii

Flannigan, MD

Fire Regime and the Abundance of Red Pine **1993**, 3(4), 241-247

Flannigan, MD

A Study on the Interpolation of Fire Danger Using Radar Precipitation Estimates 1998, 8(4), 217-225

Flannigan, MD

Fire, climate change, carbon and fuel management in the Canadian boreal forest 2001, 10(3&4), 405-413

Flannigan, MD

Lightning and lightning fire, central cordillera, Canada 2002, 11(1), 41-51

Flannigan, MD

Fire weather index system components for large fires in the Canadian boreal forest 2004, 13(4), 391-400

Flannigan, MD

A 229-year dendroclimaticinferred record of forest fire activity for the Boreal Shield of Canada 2006, 15(3), 375-388

Flannigan, MD

Impact of climate change on area burned in Alberta's boreal forest 2007, 16(2), 153-160

Flannigan, MD

Fire-growth modelling using meteorological data with random and systematic perturbations **2007**, 16(2), 174-182

Flannigan, MD

Preface to 'Fire and Forest Meteorology 2007, 16(2), iii-iii

Flannigan, MD

Historical fire regime shifts related to climate teleconnections in the Waswanipi area, central Quebec, Canada 2007, 16(5), 607-618

Flannigan, MD

Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System 2008, 17(3), 328-338

Flannigan, MD

Dendroclimatic inference of wildfire activity in Quebec over the 20th century and implications for natural disturbance-based forest management at the northern limit of the commercial forest **2008**, 17(3), 348-362

Flannigan, MD

Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape-fire-succession models

2009, 18(2), 147-156

Flannigan, MD

Implications of changing climate for global wildland fire 2009, 18(5), 483-507

Flannigan, MD

Characterization of wildfire regimes in Canadian boreal terrestrial ecosystems 2009, 18(8), 992-1002

Flannigan, MD

Forest fire occurrence and climate change in Canada **2010**, 19(3), 253-271

Flannigan, MD

Variation in local weather explains differences in fire regimes within a Québec southeastern boreal forest landscape 2010, 19(8), 1073-1082

Flannigan, MD

Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils

2011, 20(3), 418-429

Fleming, MD

El Niño and its impact on fire weather conditions in Alaska **2001**, 10(1), 1-13

Fleming, R

Strategy for a Fire Module in Dynamic Global Vegetation Models 1999, 9(1), 79-84

Fletcher, TH

Flame interactions and burning characteristics of two live leaf samples

2009, 18(7), 865-874

Fletcher, TH

Experimental measurements during combustion of moist individual foliage samples **2010**, 19(2), 153-162

Fletcher, TH

A sub-grid, mixture-fractionbased thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results 2010, 19(2), 202-212

Fletcher, TH

The effects of wind on the flame characteristics of individual leaves 2011, 20(5), 657-667

Floyd, ML

Predicting and mitigating weed invasions to restore natural post-fire succession in Mesa Verde National Park, Colorado, USA

2006, 15(2), 247-259

Fogarty, L

An optimisation modelling approach to seasonal resource allocation for planned burning 2011, 20(2), 175-183

Fontúrbel, MT

Effects of soil burn severity on germination and initial establishment of maritime pine seedlings, under greenhouse conditions, in two contrasting experimentally burned soils 2011, 20(2), 209-222

Fonturbel, T

Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds 2009, 18(8), 951-969

Fonturbel, T

Effectiveness of three post-fire treatments at reducing soil erosion in Galicia (NW Spain) **2011**, 20(1), 104-114

Forsyth, GG

A Computer-Based System for Fire Management in the Mountains of the Cape Province, South-Africa **1994**, 4(1), 17-32

Fortescue, M

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia

2009, 18(1), 84-95

Forteza, J

Postfire Effects on Soil Properties and Nutrient Losses **1996**, 6(2), 53-58

Forthofer, JM

Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization 2006, 15(1), 47-60

Forthofer, JM

An examination of flame shape related to convection heat transfer in deep-fuel beds **2010**, 19(2), 171-178

Forthun, G

Near-real time mapping of Keetch-Byram drought index in the south-eastern United States 2002, 11(3&4), 281-289

Fortin, CM-J

Landscape composition influences local pattern of fire size in the eastern Canadian boreal forest: role of weather and landscape mosaic on fire size distribution in mixedwood boreal forest using the Prescribed Fire Analysis System **2010**, 19(8), 1099-1109

Fosberg, MA

Strategy for a Fire Module in Dynamic Global Vegetation Models **1999**, 9(1), 79-84

Fouts, JF

Effect of fire shelters on perceived fire danger: implications for risk compensation 2005, 14(3), 297-306

Development of post-fire crown damage mortality thresholds in ponderosa pine **2010**, 19(5), 583-588

Fox, D

The new smoke management 2001, 10(3&4), 415-427

Frakes, I

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning **2007**, 16(4), 361-377

Frandsen, WH

Basal Injury From Smoldering Fires in Mature Pinus ponderosa Laws **1991**, 1(2), 107-118

Frandsen, WH

Heat Evolved From Smoldering 1991, 1(3), 197-204

Frandsen, WH

When It's Hot, It's Hot... Or Maybe It's Not! (Surface Flaming May Not Portend Extensive Soil Heating) 1992, 2(3), 139-144

Frandsen, WH

A Stirred Water Calorimeter for Measuring Heat Flux From **Smoldering Combustion 1998**, 8(3), 129-135

Frandsen, WH

Heat Flow Measurements From Smoldering Porous Fuel **1998**, 8(3), 137-145

Frank, JL

Mechanical mastication and prescribed fire in conifer hardwood chaparral: differing responses of ectomycorrhizae and truffles

2011, 20(7), 888-896

Frank, JM

Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor **2004**, *13*(4), 427-442

Frank, JM

Long-term impacts of prescribed burns on soil thermal conductivity and soil heating at a Colorado Rocky Mountain site: a data/model fusion study **2008**, *17*(1), 131-146

Franklin, DC

Frequency and season of fires varies with distance from settlement and grass composition in *Eucalyptus miniata* savannas of the Darwin region of northern Australia **2009**, *18*(1), 61-70

Franklin, J

Effect of fire weather, fuel age and topography on patterns of remnant vegetation following a large fire event in southern California, USA **2010**, *19*(4), 415-426

Franklin, JF

Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA **2009**, *18*(7), 765-774

Franks, SW

Multi-decadal variability of forest fire risk - eastern Australia **2004**, *13*(2), 165-171

Fraser, F

Customary use of fire by indigenous peoples in northern Australia: its contemporary role in savanna management **2003**, *12*(3&4), 415-425

Fraser, RH

Estimating direct carbon emissions from Canadian wildland fires **2007**, *16*(5), 593-606

Fréchette, B

Resilience of the boreal forest in response to Holocene firefrequency changes assessed by pollen diversity and population dynamics

2010, 19(8), 1026-1039

Freeburn, JT

Remote sensing of burn severity: experience from western Canada boreal fires **2008**, *17*(4), 476-489

Freeburn, JT

Large fires as agents of ecological diversity in the North American boreal forest **2008**, *17*(6), 754-767

French, NHF

Mapping the Location of Wildfires in Alaskan Boreal Forests Using AVHRR Imagery 1995, 5(2), 55-62

French, NHF

Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results **2008**, *17*(4), 443-462

French, NHF

Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests **2008**, *17*(4), 500-514

French, NHF

Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests **2008**, *17*(4), 515-526

Fried, JS

Assessing the benefits of reducing fire risk in the wildland-urban interface: a contingent valuation approach **1999**, *9*(1), *9*-20

Fried, JS

Analysing initial attack on wildland fires using stochastic simulation

2006, 15(1), 137-146

Fried, JS

Wildland–urban interface housing growth during the 1990s in California, Oregon, and Washington **2007**, *16*(3), 255-265

Fujioka, F

Medium-range fire weather forecasts

1991, 1(3), 159-176

Fujioka, F

Fire-climate relationships and long-lead seasonal wildfire prediction for Hawaii **2002**, *11*(1), 25-31

Fujioka, F

Seasonal fire danger forecasts for the USA **2005**, *14*(2), 1-18

Fujioka, F

Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices **2008**, *17*(3), 305-316

Fujioka, F

Natural variability of the Keetch–Byram Drought Index in the Hawaiian Islands **2009**, 18(4), 459-475

Fujioka, F

NCEP-ECPC monthly to seasonal US fire danger forecasts

2010, 19(4), 399-414

Fujioka, FM

A new method for the analysis of fire spread modeling errors **2002**, *11*(3&4), 193-203

Fujioka, FM

Tribute to Mike Fosberg **2002**, *11*(3&4), iii-iii

Fulé, P

Ecological effects of large fires on US landscapes: benefit or catastrophe?

2008, 17(6), 696-712

Fule, PZ

Double Sampling Increases the Efficiency of Forest Floor Inventories for Arizona Ponderosa Pine Forests **1994**, *4*(1), 3-10

Fulé, PZ

Fire ecology of Mexican pines and a fire management proposal **2003**, *12*(1), 23-37

Fulé, PZ

Assessing fire regimes on Grand Canyon landscapes with fire-scar and fire-record data **2003**, *12*(2), 129-145

Fulé, PZ

Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data **2005**, *14*(2), 189-198

Fulé, PZ

Fire history and stand structure of two ponderosa pine-mixed conifer sites: San Francisco Peaks, Arizona, USA **2005**, *14*(3), 307-320

Fulé, PZ

Fire histories in ponderosa pine forests of Grand Canyon are well supported: reply to Baker **2006**, *15*(3), 439-445

Fulé, PZ

Pre-wildfire fuel treatments affect long-term ponderosa pine forest dynamics **2007**, *16*(1), 128-138

Fulé. PZ

Landscape-scale changes in canopy fuels and potential fire behaviour following ponderosa pine restoration treatments **2008**, *17*(2), 293-303

Fulé, PZ

Minimal effectiveness of native and non-native seeding following three high-severity wildfires

2010, 19(6), 746-758

Fulé, PZ

Future climate affects management strategies for maintaining forest restoration treatments **2010**, 19(7), 903-913

Fulé, PZ

Recent trends in post-wildfire seeding in western US forests: costs and seed mixes **2011**, *20*(5), 702-708

Gabet, EJ

Physical, chemical and hydrological properties of Ponderosa pine ash **2011**, *20*(3), 443-452

Gallagher, A

Autonomous field-deployable wildland fire sensors **2003**, *12*(2), 237-244

Ganteaume, A

Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds **2009**, *18*(8), 951-969

García del Barrio, JM

Recent fire regime in peninsular Spain in relation to forest potential productivity and population density **2006**, *15*(3), 397-405

García Diez, A

Prediction of the daily number of forest fires **1999**, *9*(3), 207-211

García Diez, EL

Prediction of the daily number of forest fires **1999**, 9(3), 207-211

Garcia, CV

A Logit Model for Predicting the Daily Occurrence of Human Caused Forest-Fires **1995**, *5*(2), 101-111

García-Corona, R

Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils **2004**, *13*(2), 195-199

García-Marco, S

Long-term effects of fire and three firefighting chemicals on a soil–plant system **2011**, *20*(7), 856-865

García-Mateos Á

Seed provenance and fire-related reproductive traits of *Pinus* pinaster in central Spain **2009**, 18(8), 1003-1009

García-Morote, FA

Is the net new carbon increment of coppice forest stands of *Quercus ilex* ssp. *ballota* affected by post-fire thinning treatments and recurrent fires? **2010**, *19*(5), 637-648

García-Orenes, F

Microbial recolonization and chemical changes in a soil heated at different temperatures **2005**, *14*(4), 385-400

Garcia-Villanueva, JA

Recolonization of Two Burnt *Quercus pyrenaica* Ecosystems by Coleoptera **1998**, 8(1), 21-27

Gardner, R

Strategy for a Fire Module in Dynamic Global Vegetation Models 1999, 9(1), 79-84

Gardner, RH

Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming **1999**, *9*(1), 21-36

Garlough, EC

Influences of moisture content, mineral content and bulk density on smouldering combustion of ponderosa pine duff mounds 2011, 20(4), 589-596

Garnett, ST

Manager-based valuations of alternative fire management regimes on Cape York Peninsula, Australia 2008, 17(5), 660-673

Garvey, M

Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat **2009**, 18(8), 1010-1020

Garvey, MF

Where's the fire? Quantifying uncertainty in a wildfire threat model

2004, 13(1), 17-25

Garwood, GC

Development of calibration algorithms for selected water content reflectometry probes for burned and non-burned organic soils of Alaska

2010, 19(7), 961-975

Gaskill, SE

Wildland firefighter load carriage: effects on transit time and physiological responses during simulated escape to safety zone **2003**, *12*(1), 111-116

Gasvoda, DS

Measuring duff moisture content in the field using a portable meter sensitive to dielectric permittivity **2004**, 13(3), 343-353

Gathany, MA

Post-fire soil fluxes of CO₂, CH₄ and N₂O along the Colorado Front Range 2011, 20(7), 838-846

Gatoulas, K

Assessing ignition probability and moisture of extinction in a Mediterranean grass fuel 2010, 19(1), 29-34

Gauthier, S

Fire impacts and crowning in the boreal forest: study of a large wildfire in western Quebec

2001, 10(2), 119-127

Gauthier, S

A 229-year dendroclimaticinferred record of forest fire activity for the Boreal Shield of Canada

2006, 15(3), 375-388

Gauthier, S

Does the post-fire organic layer compress beneath the snowpack? **2010**, 19(5), 673-676

Gauthier, S

The effects of surficial depositdrainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada

2010, 19(8), 1083-1098

Gauthier, S

Spatial pattern analyses of postfire residual stands in the black spruce boreal forest of western Ouebec

2010, 19(8), 1110-1126

Gauthier, S

Tree mortality and snag dynamics in North American boreal tree species after a wildfire: a long-term study 2011, 20(6), 751-763

Gavin, DG

Peak detection in sedimentcharcoal records: impacts of alternative data analysis methods on fire-history interpretations **2010**, 19(8), 996-1014

Gebert, KM

Factors influencing large wildland fire suppression expenditures

2008, 17(5), 650-659

Gebert, KM

Spatially explicit forecasts of large wildland fire probability and suppression costs for California 2011, 20(4), 508-517

Gentile, A

Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires 2005, 14(4), 355-363

Gentile, AE

Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy 2005, 14(4), 365-377

Genton, MG

Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida 2006, 15(1), 87-97

Gergel, SE

The transferability of a dNBRderived model to predict burn severity across 10 wildland fires in western Canada 2011, 20(4), 518-531

Gershunov, A

Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystem province 2002, 11(3&4), 257-266

Gessler, PE

Remote sensing techniques to assess active fire characteristics and post-fire effects 2006, 15(3), 319-345

Gessler, PE

Validation studies of EUMETSAT's active fire monitoring product over Turkey 2009, 18(5), 517-526

Ghosn, D

Evaluation of forest fire retardant removal from forest fuels by rainfall **2006**, 15(3), 293-297

Ghosn, D

Investigation of the wind speed threshold above which discarded cigarettes are likely to be moved by the wind 2006, 15(4), 567-576

Gianelle, D

Estimation of grassland biophysical parameters using hyperspectral reflectance for fire risk map prediction 2009, 18(7), 815-824

Giannakopoulos, C

The meteorological conditions associated with extreme fire risk in Italy and Greece: relevance to climate model studies

2008, 17(2), 155-165

Gibson, J

Mechanical mastication and prescribed fire in coniferhardwood chaparral: differing responses of ectomycorrhizae and truffles

2011, 20(7), 888-896

Gibson, KE

Development of post-fire crown damage mortality thresholds in ponderosa pine

2010, 19(5), 583-588

Gielow, R

Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire 2010, 19(6), 795-799

Giglio, L

Global fire activity from two years of MODIS data **2005**, *14*(2), 117-130

Giglio, L

Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product **2010**, 19(6), 705-709

Mapping burned area in Alaska using MODIS data: a data limitations-driven modification to the regional burned area algorithm

2011, 20(4), 487-496

Gil, L

Seed provenance and firerelated reproductive traits of Pinus pinaster in central Spain 2009, 18(8), 1003-1009

Gill. AM

Fire in Semiarid, Mallee Shrublands - Size of Flames From Discrete Fuel Arrays and Their Role in the Spread of Fire **1993**, 3(1), 3-12

Gill, AM

Variation of Live and Dead Fine Fuel Moisture in Pinus radiata Plantations of the Australian-Capital-Territory **1993**, 3(3), 155-168

Gill, AM

Seasonal Changes in Fire Behaviour in a Tropical Savanna in Northern Australia **1998**, 8(4), 227-239

Strategy for a Fire Module in Dynamic Global Vegetation Models **1999**, 9(1), 79-84

Gill AM

Theoretical fire-interval distributions 2001, 10(1), 73-77

Gill, AM

A review of current space-based fire monitoring in Australia and the GOFC/GOLD program for international coordination 2003, 12(3&4), 247-258

Gill. AM

Fire-created patchiness in Australian savannas 2003, 12(3&4), 323-331

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning **2007**, 16(4), 361-377

Gill. AM

Large fires, fire effects and the fire-regime concept 2008, 17(6), 688-695

Gill, AM

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia 2009, 18(1), 84-95

Gill, AM

Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather 2009, 18(8), 932-943

Gill, AM

Australian grassland fire danger using inputs from the GRAZPLAN grassland simulation model 2010, 19(3), 338-345

The initiation of fire spread in shrubland fuels recreated in the laboratory **2010**, 19(4), 512-520

The effect of fire on birds of mulga woodland in arid central Australia 2010, 19(7), 949-960

Gillard, P

Comparison of several kinetic approaches to evaluate the pyrolysis of three Mediterranean forest fuels 2011, 20(3), 407-417

Gilless, JK

Assessing the benefits of reducing fire risk in the wildland-urban interface: a contingent valuation approach **1999**, 9(1), 9-20

Gilless, JK

Analysing initial attack on wildland fires using stochastic simulation

2006, 15(1), 137-146

Gillon, D

Heat-Transfer in the Soil During Very Low-Intensity Experimental Fires - the Role of **Duff and Soil-Moisture Content 1994**, 4(4), 225-237

Gillon, D

Combustion and Nutrient Losses During Laboratory Burns **1995**, 5(1), 1-12

Gimenez, A

Fire regime of a Elionorus muticus Spreng. savanna, western Chaco region, Argentina **2001**, 10(1), 65-72

Giménez, A

Long-term forest fire retardants: a review of quality effectiveness, application and environmental considerations 2004, 13(1), 1-15

Girardin, MP

A 229-year dendroclimaticinferred record of forest fire activity for the Boreal Shield of Canada 2006, 15(3), 375-388

Girardin, MP

Historical fire regime shifts related to climate teleconnections in the Waswanipi area, central Quebec, Canada 2007, 16(5), 607-618

Girardin, MP

Dendroclimatic inference of wildfire activity in Quebec over the 20th century and implications for natural disturbance-based forest management at the northern limit of the commercial forest 2008, 17(3), 348-362

Girardin, MP

Spatial variation of trends in wildfire and summer drought in British Columbia, Canada, 1920-2000

2010, 19(3), 272-283

Girardin, MP

Variation in local weather explains differences in fire regimes within a Québec southeastern boreal forest landscape **2010**, 19(8), 1073-1082

Girardin, MP

Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data **2010**, 19(8), 1127-1139

Girardin, MP

Wildfires in boreal ecosystems: past, present and some emerging trends **2010**, 19(8), 991-995

Gitas, IZ

A semi-automated objectoriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery

2004, *13*(3), 367-376

Fire type mapping using objectbased classification of Ikonos imagery

2006, 15(4), 457-462

Gitas, IZ

Mapping the severity of fire using object-based classification of IKONOS imagery

2008, 17(3), 431-442

Gitas, IZ

Monitoring post-fire regeneration in Mediterranean ecosystems by employing multitemporal satellite imagery **2009**, 18(6), 648-658

Glenn, NF

Estimation of fire severity using pre- and post-fire LiDAR data in sagebrush steppe rangelands 2009, 18(7), 848-856

Gobius, N

Manager-based valuations of alternative fire management regimes on Cape York Peninsula, Australia 2008, 17(5), 660-673

Goergen, EM

Influence of a native legume on soil N and plant response following prescribed fire in sagebrush steppe **2009**, 18(6), 665-675

Goforth, BR

Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California 2005, 14(4), 343-354

Gokhal, B

Assessing the susceptibility of semiarid rangelands to wildfires using Terra MODIS and Landsat Thematic Mapper data 2011, 20(5), 690-701

Goldammer, JG

Strategy for a Fire Module in Dynamic Global Vegetation Models 1999, 9(1), 79-84

Goldammer, JG

Effects of fire frequency on prescribed fire behaviour and soil temperatures in dry dipterocarp forests **2011**, 20(1), 35-45

Gollberg, GE

Introduction: Integrating spatial technologies and ecological principles for a new age in fire management

2001, 10(3&4), 263-265

Gomendy, V

Heat-Transfer in the Soil During Very Low-Intensity Experimental Fires - the Role of **Duff and Soil-Moisture Content** 1994, 4(4), 225-237

Gomendy, V

Combustion and Nutrient Losses During Laboratory Burns

1995, 5(1), 1-12

Gómez, I

Soil organic matter and aggregates affected by wildfire in a Pinus halenensis forest in a Mediterranean environment 2002, 11(2), 107-114

Gómez, I

Microbial recolonization and chemical changes in a soil heated at different temperatures 2005, 14(4), 385-400

Gómez-González, S

Litter burning does not equally affect seedling emergence of native and alien species of the Mediterranean-type Chilean matorral 2009, 18(2), 213-221

Gómez-Tejedor, JA

A mesoscale model application to fire weather winds 1999, 9(4), 255-263

Gonçalves, JC

Laboratory fire spread analysis using visual and infrared images

2006, 15(2), 179-186

Gong, P

A dynamic algorithm for wildfire mapping with NOAA/AVHRR data 2004, 13(3), 275-285

Gong, S

Modelling emissions from Canadian wildfires: a case study of the 2002 Quebec fires 2007, 16(6), 649-663

Gonzales-Caban, A

Estimating the Value of Reducing Fire Hazards to Old-Growth Forests in the Pacific-Northwest - a Contingent Valuation Approach **1994**, 4(4), 209-216

González, I

Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem 2009, 18(4), 430-441

González, ME

The historical range of variability of fires in the Andean-Patagonian Nothofagus forest region **2008**, 17(6), 724-741

González-Alonso, F

Integration of AWiFS and MODIS active fire data for burn mapping at regional level using the Burned Area Synergic Algorithm (BASA) 2009, 18(4), 404-414

González-Cabán, A

'SINAMI': a tool for the economic evaluation of forest fire management programs in Mediterranean ecosystems 2010, 19(7), 927-936

González-Doncel, I

Seed provenance and firerelated reproductive traits of Pinus pinaster in central Spain **2009**, 18(8), 1003-1009

González-Hidalgo, JC

Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands 2004, 13(1), 79-87

González-Hidalgo, JC

Fire and torrential rainfall: effects on seedling establishment in Mediterranean gorse shrublands 2005, 14(4), 413-422

González-Prieto, SJ

Long-term effects of fire and three firefighting chemicals on a soil-plant system **2011**, 20(7), 856-865

Good, P

The meteorological conditions associated with extreme fire risk in Italy and Greece: relevance to climate model studies

2008, 17(2), 155-165

Goodman, PS

Determinants of inter-annual variation in the area burnt in a semiarid African sayanna 2011, 20(4), 532-539

Goodman, PS

Determinants of spatial variation in fire return period in a semiarid African savanna 2011, 20(4), 540-549

Goodrick, S

Quantifying parametric uncertainty in the Rothermel model

2008, 17(5), 638-649

Goodrick, S

Smoke incursions into urban areas: simulation of a Georgia prescribed burn 2009, 18(3), 336-348

Goodrick, SL

Modification of the Fosberg fire weather index to include drought 2002, 11(3&4), 205-211

Goodrick, SL

Coherent vortical structures in numerical simulations of buoyant plumes from wildland fires

2005, 14(2), 61-75

Goodrick, SL

Evaluation of MM5 model resolution when applied to prediction of National Fire Danger Rating indexes **2006**, *15*(2), 147-154

Goodrick, SL

Florida wildfire activity and atmospheric teleconnections **2009**, *18*(4), 476-482

Goossens, R

Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece

2010, 19(5), 558-569

Gorlier, A

Developing an Adaptive Management approach to prescribed burning: a long-term heathland conservation experiment in north-west Italy **2009**, *18*(6), 727-735

Gosper, CR

Repeated disturbance through chaining and burning differentially affects recruitment among plant functional types in fire-prone heathlands **2010**, *19*(1), 52-62

Gosper, CR

Contemporary fire regimes in a fragmented and an unfragmented landscape: implications for vegetation structure and persistence of the fire-sensitive malleefowl **2011**, *20*(2), 184-194

Gottschalk, RM

Effects of exotic grasses on potential fine fuel loads in the groundcover of south Florida slash pine savannas **2001**, *10*(2), 155-159

Gould, J

A physics-based approach to modelling grassland fires **2007**, *16*(1), 1-22

Gould, J

Simple models for predicting dead fuel moisture in eucalyptus forests **2010**, *19*(4), 459-467

Gould, JS

The Influence of Fuel, Weather and Fire Shape Variables on Fire-Spread in Grasslands **1993**, 3(1), 31-44

Gould, JS

Fire Growth in Grassland Fuels **1995**, *5*(4), 237-247

Gould, JS

Fire Growth and Acceleration **1997**, 7(1), 1-5

Gould, JS

Physical Modelling of Leaf Scorch Height From Prescribed Fires in Young *Eucalyptus Sieberi* Regrowth Forests in South-Eastern Australia **1997**, 7(1), 7-20

Gould, JS

Prediction of Fire Spread in Grasslands **1998**, 8(1), 1-13

Gouma, V

Wildland Fire Danger Zoning – a Methodology **1998**, *8*(1), 37-43

Govender, N

The contribution of fire research to fire management: a critical review of a long-term experiment in the Kruger National Park, South Africa **2007**, *16*(5), 519-530

Gowman, LM

Implications of changing climate for global wildland fire **2009**, *18*(5), 483-507

Gracia, M

Factors influencing the pattern of fire severities in a large wildfire under extreme meteorological conditions in the Mediterranean basin **2009**, *18*(7), 755-764

Graham, JB

Forest floor fuel dynamics in mixed-oak forests of south-eastern Ohio **2006**, *15*(4), 479-488

Graham, JM

Analysis of Alaskan burn severity patterns using remotely sensed data **2007**, 16(3), 277-284

Graham, RC

Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California **2005**, *14*(4), 343-354

Grala, K

Spatial and temporal characteristics of wildfires in Mississippi, USA **2010**, *19*(1), 14-28

Granström, A

Experimental fire behaviour in managed *Pinus sylvestris* and *Picea abies* stands of Finland **2007**, *16*(4), 414-425

Grant, CD

Prescribed burning of thinning slash in regrowth stands of jarrah (*Eucalyptus marginata*) following bauxite mining in south-west Australia **2010**, 19(6), 737-745

Grasso, GM

Effects of Heating on the Microbial Populations of a Grassland Soil **1996**, *6*(2), 67-70

Grayzeck-Souter, S

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

2011, 20(3), 350-363

Grayzeck-Souter, SA

Interpreting federal policy at the local level: the wildland–urban interface concept in wildfire protection planning in the eastern United States **2009**, *18*(3), 278-289

Green, K

Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity **2008**, *17*(6), 793-808

Greene, DF

Does the post-fire organic layer compress beneath the snowpack? **2010**, *19*(5), *673-676*

Greenfield, JR

The Oklahoma Fire Danger Model: An operational tool for mesoscale fire danger rating in Oklahoma

2002, 11(3&4), 183-191

Greenville, AC

The fire history of an arid grassland: the influence of antecedent rainfall and ENSO **2009**, 18(6), 631-639

Greer, J

A primer on mapping vegetation using remote sensing **2001**, *10*(3&4), 277-287

Grego, JM

The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests **2009**, *18*(3), 315-325

Grenfell, IC

An examination of fire spread thresholds in discontinuous fuel beds

2010, 19(2), 163-170

Grigg, AH

Prescribed burning of thinning slash in regrowth stands of jarrah (*Eucalyptus marginata*) following bauxite mining in south-west Australia **2010**, 19(6), 737-745

Grissino-Mayer, HD

Modeling fire interval data from the American southwest with the Weibull distribution **1999**, *9*(1), 37-50

Groen, AH

Effectiveness of aerial seeding and straw mulch for reducing post-wildfire erosion, northwestern Montana, USA **2008**, *17*(5), 559-571

Groeschl, DA

Early Vegetative Response to Wildfire in a Table Mountain-Pitch Pine Forest 1992, 2(4), 177-184

Groeschl, DA

Wildfire Effects on Forest Floor and Surface Soil in a Table Mountain Pine-Pitch Pine Forest 1993, 3(3), 149-154

Guerra, J

Stages of Bryophyte Succession After Fire in Mediterranean Forests (SE Spain) 1994, 4(1), 33-44

Guerrero, C

Soil organic matter and aggregates affected by wildfire in a *Pinus halepensis* forest in a Mediterranean environment **2002**, *11*(2), 107-114

Guerrero, C

Microbial recolonization and chemical changes in a soil heated at different temperatures **2005**, *14*(4), 385-400

Guertin, DP

Improved Fire Growth Modeling **1992**, *2*(2), 47-54

Guertin, DP

FIREMAP - Simulation of Fire Growth With a Geographic Information System 1992, 2(2), 87-96

Guijarro, M

Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds **2009**, *18*(8), 951-969

Guijarro, M

Flammability descriptors of fine dead fuels resulting from two mechanical treatments in shrubland: a comparative laboratory study **2010**, 19(3), 314-324

Guinot, JP

A Satellite Index of Risk of Forest Fire Occurrence in Summer in the Mediterranean Area 1998, 8(4), 173-182

Gumpertz, ML

Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida **2006**, *15*(1), 87-97

Gurgel Veras, CA

Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire **2010**, 19(6), 795-799

Guyette, RP

Fire scars reveal source of New England's 1780 Dark Day **2007**, *16*(3), 266-270

Haase, SM

The Effects of Repeated Prescribed Burning on *Pinus* ponderosa Growth **1994**, 4(4), 239-247

Hachmi, M

Alternative equations to estimate the surface-to-volume ratio of different forest fuel particles

2011, 20(5), 648-656

Hagen, E

Bromus tectorum cover mapping and fire risk **2006**, *15*(1), 113-119

Hajny, KM

Rhus glabra response to season and intensity of fire in tallgrass prairie

2011, 20(5), 709-720

Hall, BI.

Precipitation associated with lightning-ignited wildfires in Arizona and New Mexico **2007**, *16*(2), 242-254

Hall, BL

Fire ignitions related to radar reflectivity patterns in Arizona and New Mexico **2008**, *17*(3), 317-327

Hall, RJ

Estimating direct carbon emissions from Canadian wildland fires **2007**, *16*(5), 593-606

TT-11 D

Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results **2008**, *17*(4), 443-462

Hall, RJ

Remote sensing of burn severity: experience from western Canada boreal fires **2008**, 17(4), 476-489

Hall, RJ

Large fires as agents of ecological diversity in the North American boreal forest **2008**, *17*(6), 754-767

Hall, TE

Career stages in wildland firefighting: implications for voice in risky situations **2011**, *20*(1), 115-124

Hallett, DJ

Peak detection in sediment—charcoal records: impacts of alternative data analysis methods on fire-history interpretations **2010**, *19*(8), 996-1014

- - , - (- ,

Halofsky, JE

Relationships among indices of fire severity in riparian zones **2009**, *18*(5), 584-593

Hamilton, A

Using visual obstruction to estimate heathland fuel load and structure

2008, *17*(3), 380-389

Hammer, RB

Wildland–urban interface housing growth during the 1990s in California, Oregon, and Washington **2007**, 16(3), 255-265

Hammill, KA

Remote sensing of fire severity in the Blue Mountains: influence of vegetation type and inferring fire intensity **2006**, *15*(2), 213-226

Hanley, DE

Florida wildfire activity and atmospheric teleconnections **2009**, *18*(4), 476-482

Hann, WJ

Fire and land management planning and implementation across multiple scales **2001**, *10*(3&4), 389-403

Hanna, I.

Predicting and mitigating weed invasions to restore natural post-fire succession in Mesa Verde National Park, Colorado, USA **2006**, *15*(2), 247-259

Hannon, GE

The role of fire in southern Scandinavian forests during the late Holocene **2010**, 19(8), 1040-1049

Hanson, CT

Post-fire epicormic branching in Sierra Nevada *Abies concolor* (white fir)

2006, 15(1), 31-35

Hanson, CT

Post-fire survival and flushing in three Sierra Nevada conifers with high initial crown scorch **2009**, 18(7), 857-864

Hardy, CC

Modeling Smoldering Emissions From Prescribed Broadcast Burns in the Pacific-Northwest

1994, 4(3), 135-142

Hardy, CC

Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns

2001, 10(3&4), 329-342

Hardy, CC

Spatial data for national fire planning and fuel management **2001**, *10*(3&4), 353-372

Hardy, CC

Fire danger rating in the United States of America: an evolution since 1916

2007, 16(2), 217-231

Hardy, CE

Fire danger rating in the United States of America: an evolution since 1916

2007, 16(2), 217-231

Harrington, MG

Predicting *Pinus ponderosa*Mortality From Dormant
Season and Growing-Season
Fire Injury
1993, 3(2), 65-72

Harris, AJL

Towards Automated Fire Monitoring From Space: Semi-Automated Mapping of the January 1994 New South Wales Wildfires Using AVHRR Data. **1996**, *6*(3), 107-116

Harris, S

The relationship between the monsoonal summer rain and dry-season fire activity of northern Australia **2008**, *17*(5), 674-684

Harrod, RJ

Validation studies of EUMETSAT's active fire monitoring product over Turkey **2009**, 18(5), 517-526

Harrod, RJ

Impacts of erosion control treatments on native vegetation recovery after severe wildfire in the Eastern Cascades, USA **2010**, *19*(4), 490-499

Hartford, RA

When It's Hot... Or Maybe It's Not! (Surface Flaming May Not Portend Extensive Soil Heating) 1992, 2(3), 139-144

Hartnett, DC

Rhus glabra response to season and intensity of fire in tallgrass prairie

2011, 20(5), 709-720

Hartskeerl, K

Does firefighting foam affect the growth of some Australian native plants? **2004**, *13*(3), 335-341

Hartzell, T

Changing fuel management strategies - The challenge of meeting new information and analysis needs

2001, 10(3&4), 267-275

Harvey, SD

Forecasting diurnal variations in fire intensity to enhance wildland firefighter safety **2002**, *11*(3&4), 173-182

Hatten, JA

Fire severity effects on soil organic matter from a ponderosa pine forest: a laboratory study **2010**, *19*(5), 613-623

Hatzopoulos, J

Integrating new methods and tools in fire danger rating **2007**, *16*(3), 306-316

Hauer, FF

Phosphorus and Nitrogen Dynamics in Streams Associated With Wildfire: a Study of Immediate and Longterm Effects 1998, 8(4), 183-198

Haughland, DL

Small mammal communities in a pyrogenic habitat mosaic **2007**, *16*(6), 728-740

Hauser, P

A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia **2001**, 10(1), 79-89

Hawbaker, TJ

Predicting spatial patterns of fire on a southern California landscape **2008**, *17*(5), 602-613

He, HS

Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China **2007**, *16*(1), 34-44

. . . .

Heath, B

Contemporary fire regimes of northern Australia, 1997–2001: change since Aboriginal occupancy, challenges for sustainable management **2003**, *12*(3&4), 283-297

Heathcott, M

Lightning and lightning fire, central cordillera, Canada **2002**, *11*(1), 41-51

Heikkinen, J

Declining fires in *Larix*-dominated forests in northern Irkutsk district **2011**, 20(2), 248-254

Heilman, WE

Simulations of Horizontal Roll Vortex Development Above Lines of Extreme Surface Heating 1992, 2(2), 55-68

Heilman, WE

Atmospheric Simulations of Extreme Surface Heating Episodes on Simple Hills 1992, 2(3), 99-114

Heilman, WE

A Synoptic Climatology for Forest-Fires in the NUS and Future Implications From GCM Simulations 1994, 4(4), 217-224

Heilman, WE

Turbulent kinetic energy during wildfires in the north central and north-eastern US **2010**, *19*(3), 346-363

Heinlein, TA

Assessing fire regimes on Grand Canyon landscapes with fire-scar and fire-record data **2003**, *12*(2), 129-145

Heinlein, TA

Fire history and stand structure of two ponderosa pine-mixed conifer sites: San Francisco Peaks, Arizona, USA **2005**, *14*(3), 307-320

Heinlein, TA

Fire histories in ponderosa pine forests of Grand Canyon are well supported: reply to Baker **2006**, *15*(3), 439-445

Heinze, DA

Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity 2008, 17(6), 793-808

Helbig, M

Effect of oxygen deprivation on soil hydrophobicity during heating

2005, 14(4), 449-455

Hély, C

Landscape composition influences local pattern of fire size in the eastern Canadian boreal forest: role of weather and landscape mosaic on fire size distribution in mixedwood boreal forest using the Prescribed Fire Analysis System 2010, 19(8), 1099-1109

Hély, C

Wildfires in boreal ecosystems: past, present and some emerging trends **2010**, 19(8), 991-995

Hempel, C

A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia 2001, 10(1), 79-89

Henderson, MK

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Henderson, SB

The validity and utility of MODIS data for simple estimation of area burned and aerosols emitted by wildfire events

2010, 19(7), 844-852

Hendricks, JJ

Season of burn and nutrient losses in a longleaf pine ecosystem

2004, 13(4), 443-453

Hendrie, AL

Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools **1997**, 7(2), 105-118

Hendrie, AL

Project Aquarius 6. Heat Load From Exertion, Weather, and Fire in Men Suppressing Wildland Fires **1997**, 7(2), 119-131

Hendrie, AL

Project Aquarius 7. Physiological and Subjective Responses of Men Suppressing Wildland Fires **1997**, 7(2), 133-144

Hendrie, AL

Project Aquarius 8. Sweating, Drinking, and Dehydration in Men Suppressing Wildland

1997, 7(2), 145-158

Hendrie, AL

Project Aquarius 9. Relative Influence of Job Demands and Personal Factors on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 159-166

Hendrie, AL

Project Aquarius 10. Effects of Work, Weather, and Fire on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 167-180

Hendrie, AL

Project Aquarius 11. Effects of Fitness, Fatness, Body Size, and Age on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 181-199

Hendrie, AL

Project Aquarius 12. Effects of Style, Fabric, and Flame-Retardant Treatment on the Effectiveness and Acceptability of Wildland Firefighters' Clothing 1997, 7(2), 201-206

Hendrie, AL

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing 1997, 7(2), 207-218

Hendrie, AL

Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer Bushfires With Hand Tools: Background, Objectives, and Methods **1997**, 7(2), 69-76

Hendrie, AL

Project Aquarius 2. Limitations of Maximum Oxygen Uptake for Predicting the Strains of Building Fireline With a Rakehoe **1997**, 7(2), 77-85

Hendrie, AL

Project Aquarius 3. Effects of Work Rate on the Productivity, Energy Expenditure, and Physiological Responses of Men Building Fireline With a Rakehoe in Dry Eucalypt Forest **1997**, 7(2), 87-98

Hendrie, AL

Project Aquarius 4. Experimental Bushfires. Suppression Procedures, and Measurements 1997, 7(2), 99-104

Hendrie, AL

Corrigendum to: Stress, strain, and productivity in men suppressing wildland fires with hand tools. International Journal of Wildland Fire, 7(2) (June 1997), pp. 69-218. Special Issue: 'Project Aquarius. Stress, strain and productivity in wildland firefighters 2004, 13(3), 387-390

Henry, MC

Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA 2007, 16(1), 23-33

Herd, EPK

Assessing the exposure of the built environment to potential ignition sources generated from vegetative fuel 2010, 19(3), 299-313

Hernández Clemente, R Monitoring post-fire regeneration in Mediterranean ecosystems by employing multitemporal satellite imagery

2009, 18(6), 648-658

Hernando, C

Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds **2009**, 18(8), 951-969

Hernando, C

Flammability descriptors of fine dead fuels resulting from two mechanical treatments in shrubland: a comparative laboratory study 2010, 19(3), 314-324

Herr, DG

Effect of Prescribed Burning on the Ectomycorrhizal Infectivity of a Forest Soil 1994, 4(2), 95-102

Herranz, JM

Stages of Bryophyte Succession After Fire in Mediterranean Forests (SE Spain) **1994**, 4(1), 33-44

Herranz, JM

The Role of Soil Seed Bank in the Early Stages of Plant Recovery After Fire in a Pinus Pinaster Forest in SE Spain **1996**, 6(1), 31-35

Herranz, JM

Influence of heat on seed germination of nine woody Cistaceae species **1999**, 9(3), 173-182

El Niño and its impact on fire weather conditions in Alaska **2001**, 10(1), 1-13

Hesseln, H

Economic analysis of geospatial technologies for wildfire suppression 2010, 19(4), 468-477

Hessl, AE

Climate drivers of regionally synchronous fires in the inland Northwest (1651–1900) 2008, 17(1), 40-49

Hewson, J

Global fire activity from two years of MODIS data **2005**, 14(2), 117-130

Heyerdahl, EK

Climate effects on historical fires (1630-1900) in Utah 2008, 17(1), 28-39

Heyerdahl, EK

Climate drivers of regionally synchronous fires in the inland Northwest (1651-1900) 2008, 17(1), 40-49

Heyerdahl, EK

Fine-scale variation of historical fire regimes in sagebrush-steppe and juniper woodland: an example from California, USA 2008, 17(2), 245-254

Hibbs, DE

Relationships among indices of fire severity in riparian zones **2009**, 18(5), 584-593

Hicke, JA

Large fires as agents of ecological diversity in the North American boreal forest 2008, 17(6), 754-767

The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests 2009, 18(3), 315-325

Hiers, JK

Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics 2009, 18(6), 676-685

Higgins, A

An optimisation modelling approach to seasonal resource allocation for planned burning 2011, 20(2), 175-183

Higgins, KB

A Computer-Based System for Fire Management in the Mountains of the Cape Province, South-Africa **1994**, 4(1), 17-32

Higgins, SI

Physically motivated empirical models for the spread and intensity of grass fires 2008, 17(5), 595-601

Higuera, PE

Peak detection in sedimentcharcoal records: impacts of alternative data analysis methods on fire-history interpretations 2010, 19(8), 996-1014

Hilbruner, MW

Changing fuel management strategies - The challenge of meeting new information and analysis needs

2001, 10(3&4), 267-275

Hill, GJ

Remote sensing of fire regimes in semi-arid Nusa Tenggara Timur, eastern Indonesia: current patterns, future prospects

2006, 15(3), 307-317

Hill, RW

Bromus tectorum cover mapping and fire risk **2006**, 15(1), 113-119

Fuel load, humus consumption and humus moisture dynamics in Central European Scots pine stands

2005, 14(2), 153-159

Hirsch, KG

A Review of Initial Attack Fire Crew Productivity and Effectiveness 1996, 6(4), 199-215

Hoadley, JL

Evaluation of MM5 model resolution when applied to prediction of National Fire Danger Rating indexes 2006, 15(2), 147-154

Hobbs, MW

Predicting the Height to Live Crown Base in Plantations of Four Boreal Forest Species 1994, 4(2), 103-106

Hobbs, MW

The effect of fire front width on surface fire behaviour 1999, 9(4), 247-253

Hogoboom, B

Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California

2006, 15(2), 237-245

Regional-scale weather patterns and wildland fires in central Portugal **2009**, 18(1), 36-49

Holcombe, BV

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing **1997**, 7(2), 207-218

Holden, ZA

Remote sensing techniques to assess active fire characteristics and post-fire effects **2006**, 15(3), 319-345

Holden, ZA

Beyond Landsat: a comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA 2010, 19(4), 449-458

Holden, ZA

Using fuzzy C-means and local autocorrelation to cluster satellite-inferred burn severity

2010, 19(7), 853-860

Hollis, JJ

A simple method for fieldbased grassland curing assessment

2011, 20(6), 804-814

Holman, JO

Temporal and spatial structure in a daily wildfire-start data set from the western United States (1986 - 96)

2008, 17(1), 8-17

Holmes, TP

Spatially explicit forecasts of large wildland fire probability and suppression costs for California

2011, 20(4), 508-517

Holz, A

The historical range of variability of fires in the Andean-Patagonian Nothofagus forest region 2008, 17(6), 724-741

Hom, J

Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens 2009, 18(3), 268-277

Hood, SM

Evaluation of a post-fire tree mortality model for western USA conifers **2007**, 16(6), 679-689

Hood, SM

Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA 2011, 20(2), 255-271

Hope, AS

Effect of fire weather, fuel age and topography on patterns of remnant vegetation following a large fire event in southern California, USA 2010, 19(4), 415-426

Hoschke, BN

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing **1997**, 7(2), 207-218

Hoscilo, A

Effect of repeated fires on landcover change on peatland in southern Central Kalimantan. Indonesia, from 1973 to 2005 **2011**, 20(4), 578-588

Hostetler, SW

Temporal and spatial structure in a daily wildfire-start data set from the western United States (1986-96)

2008, 17(1), 8-17

Houssard, C

Heat-Transfer in the Soil During Very Low-Intensity Experimental Fires - the Role of **Duff and Soil-Moisture Content** 1994, 4(4), 225-237

Houssard, C

Combustion and Nutrient Losses During Laboratory Burns

1995, 5(1), 1-12

Hoy, EE

Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results 2008, 17(4), 443-462

Hoy, EE

Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests **2008**, 17(4), 500-514

Hoy, EE

Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests **2008**, 17(4), 515-526

Hoy, EE

Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data 2008, 17(4), 527-534

Hoy, EE

Mapping burned area in Alaska using MODIS data: a data limitations-driven modification to the regional burned area algorithm

2011, 20(4), 487-496

Hu, Y

Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China

2007, 16(1), 34-44

Huang, C-H

Rapid locating of fire points from Formosat-2 high spatial resolution imagery: example of the 2007 California wildfire 2009, 18(4), 415-422

Huang, Z

Detection of non-linearities in the dependence of burn area on fuel age and climatic variables **2003**, 12(1), 1-6

Hubbert, KR

Lethal soil temperatures during burning of masticated forest residues

2005, 14(3), 267-276

Hubbert, KR

Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California 2005, 14(4), 343-354

Hubbert, KR

Temporal fluctuations in soil water repellency following wildfire in chaparral steeplands, southern California 2005, 14(4), 439-447

Hudak, AT

Estimating combustion of large downed woody debris from residual white ash 2005, 14(3), 245-248

Hudak, AT

Remote sensing techniques to assess active fire characteristics and post-fire effects 2006, 15(3), 319-345

Hudak, AT

Remote sensing for prediction of 1-year post-fire ecosystem condition 2009, 18(5), 594-608

Spectral analysis of charcoal on soils: implicationsfor wildland fire severity mapping methods 2010, 19(7), 976-983

Hudak, AT

Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA 2011, 20(2), 255-271

Hudson, M

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia 2009, 18(1), 84-95

Hufford, GL

Detection and growth of an Alaskan forest fire using GOES-9 3.9 µm imagery **1999**, 9(2), 129-136

Hufford, GL

El Niño and its impact on fire weather conditions in Alaska **2001**, 10(1), 1-13

Humphreys, GS

Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures **2004**, *13*(2), 157-163

Hungerford, R

Factors affecting sustained smouldering in organic soils from pocosin and pond pine woodland wetlands **2007**, 16(1), 107-118

Hungerford, RD

Measuring duff moisture content in the field using a portable meter sensitive to dielectric permittivity 2004, 13(3), 343-353

Where's the fire? Quantifying uncertainty in a wildfire threat model 2004, 13(1), 17-25

Hunter, ME

Establishment of non-native plant species after wildfires: effects of fuel treatments, abiotic and biotic factors, and post-fire grass seeding treatments 2006, 15(2), 271-281

Hunter, ME

Recent trends in post-wildfire seeding in western US forests: costs and seed mixes **2011**, *20*(5), 702-708

Hussaini, MY

Coherent vortical structures in numerical simulations of buoyant plumes from wildland fires

2005, 14(2), 61-75

Hussaini, MY

Quantifying parametric uncertainty in the Rothermel model

2008, 17(5), 638-649

Hutchinson, TF

A comparison of thermocouples and temperature paints to monitor spatial and temporal characteristics of landscapescale prescribed fires **2004**, *13*(3), 311-322

Hutley, LB

Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia **2003**, *12*(3&4), 333-340

Hyde, JC

The combustion of sound and rotten coarse woody debris: a review

2011, 20(2), 163-174

Hyde, KD

Integrating fuel treatment into ecosystem management: a proposed project planning process

2010, 19(6), 725-736

Hyde, KD

Built structure identification in wildland fire decision support **2011**, *20*(1), 78-90

Ichoku, C

The validity and utility of MODIS data for simple estimation of area burned and aerosols emitted by wildfire events

2010, 19(7), 844-852

In, H-J

Validation of the Haines Index predicted from real-time high-resolution MM5 forecasts using rawinsonde observations over the eastern half of the USA **2005**, *14*(3), 233-244

Inbar, M

Soil Erosion and Forestry Management After Wildfire in a Mediterranean Woodland, Mt. Carmel, Israel **1997**, 7(4), 285-294

Isackson, C

Flame interactions and burning characteristics of two live leaf samples

2009, 18(7), 865-874

Isackson, C

Experimental measurements during combustion of moist individual foliage samples **2010**, *19*(2), 153-162

Ive, JR

Fire Planning for Wildlife Management - a Decision-Support System for Nadgee-Nature-Reserve, Australia **1994**, 4(2), 107-121

Ive, JR

Fire Planning for Wildlife Management: A Reply to Whelan and Baker (1996). **1996**, *6*(1), 3-4

Iverson, LR

A comparison of thermocouples and temperature paints to monitor spatial and temporal characteristics of landscapescale prescribed fires **2004**, *13*(3), 311-322

Izhaki, I

Post-Fire Arthropod Assemblages in Mediterranean Forest Soils in Israel 1997, 7(4), 317-325

Izhaki, I

The Effects of Post-Fire Management on Bird Community Succession **1997**, 7(4), 335-342

Jabrzemski, R

Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: model evaluation and comparison with National Fire Danger Rating System algorithms

2007, 16(2), 204-216

Jackson, PL

The validity and utility of MODIS data for simple estimation of area burned and aerosols emitted by wildfire events

2010, 19(7), 844-852

Jackson, WA

Smoke incursions into urban areas: simulation of a Georgia prescribed burn **2009**, *18*(3), 336-348

Jacobson, C

Estimation of vegetative fuel loads using Landsat TM imagery in New South Wales, Australia **2003**, *12*(2), 185-194

Jacobson, CR

Use of linguistic estimates and vegetation indices to assess post-fire vegetation regrowth in woodland areas

2010, 19(1), 94-103

Jacoby, PW

Honey Mesquite Canopy Responses to Single Winter Fires: Relation to Herbaceous Fuel, Weather and Fire Temperature 1998, 8(4), 241-252

Jakes, I

Interpreting federal policy at the local level: the wildland–urban interface concept in wildfire protection planning in the eastern United States **2009**, *18*(3), 278-289

Jakes, PJ

Adoption and perceptions of shelter-in-place in California's Rancho Santa Fe Fire Protection District **2010**, 19(6), 677-688

Jakes, PJ

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

2011, 20(3), 350-363

Jakober, M

Effects of wildfire on stream temperatures in the Bitterroot River Basin, Montana **2011**, *20*(2), 240-247

Janis, MJ

Near-real time mapping of Keetch-Byram drought index in the south-eastern United States **2002**, 11(3&4), 281-289

Janssen, V

Implementation of quantitative bushfire risk analysis in a GIS environment **2010**, *19*(5), 649-658

Jappiot, M

Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds **2009**, *18*(8), 951-969

Jass, RB

Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites **2008**, *17*(1), 115-130

Jass, RB

Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA **2008**, *17*(1), 96-114

Iaven K

Tree mortality and snag dynamics in North American boreal tree species after a wildfire: a long-term study **2011**, 20(6), 751-763

Jeffery, SE

Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools 1997, 7(2), 105-118

Jeffery, SE

Project Aquarius 6. Heat Load From Exertion, Weather, and Fire in Men Suppressing Wildland Fires 1997, 7(2), 119-131

Jeffery, SE

Project Aquarius 7.
Physiological and Subjective
Responses of Men Suppressing
Wildland Fires
1997, 7(2), 133-144

Jeffery, SE

Project Aquarius 8. Sweating, Drinking, and Dehydration in Men Suppressing Wildland Fires 1997, 7(2), 145-158

Jeffery, SE

Project Aquarius 9. Relative Influence of Job Demands and Personal Factors on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 159-166

Jeffery, SE

Project Aquarius 10. Effects of Work, Weather, and Fire on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 167-180

Jeffery, SE

Project Aquarius 11. Effects of Fitness, Fatness, Body Size, and Age on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 181-199

Jeffery, SE

Project Aquarius 12. Effects of Style, Fabric, and Flame-Retardant Treatment on the Effectiveness and Acceptability of Wildland Firefighters' Clothing 1997, 7(2), 201-206

Jeffery, SE

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing 1997, 7(2), 207-218

Jeffery, SE

Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer Bushfires With Hand Tools: Background, Objectives, and Methods 1997, 7(2), 69-76

Jeffery, SE

Project Aquarius 2. Limitations of Maximum Oxygen Uptake for Predicting the Strains of Building Fireline With a Rakehoe 1997, 7(2), 77-85

Jeffery, SE

Project Aquarius 3. Effects of Work Rate on the Productivity, Energy Expenditure, and Physiological Responses of Men Building Fireline With a Rakehoe in Dry Eucalypt Forest 1997, 7(2), 87-98

Jeffery, SE

Project Aquarius 4. Experimental Bushfires, Suppression Procedures, and Measurements 1997, 7(2), 99-104

Jenkins, MA

A Coupled Atmosphere-Fire Model: Role of the Convective Froude Number and Dynamic Fingering at the Fireline **1996**, *6*(4), 177-190

Jenkins, MA

An examination of the sensitivity of numerically simulated wildfires to low-level atmospheric stability and moisture, and the consequences for the Haines Index **2002**, *11*(3&4), 213-232

Jenkins, MA

Investigating the Haines Index using parcel model theory **2004**, *13*(3), 297-309

Jenkins, MA

A physics-based approach to modelling grassland fires **2007**, *16*(1), 1-22

Jenkins, MA

The importance of fire—atmosphere coupling and boundary-layer turbulence to wildfire spread **2009**, *18*(1), 50-60

Jenkins, SE

Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA **2011**, *20*(1), 125-141

Jiang, Y

Characterization of wildfire regimes in Canadian boreal terrestrial ecosystems **2009**, *18*(8), 992-1002

Jimenez, DJ

Prediction and measurement of thermally induced cambial tissue necrosis in tree stems **2006**, *15*(1), 3-17

Jimenez, E

Quantifying parametric uncertainty in the Rothermel model **2008**, *17*(5), 638-649

Jiménez, E

Effectiveness of three post-fire treatments at reducing soil erosion in Galicia (NW Spain) **2011**, *20*(1), 104-114

Jiménez, E

Exploring three-dimensional coupled fire-atmosphere interactions downwind of wind-driven surface fires and their influence on backfires using the HIGRAD-FIRETEC model **2011**, 20(6), 734-750

Jiménez, E

Effects of soil burn severity on germination and initial establishment of maritime pine seedlings, under greenhouse conditions, in two contrasting experimentally burned soils **2011**, *20*(2), 209-222

Jin, JZ

Wildfires and the Canadian Forest Fire Weather Index system for the Daxing'anling region of China **2011**, 20(8), 963-973

Jirik, SJ

Postfire Defoliation Response of Agropyron spicatum and Sitanion hystrix 1994, 4(2), 77-82

Johnson, A

Application of NDVI for predicting fuel curing at landscape scales in northern Australia: can remotely sensed data help schedule fire management operations? **2003**, *12*(3&4), 299-308

Johnson, AF

Sampling Intensity for Estimating Fuel Moisture Content in Lodgepole Pine and White Spruce Trees 1992, 2(1), 1-6

Johnson, JE

Early Vegetative Response to Wildfire in a Table Mountain-Pitch Pine Forest **1992**, *2*(4), 177-184

Johnson, JE

Wildfire Effects on Forest Floor and Surface Soil in a Table Mountain Pine-Pitch Pine Forest 1993, 3(3), 149-154

Johnson, JF

Living with fire: homeowner assessment of landscape values and defensible space in Minnesota and Florida, USA **2004**, *13*(4), 413-425

Johnson, MB

Near-real time mapping of Keetch-Byram drought index in the south-eastern United States **2002**, 11(3&4), 281-289

Johnson, P

Integrating values and risk perceptions into a decision support system **2010**, *19*(1), 123-136

Johnston, P

Efficient simulation of wildfire spread on an irregular grid **2008**, *17*(5), 614-627

Johnstone, JF

Response of boreal plant communities to variations in previous fire-free interval **2006**, *15*(4), 497-508

Johnstone, JF

How does increased fire frequency affect carbon loss from fire? A case study in the northern boreal forest **2011**, *20*(7), 829-837

Jolly, WM

Sensitivity of a surface fire spread model and associated fire behaviour fuel models to changes in live fuel moisture **2007**, *16*(4), 503-509

Jones, DL

Honey Mesquite Canopy Responses to Single Winter Fires: Relation to Herbaceous Fuel, Weather and Fire Temperature **1998**, 8(4), 241-252

Jones, JG

Integrating fuel treatment into ecosystem management: a proposed project planning process

2010, 19(6), 725-736

Jones, JL

Prediction and measurement of thermally induced cambial tissue necrosis in tree stems **2006**, *15*(1), 3-17

Jones, SD

Where's the fire? Quantifying uncertainty in a wildfire threat model

2004, 13(1), 17-25

Jordán, MM

Microbial recolonization and chemical changes in a soil heated at different temperatures **2005**, *14*(4), 385-400

Josa, R

Soil responses to fire in Mediterranean forest landscapes in relation to the previous stage of land abandonment **2009**, *18*(2), 222-232

Juang, H

NCEP–ECPC monthly to seasonal US fire danger forecasts **2010**, *19*(4), 399-414

Junor, DR

Comparing landscape-based decision rules for placement of fuel treatments in the boreal mixedwood of western Canada **2007**, *16*(6), 664-672

Justice, CO

A review of current space-based fire monitoring in Australia and the GOFC/GOLD program for international coordination **2003**, *12*(3&4), 247-258

Justice, CO

Global fire activity from two years of MODIS data **2005**, *14*(2), 117-130

Justice, CC

Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product **2010**, *19*(6), 705-709

Kafka, V

Fire impacts and crowning in the boreal forest: study of a large wildfire in western Quebec **2001**, 10(2), 119-127

Kafka, VG

Comparing landscape-based decision rules for placement of fuel treatments in the boreal mixedwood of western Canada **2007**, *16*(6), 664-672

Kaiden, JD

Built structure identification in wildland fire decision support **2011**, *20*(1), 78-90

Kaiser, J

Time series of chaparral live fuel moisture maps derived from MODIS satellite data **2006**, *15*(3), 347-360

Kaiss, A

Spectral emission of flames from laboratory-scale vegetation fires **2009**, *18*(7), 875-884

Kalabokidis, K

Integrating new methods and tools in fire danger rating **2007**, *16*(3), 306-316

Kalabokidis, KD

Quadrat Analysis of Wildland Fuel Spatial Variability 1992, 2(4), 145-152

Kalabokidis, KD

Reduction of Fire Hazard Through Thinning/Residue Disposal in the Urban Interface 1998, 8(1), 29-35

Kallos, G

Integrating new methods and tools in fire danger rating **2007**, *16*(3), 306-316

Kalmbacher, R

Response of Creeping Bluestem to Varying Month of Burn and Soil-Water Conditions 1995, 5(2), 93-99

Kane, ES

Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests **2008**, *17*(4), 515-526

Kane, JM

Novel fuelbed characteristics associated with mechanical mastication treatments in northern California and southwestern Oregon, USA 2009, 18(6), 686-697

Kanjanakunchorn, S

A Low Pressure Soaker Hose Containment System for Wildland Fires 1992, 2(4), 185-191

Karagiannopoulos, CG

A model for calculating the temperature of aluminium particles ejected from overhead low-voltage lines owing to a short-circuit **2009**, *18*(6), 722-726

Karau, EC

Burn severity mapping using simulation modelling and satellite imagery **2010**, *19*(6), 710-724

Kasischke, ES

Mapping the Location of Wildfires in Alaskan Boreal Forests Using AVHRR Imagery 1995, 5(2), 55-62

Kasischke, ES

Evaluation of ERS SAR data for prediction of fire danger in a Boreal region **1999**, 9(3), 183-194

Kasischke, ES

Analysis of the patterns of large fires in the boreal forest region of Alaska **2002**, *11*(2), 131-144

Kasischke, ES

The spatial and temporal distribution of fires on Sakhalin Island, Russia **2007**, *16*(5), 556-562

Kasischke, ES

Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results **2008**, *17*(4), 443-462

Kasischke, ES

Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests **2008**, 17(4), 500-514

Kasischke, ES

Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests

2008, 17(4), 515-526

Kasischke, ES

Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data **2008**, *17*(4), 527-534

Kasischke, ES

Mapping burned area in Alaska using MODIS data: a data limitations-driven modification to the regional burned area algorithm 2011, 20(4), 487-496

Kaufman, DS

Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA **2011**, 20(1), 125-141

Kavgacı, A

Long-term post-fire succession of *Pinus brutia* forest in the east Mediterranean **2010**, *19*(5), 599-605

Kawakami, S

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia **2003**, *12*(3&4), 271-281

Kaye, JP

Future climate affects management strategies for maintaining forest restoration treatments

2010, 19(7), 903-913

Kazakis, G

Evaluation of forest fire retardant removal from forest fuels by rainfall **2006**, *15*(3), 293-297

Kazakis, G

Investigation of the wind speed threshold above which discarded cigarettes are likely to be moved by the wind **2006**, *15*(4), 567-576

Kazanis, D

Vegetation Composition in a Post-Fire Successional Gradient of *Pinus Halepensis* Forests in Attica, Greece **1996**, *6*(2), 83-91

Keane, R

Strategy for a Fire Module in Dynamic Global Vegetation Models 1999, 9(1), 79-84

Keane, RE

Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling

2001, 10(3&4), 301-319

Keane, RE Modelin

Modeling fire effects **2001**, *10*(3&4), 373-380

Keane, RE

Using simulation to map fire regimes: an evaluation of approaches, strategies, and limitations **2003**, *12*(3&4), 309-322

(---,

Keane, RE

A comparison of five sampling techniques to estimate surface fuel loading in montane forests **2008**, *17*(3), 363-379

Keane, RE

Ecological effects of large fires on US landscapes: benefit or catastrophe? **2008**, *17*(6), 696-712

Keane, RE

Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape–fire–succession models

2009, 18(2), 147-156

Keane, RE

A surface fuel classification for estimating fire effects **2009**, *18*(7), 802-814

Keane, RE

Burn severity mapping using simulation modelling and satellite imagery **2010**, *19*(6), 710-724

Keeler, CW

Bromus tectorum cover mapping and fire risk **2006**, *15*(1), 113-119

Keeley, JE

Ecological impacts of wheat seeding after a Sierra Nevada wildfire **2004**, *13*(1), 73-78

Keeley, JE

Impact of antecedent climate on fire regimes in coastal California **2004**, *13*(2), 173-182

Keeley, JE

Fire suppression impacts on postfire recovery of Sierra Nevada chaparral shrublands **2005**, *14*(3), 255-265

Keeley, JE

Fire history of the San Francisco East Bay region and implications for landscape patterns **2005**, 14(3), 285-296

Keeley, JE

Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest **2006**, *15*(1), 37-45

Keeley, JE

Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest **2007**, *16*(1), 96-106

Keeley, JE

A critical assessment of the Burning Index in Los Angeles County, California **2007**, *16*(4), 473-483

Keeley, JE

Ecological effects of large fires on US landscapes: benefit or catastrophe? **2008**, *17*(6), 696-712

Keeley, JE

Fire intensity, fire severity and burn severity: a brief review and suggested usage **2009**, 18(1), 116-126

Keeley, JE

Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California **2011**, 20(6), 764-775

Keenum, D

Snag dynamics in a chronosequence of 26 wildfires on the east slope of the Cascade Range in Washington State, USA 1999, 9(4), 223-234

Keifer, M

FFI: a software tool for ecological monitoring **2009**, *18*(3), 310-314

Kelley, HL

Detection and growth of an Alaskan forest fire using GOES-9 3.9 µm imagery 1999, 9(2), 129-136

Kelso, J

Efficient simulation of wildfire spread on an irregular grid **2008**, *17*(5), 614-627

Kennedy, EM

The role of extinction on the reignition potential of woodbased embers in bushfires **2007**, *16*(5), 547-555

Kennett, R

Monitoring the impacts of fire regimes on vegetation in northern Australia: an example from Kakadu National Park **2003**, *12*(3&4), 427-440

Kerley, A

Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia **2003**, *12*(3&4), 333-340

Keuler, NS

Predicting spatial patterns of fire on a southern California landscape **2008**, *17*(5), 602-613

.____

Ecological effects of large fires on US landscapes: benefit or catastrophe? **2008**, *17*(6), 696-712

Key, CC

Remote Sensing of Forest Fire Severity and Vegetation Recovery 1996, 6(3), 125-136

Keyes, CR

Influences of moisture content, mineral content and bulk density on smouldering combustion of ponderosa pine duff mounds

2011, 20(4), 589-596

Keyser, D

Mesoscale model simulation of the meteorological conditions during the 2 June 2002 Double Trouble State Park wildfirE **2010**, *19*(4), 427-448

Keyser, TL

Short-term impact of post-fire salvage logging on regeneration, hazardous fuel accumulation, and understorey development in ponderosa pine forests of the Black Hills, SD, USA

2009, 18(4), 451-458

Kharuk, VI

The spatial and temporal distribution of fires on Sakhalin Island, Russia **2007**, *16*(5), 556-562

Kiem, AS

Multi-decadal variability of forest fire risk - eastern Australia **2004**, *13*(2), 165-171

King, KJ

Simulation of prescribed burning strategies in south-west Tasmania, Australia: effects on unplanned fires, fire regimes, and ecological management values

2006, 15(4), 527-540

King, KJ

The relative importance of finescale fuel mosaics on reducing fire risk in south-west Tasmania, Australia **2008**, 17(3), 421-430

King, KJ

Australian grassland fire danger using inputs from the GRAZPLAN grassland simulation model **2010**, *19*(3), 338-345

King, KJ

Fire and carbon dynamics under climate change in south-eastern Australia: insights from FullCAM and FIRESCAPE modelling **2011**, 20(4), 563-577

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia 2003, 12(3&4), 271-281

Kitchen, SG

Climate effects on historical fires (1630-1900) in Utah 2008, 17(1), 28-39

Kitchen, SG

Ecological effects of large fires on US landscapes: benefit or catastrophe? 2008, 17(6), 696-712

Kitzberger, T

ENSO as a forewarning tool of regional fire occurrence in northern Patagonia, Argentina **2002**, 11(1), 33-39

Kitzberger, T

The historical range of variability of fires in the Andean-Patagonian Nothofagus forest region 2008, 17(6), 724-741

Klaver, JM

Fuel Models and Fire Potential From Satellite and Surface Observations **1998**, 8(3), 159-170

Klaver, JM

Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information 2009, 18(5), 508-516

Klaver, RW

Fuel Models and Fire Potential From Satellite and Surface Observations 1998, 8(3), 159-170

Klaver, RW

Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information 2009, 18(5), 508-516

Klenner, W

Short-term effects of prescribed burning on radial growth of Douglas-fir trees in south central British Columbia 2011, 20(7), 876-887

Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest 2006, 15(1), 37-45

Knapp, EE

Novel fuelbed characteristics associated with mechanical mastication treatments in northern California and southwestern Oregon, USA 2009, 18(6), 686-697

Knapp, EE

Behaviour and effects of prescribed fire in masticated fuelbeds

2011, 20(8), 932-945

Knapp, EE

Effects of particle fracturing and moisture content on fire behaviour in masticated fuelbeds burned in a laboratory 2011, 20(2), 308-317

Knight, DH

Seventeen Years of Forest Succession Following the Waterfalls Canyon Fire in Grand Teton National Park, Wvoming **1998**, 8(1), 45-55

Knight, I

A Fire Perimeter Expansion Algorithm-Based on Huygens Wavelet Propagation **1993**, 3(2), 73-84

Knight, I

Physical Modelling of Leaf Scorch Height From Prescribed Fires in Young Eucalyptus Sieberi Regrowth Forests in South-Eastern Australia **1997**, 7(1), 7-20

Knight, IK

A review of radiant heat flux models used in bushfire applications

2003, 12(1), 101-110

Knight, IK

A semi-transparent model of bushfire flames to predict radiant heat flux 2004, 13(2), 201-207

Ko, M

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia 2003, 12(3&4), 271-281

Kobziar, LN

The efficacy of fire and fuels reduction treatments in a Sierra Nevada pine plantation **2009**, 18(7), 791-801

Kobziar, LN

Fire ignition patterns affect production of charcoal in southern forests

2011, 20(3), 474-477

Kochi, I

The economic cost of adverse health effectsfrom wildfiresmoke exposure: a review **2010**, 19(7), 803-817

Strategy for a Fire Module in Dynamic Global Vegetation Models 1999, 9(1), 79-84

Koike, M

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia 2003, 12(3&4), 271-281

Kolb, TE

Ponderosa pine mortality following fire in northern Arizona

2003, 12(1), 7-22

Kolden, CA

Beyond wildfire: perspectives of climate, managed fire and policy in the USA **2010**, 19(3), 364-373

Kolden, CA

Relative importance of weather and climate on wildfire growth in interior Alaska 2011, 20(4), 479-486

Koltun, JM

Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests

2008, 17(4), 490-499

Kondo, Y

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia 2003, 12(3&4), 271-281

Konovalov, V

Exploring three-dimensional coupled fire-atmosphere interactions downwind of winddriven surface fires and their influence on backfires using the HIGRAD-FIRETEC model 2011, 20(6), 734-750

Koo, E

Firebrands and spotting ignition in large-scale fires **2010**, 19(7), 818-843

Koonce, AL

Burning California Chaparral an Exploratory Study of Some Common Shrubs and Their Combustion Characteristics. **1991**, 1(3), 153-158

Koonce, AL

Indications of vigor loss after fire in Caribbean pine (Pinus caribaea) from electrical resistance measurements 2006, 15(3), 415-425

Koptur, S

Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests 2006, 15(4), 463-478

Košir, P

Long-term post-fire succession of Pinus brutia forest in the east Mediterranean 2010, 19(5), 599-605

Kou, X

Accurate estimation of mean fire interval for managing fire 2006, 15(4), 489-495

Koufopoulou, S

Effect of fire retardant application on phosphorus leaching from Mediterranean forest soil: short-term laboratory-scale study 2006, 15(3), 287-292

Koziol, BW

Development of calibration algorithms for selected water content reflectometry probes for burned and non-burned organic soils of Alaska 2010, 19(7), 961-975

Kramp, BA

Honey Mesquite Canopy Responses to Single Winter Fires: Relation to Herbaceous Fuel, Weather and Fire Temperature **1998**, 8(4), 241-252

Kravainis, G

A Comparison of Water Additives for Mopping-up After Forest Fires **1996**, 6(1), 37-43

Krawchuk, MA

Implications of changing climate for global wildland fire **2009**, 18(5), 483-507

Krawchuk, MA

Road network density correlated with increased lightning fire incidence in the Canadian western boreal forest 2009, 18(8), 970-982

Kremens, R

Autonomous field-deployable wildland fire sensors 2003, 12(2), 237-244

Kreye, JK

Effects of particle fracturing and moisture content on fire behaviour in masticated fuelbeds burned in a laboratory 2011, 20(2), 308-317

Krueger, SK

The importance of fireatmosphere coupling and boundary-layer turbulence to wildfire spread 2009, 18(1), 50-60

Krull, C

The BlueSky smoke modeling framework 2009, 18(8), 906-920

Krusel, N

Wildfire Activity in the Mallee Shrubland of Victoria, Australia 1993, 3(4), 217-227

Küçük, Ö

Estimating crown fuel loading for calabrian pine and Anatolian black pine 2008, 17(1), 147-154

Kulhavy, DL

Classifying fuels with aerial photography in East Texas **1999**, 9(2), 109-113

Kunst, C

Fire regime of a *Elionorus* muticus Spreng. savanna, western Chaco region, Argentina 2001, 10(1), 65-72

Kurz, WA

Estimating direct carbon emissions from Canadian wildland fires 2007, 16(5), 593-606

Kutiel, P

Spatial and Temporal Heterogeneity of Species Diversity in a Mediterranean Ecosystem Following Fire **1997**, 7(4), 307-315

Kuze, H

Assessing forest fire potential in Kalimantan Island, Indonesia, using satellite and surface weather data 2003, 12(2), 175-184

Lachowski, H

A primer on mapping vegetation using remote sensing **2001**, 10(3&4), 277-287

Laconi, M

Evaluation of FARSITE simulator in Mediterranean maquis **2007**, 16(5), 563-572

Lagouvardos, C

Temporal simulation of diurnal temperature and relative humidity evolution at a forested mountainous site in Attica, Greece

2002, 11(2), 95-106

Lampin-Maillet, C

Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds **2009**, 18(8), 951-969

Landry, R

Estimating direct carbon emissions from Canadian wildland fires **2007**, 16(5), 593-606

Landry, R

Remote sensing of burn severity: experience from western Canada boreal fires 2008, 17(4), 476-489

Lane, PNJ

Paired Eucalyptus forest catchment study of prescribed fire effects on suspended sediment and nutrient exports in south-eastern Australia 2010, 19(5), 624-636

Langaas, S

Temporal and Spatial Distribution of Savanna Fires in Senegal and the Gambia, West Africa, 1989-90, Derived From Multi-Temporal AVHRR Night Images

1992, 2(1), 21-36

Langner, A

Burnt area estimation for the year 2005 in Borneo using multi-resolution satellite imagery

2007, 16(1), 45-53

Laredo, L

An optimisation modelling approach to seasonal resource allocation for planned burning 2011, 20(2), 175-183

Larini, M

A numerical study of buoyant plumes in cross-flow conditions **1999**, 9(2), 101-108

Larini, M

Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects **1999**, 9(3), 155-172

Larjavaara, M

Experimental fire behaviour in managed Pinus sylvestris and Picea abies stands of Finland 2007, 16(4), 414-425

Larjavaara, M

Declining fires in Larixdominated forests in northern Irkutsk district 2011, 20(2), 248-254

Larkin, NK

The BlueSky smoke modeling framework 2009, 18(8), 906-920

Larsen, KW

Songbird communities in a pyrogenic habitat mosaic **2002**, 11(1), 75-84

Larsen, KW

Small mammal communities in a pyrogenic habitat mosaic **2007**, 16(6), 728-740

Effects of fire retardant chemical and fire suppressant foam on shrub steppe vegetation in northern Nevada **1999**, 9(2), 115-127

Lasanta, T

Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images **2011**, 20(2), 195-208

Latham, D

Description of a coupled atmosphere-fire model **2004**, 13(1), 49-63

Lathrop Jr, RG

Impacts of the 1988 Wildfires on the Water-Quality of Yellowstone and Lewis Lakes, Wyoming **1994**, 4(3), 169-175

Launchbaugh, K

Delaying sheep grazing after wildfire in sagebrush steppe may not affect vegetation recovery

2010, 19(1), 115-122

Laven, RD

Microplot Sampling of Fire Behavior on Populus tremuloides Stands in North-Central Colorado 1993, 3(2), 85-94

Lavoué, D

Modelling emissions from Canadian wildfires: a case study of the 2002 Quebec fires 2007, 16(6), 649-663

Emissions of air pollutants by Canadian wildfires from 2000 to 2004

2011, 20(1), 17-34

Lavrov, A

Feasibility of forest-fire smoke detection using lidar 2003, 12(2), 159-166

Lavrov, A

Eye-safe lidar measurements for detection and investigation of forest-fire smoke 2004, 13(4), 401-412

Lawrence, DE

Benthic macroinvertebrate assemblages in five central Idaho (USA) streams over a 10vear period following disturbance by wildfire **2001**, 10(2), 201-213

Le Goff, H

Historical fire regime shifts related to climate teleconnections in the Waswanipi area, central Quebec, Canada 2007, 16(5), 607-618

Le Goff, H

Dendroclimatic inference of wildfire activity in Quebec over the 20th century and implications for natural disturbance-based forest management at the northern limit of the commercial forest **2008**, 17(3), 348-362

Le Maitre, DC

A Computer-Based System for Fire Management in the Mountains of the Cape Province, South-Africa **1994**, 4(1), 17-32

Leadbetter III, GW

Wildland firefighter load carriage: effects on transit time and physiological responses during simulated escape to safety zone **2003**, *12*(1), 111-116

Leavesley, AJ

The effect of fire on birds of mulga woodland in arid central Australia

2010, 19(7), 949-960

Leblon, B

Predicting forest floor moisture for burned and unburned Pinus banksiana forests in the Canadian Northwest Territories 2007, 16(1), 71-80

Lebow, PK

Combustion characteristics of north-eastern USA vegetation tested in the cone calorimeter: invasive versus non-invasive plants

2007, 16(4), 426-443

Leduc, A

Spatial pattern analyses of postfire residual stands in the black spruce boreal forest of western Quebec

2010, 19(8), 1110-1126

Lee, B

Temporal and spatial characteristics of forest fires in South Korea between 1970 and 2006, 15(3), 389-396

A Logit Model for Predicting the Daily Occurrence of Human Caused Forest-Fires **1995**, 5(2), 101-111

Legg, CJ

Lee, BS

Using visual obstruction to estimate heathland fuel load and structure

2008, 17(3), 380-389

Legge, S

The post-fire response of an obligate seeding Triodia species (Poaceae) in the fire-prone Kimberley, north-west Australia **2011**, 20(8), 974-981

Lehmkuhl, J

Snag dynamics in a chronosequence of 26 wildfires on the east slope of the Cascade Range in Washington State, USA

1999, 9(4), 223-234

Leidolf, A

The effects of fire on avian communities: spatio-temporal attributes of the literature 1912-2003

2009, 18(5), 609-622

Leite, SJ

Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire **2010**, 19(6), 795-799

Strategy for a Fire Module in Dynamic Global Vegetation Models **1999**, 9(1), 79-84

Lenihan, JM

Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape-fire-succession models

2009, 18(2), 147-156

Lentile, LB

Remote sensing techniques to assess active fire characteristics and post-fire effects **2006**, 15(3), 319-345

Lentile, LB

Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA 2006, 15(4), 557-566

Lentile, LB

Remote sensing for prediction of 1-year post-fire ecosystem condition

2009, 18(5), 594-608

Lentile, LB

Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA 2011, 20(2), 255-271

Leonard, J

Meteorological conditions and wildfire-related houseloss in Australia

2010, 19(7), 914-926

Leoni, E

Fire spread across pine needle fuel beds: characterization of temperature and velocity distributions within the fire plume

2004, 13(1), 37-48

Leoni, E

Volatile and semi-volatile organic compounds in smoke exposure of firefighters during prescribed burning in the Mediterranean region 2010, 19(5), 606-612

Leoni, E

Emission of biogenic volatile organic compounds involved in eruptive fire: implications for the safety of firefighters **2011**, 20(1), 152-161

Leslie, LM

The Sydney Australia Wildfires of January 1994 -Meteorological Conditions and High Resolution Numerical Modeling Experiments **1996**, 6(3), 145-154

Letnic, M

The fire history of an arid grassland: the influence of antecedent rainfall and ENSO 2009, 18(6), 631-639

Lewis, A

Career stages in wildland firefighting: implications for voice in risky situations 2011, 20(1), 115-124

Remote sensing techniques to assess active fire characteristics and post-fire effects **2006**, 15(3), 319-345

Lewis, SA

Remote sensing for prediction of 1-year post-fire ecosystem condition

2009, 18(5), 594-608

Lewis, SA

Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA 2011, 20(2), 255-271

Lhermitte, S

Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece

2010, 19(5), 558-569

Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape-fire-succession models 2009, 18(2), 147-156

Li, L-M

Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk 2009, 18(6), 640-647

Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China

2007, 16(1), 34-44

A dynamic algorithm for wildfire mapping with NOAA/AVHRR data 2004, 13(3), 275-285

Liang, J

Factors influencing large wildland fire suppression expenditures

2008, 17(5), 650-659

Liew, SC

Burn-scar patterns and their effect on regional burnt-area mapping in insular South-East

2009, 18(7), 837-847

Liley, B

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia **2003**, 12(3&4), 271-281

Lindbladh, M

The role of fire in southern Scandinavian forests during the late Holocene 2010, 19(8), 1040-1049

Lindenmayer, DB

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia

Link, SO

Bromus tectorum cover mapping and fire risk **2006**, 15(1), 113-119

2009, 18(1), 84-95

Linn, R

Studying wildfire behavior using FIRETEC 2002, 11(3&4), 233-246

Linn, R

Modeling interactions between fire and atmosphere in discrete element fuel beds 2005, 14(2), 37-48

Linn, R

Coupled influences of topography and wind on wildland fire behaviour 2007, 16(2), 183-195

Coherent vortical structures in numerical simulations of buoyant plumes from wildland fires 2005, 14(2), 61-75

Linn, RR

Separating combustion from pyrolysis in HIGRAD/FIRETEC

2007, 16(4), 493-502

Validation of FIRETEC windflows over a canopy and a fuelbreak

2009, 18(7), 775-790

Linn, RR

A numerical study of slope and fuel structure effects on coupled wildfire behaviour 2010, 19(2), 179-201

A sub-grid, mixture-fractionbased thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results 2010, 19(2), 202-212

Linn, RR

Exploring three-dimensional coupled fire-atmosphere interactions downwind of winddriven surface fires and their influence on backfires using the HIGRAD-FIRETEC model 2011, 20(6), 734-750

Littell, JS

Climate drivers of regionally synchronous fires in the inland Northwest (1651–1900) **2008**, 17(1), 40-49

Little, JM

Spatial patterns of forest fires in Canada, 1980-1999 2006, 15(3), 361-374

Little, JM

An approach to operational forest fire growth predictions for Canada 2009, 18(8), 893-905

Characterization of wildfire regimes in Canadian boreal terrestrial ecosystems **2009**, 18(8), 992-1002

Litton, CM

Early post-fire succession in a Nothofagus glauca forest in the Coastal Cordillera of southcentral Chile

2002, 11(2), 115-125

Liu, C-C

Rapid locating of fire points from Formosat-2 high spatial resolution imagery: example of the 2007 California wildfire 2009, 18(4), 415-422

A North American regional reanalysis climatology of the Haines Index

2011, 20(1), 91-103

Liu, Y

Smoke incursions into urban areas: simulation of a Georgia prescribed burn 2009, 18(3), 336-348

Llinares, JV

Temperature-time curves at the soil surface in maquis summer fires

2001, 10(1), 45-52

Lloret, F

Statistical analysis of fire frequency models for Catalonia (NE Spain), 1975-1998) based on fire scar maps from Landsat MSS data 2004, 13(1), 89-99

Lloret, F

Spatial and temporal patterns of plant functional types under simulated fire regimes 2007, 16(4), 484-492

Lloret, F

Recurrent wildfires constrain long-term reproduction ability in Pinus halepensis Mill. 2008, 17(5), 579-585

Lloret, F

Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies **2010**, 19(6), 783-794

Llovet, J

Are wildfires a disaster in the Mediterranean basin? - A review

2008, 17(6), 713-723

Llovet. J

Soil responses to fire in Mediterranean forest landscapes in relation to the previous stage of land abandonment 2009, 18(2), 222-232

Llusià, J

Influence of water and terpenes on flammability in some dominant Mediterranean species 2008, 17(2), 274-286

Loboda, TV

Modeling fire danger in datapoor regions: a case study from the Russian Far East 2009, 18(1), 19-35

Loboda, TV

Mapping burned area in Alaska using MODIS data: a data limitations-driven modification to the regional burned area algorithm

2011, 20(4), 487-496

Loeffler, DR

Integrating fuel treatment into ecosystem management: a proposed project planning process

2010, 19(6), 725-736

Loewen, M

Season of prescribed burn in ponderosa pine forests in eastern Oregon: impact on pine mortality

2005, 14(3), 223-231

Loewen, M

Prediction of delayed mortality of fire-damaged ponderosa pine following prescribed fires in eastern Oregon, USA 2006, 15(1), 19-29

Loftsgaarden, DO

Evaluation of fire danger rating indexes using logistic regression and percentile analysis

2003, 12(2), 213-226

Logan, K

Impact of climate change on area burned in Alberta's boreal forest

2007, 16(2), 153-160

Logan, K

Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System

2008, 17(3), 328-338

Logan, KA

Fire weather index system components for large fires in the Canadian boreal forest **2004**, *13*(4), 391-400

Logan, KA

Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape-fire-succession models

2009, 18(2), 147-156

Lombardi, G

Developing an Adaptive Management approach to prescribed burning: a long-term heathland conservation experiment in north-west Italy **2009**, *18*(6), 727-735

Lonati, M

Developing an Adaptive Management approach to prescribed burning: a long-term heathland conservation experiment in north-west Italy **2009**, *18*(6), 727-735

Long, Al

Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildland-urban interface

2004, 13(3), 355-365

Long, CL

Long-term relations among fire, fuel, and climate in the north-western US based on lake-sediment studies **2008**, *17*(1), 72-83

Long, DG

Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns

2001, 10(3&4), 329-342

Long, RP

A comparison of thermocouples and temperature paints to monitor spatial and temporal characteristics of landscapescale prescribed fires **2004**, *13*(3), 311-322

Loomis, J

Estimating the Value of Reducing Fire Hazards to Old-Growth Forests in the Pacific-Northwest - a Contingent Valuation Approach **1994**, 4(4), 209-216

Loomis, JB

The economic cost of adverse health effectsfrom wildfiresmoke exposure: a review **2010**, *19*(7), 803-817

Lopes, AG

Local-scale modelling system to simulate smoke dispersion **2007**, *16*(2), 196-203

Lopes, FP

Temporal patterns of solute loss following wildfires in Central Portugal **2005**, *14*(4), 401-412

Lopes, M

Local-scale modelling system to simulate smoke dispersion **2007**, *16*(2), 196-203

López, R

Seed provenance and firerelated reproductive traits of *Pinus pinaster* in central Spain **2009**, *18*(8), 1003-1009

López-Serrano, FR

Natural post-fire dynamics and serotiny in 10-year-old *Pinus halepensis* Mill. stands along a geographic gradient **2008**, *17*(2), 287-292

López-Serrano, FR

Is the net new carbon increment of coppice forest stands of *Quercus ilex* ssp. *ballota* affected by post-fire thinning treatments and recurrent fires? **2010**, *19*(5), 637-648

Loraud, JC

A numerical study of buoyant plumes in cross-flow conditions **1999**, *9*(2), 101-108

Lorca, M

Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain) **2005**, *14*(4), 379-384

Loreto, F

The influence of leaf water content and isoprenoids on flammability of some Mediterranean woody species **2009**, *18*(2), 203-212

Loudermilk, EL

The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests **2009**, 18(3), 315-325

Loudermilk, EL

Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics **2009**, *18*(6), 676-685

Loureiro, C

Empirical modelling of surface fire behaviour in maritime pine stands

2009, 18(6), 698-710

Loveland, TR

Toward a national fuels mapping strategy: Lessons from selected mapping programs **2001**, *10*(3&4), 289-299

Lowell, K

Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat **2009**, *18*(8), 1010-1020

Lu, W

A North American regional reanalysis climatology of the Haines Index **2011**, *20*(1), 91-103

Lucas, C

Interannual variations of area burnt in Tasmanian bushfires: relationships with climate and predictability **2007**, *16*(5), 540-546

Lucas, C

Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather

2009, 18(8), 932-943

Lucas, C

Meteorological conditions and wildfire-related houseloss in Australia **2010**, *19*(7), 914-926

Lucieer, A

Implementation of quantitative bushfire risk analysis in a GIS environment **2010**, *19*(5), 649-658

Luckert, MK

Manager-based valuations of alternative fire management regimes on Cape York Peninsula, Australia **2008**, 17(5), 660-673

Luderer, G

A new look at the role of firereleased moisture on the dynamics of atmospheric pyroconvection **2009**, 18(5), 554-562

Luis, E

Regeneration in *Quercus*Pyrenaica Ecosystems After
Surface Fires
1991, 1(4), 205-210

Luis, E

Influence of Heat on Seed Germination of *Cistus Laurifolius* and *Cistus Ladanifer* 1992, 2(1), 15-20

Luis, E

First Phases of Regeneration of *Cistus Laurifolius* and *Cistus Ladanifer* After Burning and Cutting in Experimental Plots **1992**, 2(1), 7-14

Luiscalabuig, E

Seedling Regeneration of Two *Cistus* Species After Experimental Disturbances **1996**, *6*(1), 13-19

Luna, B

Effects of a long-term fire retardant chemical (Fire-Trol 934) on seed viability and germination of plants growing in a burned Mediterranean area **2007**, *16*(3), 349-359

Luna, B

Landscape variables influencing forest fires in central Spain **2011**, *20*(5), 678-689

Lundquist, JE

Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA **2004**, *13*(1), 119-129

Lunt, ID

Effects of fire frequency and mowing on a temperate, derived grassland soil in south-eastern Australia

2008, 17(5), 586-594

Lutes, DC

FFI: a software tool for ecological monitoring **2009**, *18*(3), 310-314

Lutes, DC

A surface fuel classification for estimating fire effects **2009**, *18*(7), 802-814

Lutz, JA

Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA **2009**, *18*(7), 765-774

Lynch, B

Fire regimes and soil erosion in north Australian hilly savannas **2006**, *15*(4), 551-556

Lynham, TJ

Estimating direct carbon emissions from Canadian wildland fires **2007**, *16*(5), 593-606

Lynham, TJ

Remote sensing of burn severity: experience from western Canada boreal fires **2008**, 17(4), 476-489

Ma, J

Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk **2009**, *18*(6), 640-647

MacDonald, LH

Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range **2005**, *14*(4), 457-474

MacDonald, LH

Predicting post-fire hillslope erosion in forest lands of the western United States **2011**, 20(8), 982-999 MacGregor, C

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia

2009, 18(1), 84-95

MacLean, DA

Predicting forest floor moisture for burned and unburned Pinus banksiana forests in the Canadian Northwest Territories 2007, 16(1), 71-80

Macnaught, E

The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires

2004, 13(2), 227-240

Madoui, A

Spatial pattern analyses of postfire residual stands in the black spruce boreal forest of western Ouebec

2010, 19(8), 1110-1126

Madrigal, J

Flammability descriptors of fine dead fuels resulting from two mechanical treatments in shrubland: a comparative laboratory study 2010, 19(3), 314-324

Mahalingam, S

Fire spread in chaparral-'go or no-go?

2005, 14(2), 99-106

Mahlum, SK

Effects of wildfire on stream temperatures in the Bitterroot River Basin, Montana 2011, 20(2), 240-247

Maier, S

Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications **2009**, 18(1), 1-18

Maier, SW

Field estimation of ash and char colour-lightness using a standard grey scale 2010, 19(6), 698-704

Maingi, JK

Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA 2007, 16(1), 23-33

Malak, DA

Fire regime and post-fire Normalized Difference Vegetation Index changes in the eastern Iberian peninsula (Mediterranean basin) **2006**, 15(3), 407-413

Malkinson, D

Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel 2010, 19(1), 75-93

Mansuy, N

The effects of surficial depositdrainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada

2010, 19(8), 1083-1098

Mantua, NJ

Climate drivers of regionally synchronous fires in the inland Northwest (1651-1900) 2008, 17(1), 40-49

Manzello, SL

Ignition of mulch and grasses by firebrands in wildland-urban interface fires

2006, 15(3), 427-431

Manzello, SL

Firebrand generation from burning vegetation **2007**, 16(4), 458-462

Manzello, SL

The wildland-urban interface fire problem - current approaches and research needs 2010, 19(2), 238-251

Maranghides, A

Firebrand generation from burning vegetation 2007, 16(4), 458-462

Maranghides, A

The wildland-urban interface fire problem - current approaches and research needs 2010, 19(2), 238-251

Maranon, T

Postfire Regeneration of a Mediterranean Heathland in Southern Spain **1996**, 6(4), 191-198

Marcelli, T

Fire spread across pine needle fuel beds: characterization of temperature and velocity distributions within the fire plume

2004, *13*(1), 37-48

Marechal, J

Heat-Transfer in the Soil During Very Low-Intensity Experimental Fires - the Role of **Duff and Soil-Moisture Content** 1994, 4(4), 225-237

Marechal, J

Combustion and Nutrient Losses During Laboratory Burns **1995**, *5*(1), 1-12

Maréchal, J

Thermal infrared emissiontransmission measurements in flames from a cylindrical forest fuel burner

2007, 16(3), 324-340

The effects of slope and fuel bed width on laboratory fire behaviour 2011, 20(2), 272-288

Maréchal, J

Slope effect on laboratory fire spread: contribution of radiation and convection to fuel bed preheating **2011**, 20(2), 289-307

Marino, E

Flammability descriptors of fine dead fuels resulting from two mechanical treatments in shrubland: a comparative laboratory study **2010**, 19(3), 314-324

Marinšek, A

Long-term post-fire succession of Pinus brutia forest in the east Mediterranean

2010, 19(5), 599-605

Marlon, J

Long-term relations among fire. fuel, and climate in the northwestern US based on lakesediment studies 2008, 17(1), 72-83

Marquínez, J

Analysis of the evolution of soil erosion classes using multitemporal Landsat imagery **2008**, 17(5), 549-558

Marsden-Smedley, JB Fire Behaviour Modelling in Tasmanian Buttongrass Moorlands. I. Fuel Characteristics 1995, 5(4), 203-214

Marsden-Smedley, JB Fire Behaviour Modelling in Tasmanian Buttongrass Moorlands. II. Fire Behaviour **1995**, 5(4), 215-228

Marsden-Smedley, JB Estimating fuel response time and predicting fuel moisture content from field data 2001, 10(2), 215-222

Marsden-Smedley, JB Fire modelling in Tasmanian buttongrass moorlands. III. Dead fuel moisture 2001, 10(2), 241-253

Marsden-Smedley, JB Fire modelling in Tasmanian buttongrass moorlands. IV. Sustaining versus nonsustaining fires 2001, 10(2), 255-262

Marsden-Smedley, JB

Simulation of prescribed burning strategies in south-west Tasmania, Australia: effects on unplanned fires, fire regimes, and ecological management values

2006, 15(4), 527-540

Marsden-Smedley, JB The relative importance of fine-

scale fuel mosaics on reducing fire risk in south-west Tasmania, Australia 2008, 17(3), 421-430

Marshall, AH

Shrubland fire regime scenarios in the Swartberg Mountain Range, South Africa: implications for fire management **2007**, 16(1), 81-95

Martell, DL

A Review of Initial Attack Fire Crew Productivity and Effectiveness **1996**, 6(4), 199-215

Martell, DL

A Markov chain model of day to day changes in the Canadian forest fire weather index **1999**, 9(4), 265-273

Martell, DL

Fire weather index system components for large fires in the Canadian boreal forest 2004, 13(4), 391-400

An index for tracking sheltered forest floor moisture within the Canadian Forest Fire Weather Index System **2005**, 14(2), 169-182

Martell, DL

A simulation model of the growth and suppression of large forest fires in Ontario 2007, 16(3), 285-294

Martell, DL

Assessing the impact of standlevel harvests on the flammability of forest landscapes **2007**, 16(5), 584-592

Martell, DL

A model for predicting humancaused wildfire occurrence in the region of Madrid, Spain 2010, 19(3), 325-337

Martin, DA

Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States 2009, 18(1), 96-115

Martin, FG

Response of Creeping Bluestem to Varying Month of Burn and Soil-Water Conditions **1995**, 5(2), 93-99

A model for predicting humancaused wildfire occurrence in the region of Madrid, Spain **2010**, 19(3), 325-337

Martin, R

Calibration and Field Testing of Passive Flame Height Sensors 1992, 2(3), 115-122

Martínez, R

Analysis of the evolution of soil erosion classes using multitemporal Landsat imagery **2008**, 17(5), 549-558

Martínez-de Dios, JR Laboratory fire spread analysis using visual and infrared images 2006, 15(2), 179-186

Martínez-Sánchez, JJ

The Role of Soil Seed Bank in the Early Stages of Plant Recovery After Fire in a Pinus Pinaster Forest in SE Spain **1996**, 6(1), 31-35

Martínez-Sánchez, JJ Influence of heat on seed germination of nine woody *Cistaceae* species **1999**, 9(3), 173-182

Martinson, EJ

Establishment of non-native plant species after wildfires: effects of fuel treatments, abiotic and biotic factors, and post-fire grass seeding treatments

2006, 15(2), 271-281

Martinson, EJ

Assessing mitigation of wildfire severity by fuel treatments – an example from the Coastal Plain of Mississippi **2008**, *17*(3), 415-420

Marzano, R

Developing an Adaptive Management approach to prescribed burning: a long-term heathland conservation experiment in north-west Italy **2009**, *18*(6), 727-735

Mason, F

Estimation of grassland biophysical parameters using hyperspectral reflectance for fire risk map prediction **2009**, *18*(7), 815-824

Massimiliano Bianco, PM
The influence of leaf water content and isoprenoids on flammability of some
Mediterranean woody species 2009, 18(2), 203-212

Massman, WJ

Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor **2004**, *13*(4), 427-442

Massman, WJ

Long-term impacts of prescribed burns on soil thermal conductivity and soil heating at a Colorado Rocky Mountain site: a data/model fusion study **2008**, *17*(1), 131-146

Mataix-Solera, J

Soil organic matter and aggregates affected by wildfire in a *Pinus halepensis* forest in a Mediterranean environment **2002**, *11*(2), 107-114

Mataix-Solera, J

Microbial recolonization and chemical changes in a soil heated at different temperatures **2005**, *14*(4), 385-400

Matsinos, Y

Integrating new methods and tools in fire danger rating **2007**, *16*(3), 306-316

Matthews, S

A process-based model of fine fuel moisture **2006**, *15*(2), 155-168

Matthews, S Simple models for predicting dead fuel moisture in

eucalyptus forests **2010**, *19*(4), 459-467

Matthews, S

Effect of drying temperature on fuel moisture content measurements **2010**, *19*(6), 800-802

Mauffette, Y

Photosynthate Allocation Patterns Along a Fire-Induced Age Sequence in Two Shrub Species From the California Chaparral 1993, 3(1), 21-30

Maurer, S

Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens **2009**, *18*(3), 268-277

Maus, P

A primer on mapping vegetation using remote sensing **2001**, *10*(3&4), 277-287

Mazzoleni, S

Effects of Heating on the Microbial Populations of a Grassland Soil **1996**, *6*(2), 67-70

Mazzoleni, S

Soil water dynamics after fire in a Portuguese shrubland **2006**, *15*(1), 99-111

McAlpine, RS

Predicting the Height to Live Crown Base in Plantations of Four Boreal Forest Species 1994, 4(2), 103-106

McAlpine, RS

Testing the Effect of Fuel Consumption on Fire Spread Rate 1995, 5(3), 143-152

McAlpine, RS

Searching for a climate change effect in fire management expenditures **1999**, *9*(3), 203-206

McAlpine, RS

The effect of fire front width on surface fire behaviour **1999**, 9(4), 247-253

McBride, JR

The efficacy of fire and fuels reduction treatments in a Sierra Nevada pine plantation **2009**, *18*(7), 791-801

McCaffrey, S

Different interest group views of fuels treatments: survey results from fire and fire surrogate treatments in a Sierran mixed conifer forest, California, USA **2008**, *17*(2), 224-233

McCaffrey, S

Reducing fuels in the wildland—urban interface: community perceptions of agency fuels treatments **2011**, 20(3), 340-349

McCaffrey, SM

Public perspectives of fire, fuels and the Forest Service in the Great Lakes Region: a survey of citizen—agency communication and trust

2009, 18(2), 157-164

McCarthy, BC

Forest floor fuel dynamics in mixed-oak forests of south-eastern Ohio **2006**, *15*(4), 479-488

2000, 15(1), 17

McCarthy, MA Theoretical fire-interval distributions **2001**, *10*(1), 73-77

McCartney, J

A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia **2001**, 10(1), 79-89

McCaw, L

Simple models for predicting dead fuel moisture in eucalyptus forests **2010**, *19*(4), 459-467

McCaw, WL

Prescribed Burning of Thinning Slash in Regrowth Stands of Karri (*Eucalyptus diversicolor*) .1. Fire Characteristics, Fuel Consumption and Tree Damage 1997, 7(1), 29-40

McCaw, WL

Prescribed Burning of Thinning Slash in Regrowth Stands of Karri (*Eucalyptus diversicolor*) 2. Nitrogen Budgets in Pre- and Post-Burn Fuel **1997**, 7(1), 41-49

McCaw, WL

Estimating fuel response time and predicting fuel moisture content from field data **2001**, *10*(2), 215-222

McCornick, PG

A Low Pressure Soaker Hose Containment System for Wildland Fires 1992, 2(4), 185-191

McDonald, H

A Low Pressure Soaker Hose Containment System for Wildland Fires 1992, 2(4), 185-191

McDougall, KL

Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity **2008**, *17*(6), 793-808

McFarlane, BL

Complexity of homeowner wildfire risk mitigation: an integration of hazard theories **2011**, *20*(8), 921-931

McGee, TK

Complexity of homeowner wildfire risk mitigation: an integration of hazard theories **2011**, 20(8), 921-931

McGinnis, TW
Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest

2007, 16(1), 96-106

McGuire, AD

Analysis of Alaskan burn severity patterns using remotely sensed data **2007**, 16(3), 277-284

McGurk, B

Prescribed fire, soils, and stream water chemistry in a watershed in the Lake Tahoe Basin, California **2004**, *13*(1), 27-35

McHugh, CW

Ponderosa pine mortality following fire in northern Arizona **2003**, *12*(1), 7-22

McHugh, CW

Evaluation of a post-fire tree mortality model for western USA conifers **2007**, *16*(6), 679-689

McHugh, CW

Simulation of long-term landscape-level fuel treatment effects on large wildfires **2007**, *16*(6), 712-727

McKay, SJ

Measuring moisture dynamics to predict fire severity in longleaf pine forests **2002**, 11(3&4), 267-279

Mckenzie, D

Extrapolation Problems in Modeling Fire Effects at Large Spatial Scales: a Review 1996, 6(4), 165-176

McKenzie, D

Climate drivers of regionally synchronous fires in the inland Northwest (1651–1900) **2008**, *17*(1), 40-49

McMillin, J

Development of post-fire crown damage mortality thresholds in ponderosa pine **2010**, *19*(5), 583-588

McMurry, ER

Murry, ER
Fire scars reveal source of New
England's 1780 Dark Day
2007, 16(3), 266-270

McRae, DJ

Point-source fire growth in Jack Pine slash **1999**, 9(1), 65-77

McRae, DJ

Wildfires and the Canadian Forest Fire Weather Index system for the Daxing'anling region of China **2011**, 20(8), 963-973

McRae, RHD

Prediction of Areas Prone to Lightning Ignition **1992**, 2(3), 123-130

McRae, RHD

Evaluation of a very simple model for predicting the moisture content of eucalypt litter

2011, 20(8), 1000-1005

Mediavilla, G

Recolonization of Two Burnt Quercus pyrenaica Ecosystems by Coleoptera **1998**, 8(1), 21-27

Is Arson Associated with Severe Fire Weather in Southern California? **1991**, 1(2), 97-100

Mees. R

Relating Burning Index to Wildfire Workload Over Broad Geographic Areas **1991**, *1*(4), 235-238

Mees, R

Modeling Wildland Fire Containment With Uncertain Flame Length and Fireline Width

1993, 3(3), 179-185

Meixner, T

Prescribed fire, soils, and stream water chemistry in a watershed in the Lake Tahoe Basin, California 2004, 13(1), 27-35

Meléndez, J

Thermal infrared emissiontransmission measurements in flames from a cylindrical forest fuel burner

2007, 16(3), 324-340

A physics-based approach to modelling grassland fires 2007, 16(1), 1-22

Mell, W

A simple model for wind effects of burning structures and topography on wildland-urban interface surface-fire propagation 2009, 18(3), 290-301

Mell, WE

Firebrand generation from burning vegetation 2007, 16(4), 458-462

Mell, WE

The wildland-urban interface fire problem - current approaches and research needs 2010, 19(2), 238-251

Menakis, JP

Comparing the Prescribed Natural Fire Program With Presettlement Fires in the Selway-Bitterroot Wilderness **1994**, 4(3), 157-168

Menakis, JP

Spatial data for national fire planning and fuel management **2001**, 10(3&4), 353-372

Mendel, Z.

Seedling Mortality in Regeneration of Aleppo Pine Following Fire and Attack by the Scale Insect Matsucoccus josephi

1997, 7(4), 327-333

Mendes, J

Spatial and temporal extremes of wildfire sizes in Portugal (1984-2004)**2009**, 18(8), 983-991

Mendes-Lopes, JM

A two-dimensional model of fire spread across a fuel bed including wind combined with slope conditions

2002, 11(1), 53-63

Mendes-Lopes, JMC

Flame characteristics, temperature-time curves, and rate of spread in fires propagating in a bed of Pinus pinaster needles **2003**, 12(1), 67-84

Menges, ES

Postfire survival in south Florida slash pine: interacting effects of fire intensity, fire season, vegetation, burn size, and bark beetles

2001, 10(1), 53-63

Mercer, GN

Plumes Above Line Fires in a Cross-Wind **1994**, 4(4), 201-207

Merino-de-Miguel, S

Integration of AWiFS and MODIS active fire data for burn mapping at regional level using the Burned Area Synergic Algorithm (BASA) 2009, 18(4), 404-414

Mermoz, M

The historical range of variability of fires in the Andean-Patagonian Nothofagus forest region **2008**, 17(6), 724-741

Methven, IR

A Dynamic Fuel Model for Use in Managed Even-Aged Stands **1994**, 4(3), 177-185

Metsaranta, JM

Potentially limited detectability of short-term changes in boreal fire regimes: a simulation study 2010, 19(8), 1140-1146

Meyer, CP

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning **2007**, 16(4), 361-377

Meyer, CP

Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications 2009, 18(1), 1-18

Meyer, G

Long-term fire history from alluvial fan sediments: the role of drought and climate variability, and implications for management of Rocky Mountain forests 2008, 17(1), 84-95

Meyn, A

Spatial variation of trends in wildfire and summer drought in British Columbia, Canada, 1920-2000

2010, 19(3), 272-283

Michael, D

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia

2009, 18(1), 84-95

Miettinen, J

Burnt area estimation for the year 2005 in Borneo using multi-resolution satellite imagery

2007, 16(1), 45-53

Miettinen, J

Burn-scar patterns and their effect on regional burnt-area mapping in insular South-East Asia

2009, 18(7), 837-847

Millán, MM

A mesoscale model application to fire weather winds **1999**, 9(4), 255-263

Miller, C

Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape 2011, 20(7), 815-828

Miller, JD

Modeling potential erosion due to the Cerro Grande Fire with a GIS-based implementation of the Revised Universal Soil Loss Equation

2003, 12(1), 85-100

Miller ID

Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA 2009, 18(7), 765-774

Ouantifying the fire regime distributions for severity in Yosemite National Park, California, USA 2011, 20(2), 223-239

Miller, ME

Predicting post-fire hillslope erosion in forest lands of the western United States 2011, 20(8), 982-999

Ecological effects of large fires on US landscapes: benefit or catastrophe?

2008, 17(6), 696-712

Miller, RF

Fine-scale variation of historical fire regimes in sagebrush-steppe and juniper woodland: an example from California, USA **2008**, 17(2), 245-254

Miller, SM

Spatial interpolation and simulation of post-burn duff thickness after prescribed fire **1999**, 9(2), 137-143

Efficient simulation of wildfire spread on an irregular grid **2008**, 17(5), 614-627

Internal-Combustion Engine Performance in the Fireground **1994**, 4(2), 83-91

Minnich, RA

Wildland Fire and Chaparral Succession Along the California Baja-California Boundary **1995**, 5(1), 13-24

Minnich, RA

Wildland Fire Patch Dynamics in the Chaparral of Southern California and Northern Baja California

1997, 7(3), 221-248

Minnich, RA

Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California 2005, 14(4), 343-354

Minshall, GW

Water quality, substratum and biotic responses of five central Idaho (USA) streams during the first year following the Mortar Creek fire

2001, 10(2), 185-199

Minshall, GW

Benthic macroinvertebrate assemblages in five central Idaho (USA) streams over a 10year period following disturbance by wildfire 2001, 10(2), 201-213

Miranda, AI

A Prognostic Meteorological Model Applied to the Study of a Forest Fire **1996**, 6(4), 157-163

Miranda, AI

An integrated numerical system to estimate air quality effects of forest fires

2004, 13(2), 217-226

Miranda, AI

Smoke measurements during Gestosa-2002 experimental field fires 2005, 14(2), 107-116

Miranda, AI

Local-scale modelling system to simulate smoke dispersion **2007**, 16(2), 196-203

Miranda, AI

Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System

2008, 17(3), 328-338

Miranda, AI

Regional-scale weather patterns and wildland fires in central Portugal

2009, 18(1), 36-49

Miranda, AI

Linear model for spread rate and mass loss rate for mixedsize fuel beds

2010, 19(5), 531-540

Miranda, AI

Effect of particle orientation and of flow velocity on the combustibility of Pinus pinaster and Eucalyptus globulus firebrand material 2011, 20(8), 946-962

Mitchell, E

The Sydney Australia Wildfires of January 1994 -Meteorological Conditions and High Resolution Numerical Modeling Experiments **1996**, 6(3), 145-154

Mitchell, RJ

Season of burn and nutrient losses in a longleaf pine ecosystem

2004, 13(4), 443-453

Mitchell, RJ

The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests 2009, 18(3), 315-325

Mitchell, RJ

Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics **2009**, 18(6), 676-685

Mitri, GH

A semi-automated objectoriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery

2004, 13(3), 367-376

Mitri, GH

Fire type mapping using objectbased classification of Ikonos imagery

2006, *15*(4), 457-462

Mitri, GH

Mapping the severity of fire using object-based classification of IKONOS imagery

2008, 17(3), 431-442

Mitsopoulos, ID

Allometric equations for crown fuel biomass of Aleppo pine (Pinus halepensis Mill.) in Greece

2007, 16(5), 642-647

Mitsopoulos, ID

Assessing ignition probability and moisture of extinction in a Mediterranean grass fuel 2010, 19(1), 29-34

Miyazaki, Y

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia 2003, 12(3&4), 271-281

Moghaddas, JJ

A fuel treatment reduces fire severity and increases suppression efficiency in a mixed conifer forest 2007, 16(6), 673-678

Moghaddas, JJ

Different interest group views of fuels treatments: survey results from fire and fire surrogate treatments in a Sierran mixed conifer forest. California, USA 2008, 17(2), 224-233

Moghtaderi, B

The role of extinction on the reignition potential of woodbased embers in bushfires 2007, 16(5), 547-555

Moglia, G

Fire regime of a Elionorus muticus Spreng. savanna, western Chaco region, Argentina **2001**, 10(1), 65-72

Molina, MJ

Temperature-time curves at the soil surface in maquis summer fires

2001, 10(1), 45-52

Monroe, MC

Living with fire: homeowner assessment of landscape values and defensible space in Minnesota and Florida, USA 2004, 13(4), 413-425

Montague-Drake, R

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia

2009, 18(1), 84-95

Moody, JA

Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States

2009, 18(1), 96-115

Moore, AD

Australian grassland fire danger using inputs from the GRAZPLAN grassland simulation model 2010, 19(3), 338-345

Moore, MM

Assessing fire regimes on Grand Canyon landscapes with fire-scar and fire-record data 2003, 12(2), 129-145

Moore, MM

Fire history and stand structure of two ponderosa pine-mixed conifer sites: San Francisco Peaks, Arizona, USA 2005, 14(3), 307-320

Moore, PHR

Seasonal Changes in Fire Behaviour in a Tropical Savanna in Northern Australia **1998**, 8(4), 227-239

Moore, RK

Detection and growth of an Alaskan forest fire using GOES-9 3.9 µm imagery **1999**, 9(2), 129-136

Morais, ME

Modelling long-term fire regimes of southern California shrublands

2011, 20(1), 1-16

Moral, R

Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in a Mediterranean environment 2002, 11(2), 107-114

Morandini, F

A two-dimensional model of fire spread across a fuel bed including wind combined with slope conditions **2002**, 11(1), 53-63

Morandini, F

Experimental investigation of the physical mechanisms governing the spread of wildfires 2010, 19(5), 570-582

Morandini, F

Physical modelling of forest fire spreading through heterogeneous fuel beds **2011**, 20(5), 625-632

Moré, G

Factors influencing the pattern of fire severities in a large wildfire under extreme meteorological conditions in the Mediterranean basin 2009, 18(7), 755-764

Morehouse, BJ

Integrating values and risk perceptions into a decision support system 2010, 19(1), 123-136

Moreira, F

Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard 2009, 18(5), 563-574

Moreira, F

Modeling and mapping wildfire ignition risk in Portugal 2009, 18(8), 921-931

Moreno, JM

Patterns of Lightning-, and People-Caused Fires in Peninsular Spain **1998**, 8(2), 103-115

Moreno, JM

Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging **2007**, 16(3), 341-348

Moreno, JM

Effects of a long-term fire retardant chemical (Fire-Trol 934) on seed viability and germination of plants growing in a burned Mediterranean area 2007, 16(3), 349-359

Moreno, JM

Landscape structural features control fire size in a Mediterranean forested area of central Spain 2009, 18(5), 575-583

Moreno, JM

Landscape variables influencing forest fires in central Spain 2011, 20(5), 678-689

Morgan, P

Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns

2001, 10(3&4), 329-342

Morgan, P

Remote sensing techniques to assess active fire characteristics and post-fire effects 2006, 15(3), 319-345

Morgan, P

Remote sensing for prediction of 1-year post-fire ecosystem condition 2009, 18(5), 594-608

Morgan, P

Beyond Landsat: a comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA 2010, 19(4), 449-458

Morgan, P

The combustion of sound and rotten coarse woody debris: a review

2011, 20(2), 163-174

Morgan, P

Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA **2011**, 20(2), 255-271

Moriondo, M

The meteorological conditions associated with extreme fire risk in Italy and Greece: relevance to climate model studies

2008, 17(2), 155-165

Moritz, MA

Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains, California

2008, 17(1), 18-27

Moritz, MA

Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation

2009, 18(8), 1021-1027

Moritz, MA

Modelling long-term fire regimes of southern California shrublands

2011, 20(1), 1-16

Morvan, D

A numerical study of buoyant plumes in cross-flow conditions **1999**, *9*(2), 101-108

Morvan, D

Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model

2005, 14(2), 141-151

Morvan, D

A numerical study of flame geometry and potential for crown fire initiation for a wildfire propagating through shrub fuel **2007**, *16*(5), 511-518

Morvan, D

Validation studies of EUMETSAT's active fire monitoring product over Turkey **2009**, 18(5), 517-526

Moya, D

Natural post-fire dynamics and serotiny in 10-year-old *Pinus halepensis* Mill. stands along a geographic gradient **2008**, *17*(2), 287-292

Moya, D

Is the net new carbon increment of coppice forest stands of *Quercus ilex* ssp. *ballota* affected by post-fire thinning treatments and recurrent fires? **2010**, *19*(5), 637-648

Mudelsee, M

A 229-year dendroclimaticinferred record of forest fire activity for the Boreal Shield of Canada

2006, 15(3), 375-388

Müller. T

An experiment to test the potential for glass fragments to ignite wildland fuels **2009**, *18*(7), 885-891

Mulqueeny, CM

Determinants of inter-annual variation in the area burnt in a semiarid African savanna **2011**, 20(4), 532-539

Mulqueeny, CM

Determinants of spatial variation in fire return period in a semiarid African savanna **2011**, *20*(4), 540-549

Munoz-Arriola, F

Spatially explicit forecasts of large wildland fire probability and suppression costs for California **2011**, *20*(4), 508-517

Murphy, BP

Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications **2009**, *18*(1), 1-18

Murphy, BP

Fire severity in a northern Australian savanna landscape: the importance of time since previous fire **2010**, 19(1), 46-51

Murphy, KA

Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results **2008**, *17*(4), 443-462

Murphy, KA

Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests

2008, 17(4), 490-499

Myers, BA

Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity **2008**, *17*(6), 793-808

Nachlinger, J

Implementation of mid-scale fire regime condition class mapping

2008, 17(3), 390-406

Nalder, IA

Physical properties of dead and downed round-wood fuels in the Boreal forests of western and Northern Canada **1999**, *9*(2), 85-99

Nappi, A

Effect of fire severity on longterm occupancy of burned boreal conifer forests by saproxylic insects and woodforaging birds **2010**, *19*(4), 500-511

Narayanaraj, G

Influences of forest roads on the spatial pattern of wildfire boundaries **2011**, 20(6), 792-803

Navarro Cerrillo, RM

Navarro Cerrilio, Rivi

Monitoring post-fire regeneration in Mediterranean ecosystems by employing multitemporal satellite imagery **2009**, *18*(6), 648-658

Navarro-Pedreño, J

Soil organic matter and aggregates affected by wildfire in a *Pinus halepensis* forest in a Mediterranean environment **2002**, *11*(2), 107-114

Neal, JE

Prescribed Burning of Thinning Slash in Regrowth Stands of Karri (*Eucalyptus diversicolor*) .1. Fire Characteristics, Fuel Consumption and Tree Damage 1997, 7(1), 29-40

Neary, DG

Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel **2010**, *19*(1), 75-93

Needham, T

Soil Seed Bank of a Jack Pine (*Pinus Banksiana*) Ecosystem **1998**, 8(2), 67-71

Ne'eman, G

Regeneration of Natural Pine Forest – Review of Work Done After the 1989 Fire in Mount Carmel, Israel 1997, 7(4), 295-306

Ne'eman, G

The Management Implications of the Mt. Carmel Research Project 1997, 7(4), 343-350

Negrón, JF

Development of post-fire crown damage mortality thresholds in ponderosa pine **2010**, *19*(5), 583-588

Neilson, R

Strategy for a Fire Module in Dynamic Global Vegetation Models **1999**, *9*(1), 79-84

Nelson, E

Chino well fire: a hydrologic evaluation of rainfall and runoff from the Mud Canyon watershed 1999, 9(1), 1-8

Nelson, Jr, RM

An effective wind speed for models of fire spread **2002**, *11*(2), 153-161

Nelson, Jr, RM

Power of the fire—a thermodynamic analysis **2003**, *12*(1), 51-65

Nelson, Jr, RM

Reaction times and burning rates for wind tunnel headfires **2003**, *12*(2), 195-211

Nelson, KC

Living with fire: homeowner assessment of landscape values and defensible space in Minnesota and Florida, USA **2004**, *13*(4), 413-425

Nelson, KC

Interpreting federal policy at the local level: the wildland–urban interface concept in wildfire protection planning in the eastern United States **2009**, *18*(3), 278-289

Nelson, KC

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

2011, 20(3), 350-363

Nelson, RM

Byram Derivation of the Energy Criterion for Forest and Wildland Fires 1993, 3(3), 131-138

Nelson, RM

In Memory - George M. Byram - 1909-**1996 1996**, *6*(4), 216-217

Nelson, RM

Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: model evaluation and comparison with National Fire Danger Rating System algorithms **2007**, *16*(2), 204-216

Nestel, D

Seedling Mortality in Regeneration of Aleppo Pine Following Fire and Attack by the Scale Insect *Matsucoccus josephi* **1997**, 7(4), 327-333

Neto, LP

On the Temperature Distribution Inside a Tree Under Fire Conditions **1991**, *1*(2), 87-96

Neto, LPC

Wall Shear-Stress as a Parameter to Correlate the Rate of Spread of a Wind Induced Forest Fire.

1991, 1(3), 177-188

Neuenschwander, LF

Introduction: Integrating spatial technologies and ecological principles for a new age in fire management

2001, 10(3&4), 263-265

Neumann, DD

Surface burning in a mature stand of *Pinus resinosa* and *Pinus strobus* in Michigan: effects on understory vegetation **2001**, 10(1), 91-101

Newton, WE

Effects of fire retardant chemical and fire suppressant foam on shrub steppe vegetation in northern Nevada **1999**, *9*(2), 115-127

Nicholls, N

Interannual variations of area burnt in Tasmanian bushfires: relationships with climate and predictability **2007**, *16*(5), 540-546

Nicholls, N

The relationship between the monsoonal summer rain and dry-season fire activity of northern Australia **2008**, *17*(5), 674-684

Nickless, A

Methods to determine the impact of rainfall on fuels and burned area in southern African savannas

2010, 19(6), 774-782

Nielsen, TT

Utilization of NOAA AVHRR for assessing the determinants of savanna fire distribution in Burkina Faso **2001**, *10*(2), 129-135

Nieto, H

Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment

2007, 16(4), 390-397

Niklasson, M

A 400-year history of fires on lake islands in south-east Sweden

2010, 19(8), 1050-1058

Niphadkar, M

Time series of chaparral live fuel moisture maps derived from MODIS satellite data 2006, 15(3), 347-360

Niven, M

Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat 2009, 18(8), 1010-1020

Noble, JC

Behaviour of a Very Fast Grassland Wildfire on the Riverine Plain of Southeastern Australia.

1991, 1(3), 189-196

Nock, CA

Forest fire occurrence and climate change in Canada 2010, 19(3), 253-271

Noonan, M

The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires

2004, 13(2), 227-240

Norman, MA

Prescribed burning of thinning slash in regrowth stands of jarrah (Eucalyptus marginata) following bauxite mining in south-west Australia 2010, 19(6), 737-745

North, MP

Post-fire epicormic branching in Sierra Nevada Abies concolor (white fir)

2006, 15(1), 31-35

North, MP

Post-fire survival and flushing in three Sierra Nevada conifers with high initial crown scorch 2009, 18(7), 857-864

Nosenzo, A

Comparative study of various methods of fire danger evaluation in southern Europe 1999, 9(4), 235-246

Nunez, M

Assessing Grassland Moisture and Biomass in Tasmania - the Application of Remote-Sensing and Empirical-Models for a Cloudy Environment 1995, 5(3), 165-171

Nyhan, JW

Modeling potential erosion due to the Cerro Grande Fire with a GIS-based implementation of the Revised Universal Soil Loss Equation

2003, 12(1), 85-100

O'Connell, AM

Prescribed Burning of Thinning Slash in Regrowth Stands of Karri (Eucalyptus diversicolor) .2. Nitrogen Budgets in Pre- and Post-Burn Fuel **1997**, 7(1), 41-49

O'Brien, JJ

The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests **2009**, 18(3), 315-325

O'Brien, JJ

Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics 2009, 18(6), 676-685

O'Brien, S

Integrating values and risk perceptions into a decision support system **2010**, 19(1), 123-136

O'Connor, A

Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat

2009, 18(8), 1010-1020

O'Connor, TG

Determinants of inter-annual variation in the area burnt in a semiarid African savanna 2011, 20(4), 532-539

O'Connor, TG

Determinants of spatial variation in fire return period in a semiarid African savanna 2011, 20(4), 540-549

Odén, PC

Fuel and fire characteristics in savanna-woodland of West Africa in relation to grazing and dominant grass type **2007**, 16(5), 531-539

Oechel, WC

Photosynthate Allocation Patterns Along a Fire-Induced Age Sequence in Two Shrub Species From the California Chaparral **1993**, 3(1), 21-30

Ogawa, T

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia 2003, 12(3&4), 271-281

Ogaya, R

Estimating live fine fuels moisture content using meteorologically-based indices 2001, 10(2), 223-240

Ogaya, R

Influence of water and terpenes on flammability in some dominant Mediterranean species

2008, 17(2), 274-286

O'Grady, AP

Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia 2003, 12(3&4), 333-340

Ohlson, P

Snag dynamics in a chronosequence of 26 wildfires on the east slope of the Cascade Range in Washington State, USA

1999, 9(4), 223-234

Ojeda, F

Postfire Regeneration of a Mediterranean Heathland in Southern Spain **1996**, 6(4), 191-198

Oliveira, LA

On the Temperature Distribution Inside a Tree Under Fire Conditions **1991**, 1(2), 87-96

Oliveira, LA

Numerical Predictions on the Soil Thermal Effect Under Surface Fire Conditions **1997**, 7(1), 51-63

Oliveras, I

Generalization of the fire line rotation model to curved fire lines

2006, 15(4), 447-456

Oliveras, I

Factors influencing the pattern of fire severities in a large wildfire under extreme meteorological conditions in the Mediterranean basin 2009, 18(7), 755-764

Ollero, A

Laboratory fire spread analysis using visual and infrared images

2006, 15(2), 179-186

Olsen, CS

Trust, acceptance, and citizenagency interactions after large fires: influences on planning processes

2010, 19(1), 137-147

Omi, PN

Quadrat Analysis of Wildland Fuel Spatial Variability **1992**, 2(4), 145-152

Microplot Sampling of Fire Behavior on Populus tremuloides Stands in North-Central Colorado 1993, 3(2), 85-94

Omi, PN

Reduction of Fire Hazard Through Thinning/Residue Disposal in the Urban Interface **1998**, 8(1), 29-35

Omi, PN

Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests

2002, 11(1), 1-10

Omi, PN

Establishment of non-native plant species after wildfires: effects of fuel treatments, abiotic and biotic factors, and post-fire grass seeding treatments

2006, 15(2), 271-281

Omi, PN

Assessing mitigation of wildfire severity by fuel treatments - an example from the Coastal Plain of Mississippi **2008**, 17(3), 415-420

O'Neill, SM

The BlueSky smoke modeling framework

2009, 18(8), 906-920

Ooi, MKJ

Persistence of obligate-seeding species at the population scale: effects of fire intensity, fire patchiness and long fire-free intervals

2006, 15(2), 261-269

Oriol, V

Temporal fluctuations in soil water repellency following wildfire in chaparral steeplands, southern California 2005, 14(4), 439-447

Orlove, B

The relationship between the monsoonal summer rain and dry-season fire activity of northern Australia 2008, 17(5), 674-684

Orozco-Segovia, A

Effect of heat shock on germination of 23 plant species in pine-oak and montane cloud forests in western Mexico 2010, 19(6), 759-773

Orr, BJ

Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel **2010**, 19(1), 75-93

Fuel loading prediction models developed from aerial photographs of the Sangre de Cristo and Jemez mountains of New Mexico, USA 2002, 11(1), 85-90

Oswald, BP

Classifying fuels with aerial photography in East Texas **1999**, 9(2), 109-113

Measuring moisture dynamics to predict fire severity in longleaf pine forests **2002**, 11(3&4), 267-279

Ottmar, RD

Calibration of a Large Fuel Burnout Model 1995, 5(3), 173-192

Ottmar, RD

Characterizing fuels in the 21st Century

2001, 10(3&4), 381-387

Ottmar, RD

Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests **2008**, *17*(4), 515-526

Ottmar, RD

Critique of Sikkink and Keane's comparison of surface fuel sampling techniques **2010**, *19*(3), 374-376

Ottmar, RD

The combustion of sound and rotten coarse woody debris: a review

2011, 20(2), 163-174

Ottmar, RD

Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA **2011**, *20*(2), 255-271

Otway, SG

Predicting sustained smouldering combustion in trembling aspen duff in Elk Island National Park, Canada **2007**, *16*(6), 690-701

Outcalt, KW

Seed Production of Wiregrass in Central Florida Following Growing-Season Prescribed Burns

1994, 4(2), 123-125

Outeiro, LR

Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain) **2005**, *14*(4), 379-384

Owens, MK

Examining fire behavior in mesquite–acacia shrublands **2005**, *14*(2), 131-140

Packham, D

Wildfire Activity in the Mallee Shrubland of Victoria, Australia **1993**, *3*(4), 217-227

Packham, D

Biomass Burning and Resulting Emissions in the Northern Territory, Australia **1995**, *5*(4), 229-235

Packham, D

The relationship between the monsoonal summer rain and dry-season fire activity of northern Australia **2008**, *17*(5), 674-684

Packham, DR

A Coupled Atmosphere-Fire Model: Role of the Convective Froude Number and Dynamic Fingering at the Fireline **1996**, 6(4), 177-190

Padilla, M

On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain **2011**, 20(1), 46-58

Pafford, D

Analysis of Experimental Simulation of Ground Surface Heating During a Prescribed Burn

1991, 1(2), 125-146

Page, SE

Effect of repeated fires on landcover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005 **2011**, 20(4), 578-588

Pagni, PJ

Firebrands and spotting ignition in large-scale fires **2010**, *19*(7), 818-843

Paitre, C

Effects of vegetation zones and climatic changes on fireinduced atmospheric carbon emissions: a model based on paleodata

2010, 19(8), 1015-1025

Pallares-Barbera, M
Spatial distribution of ignitions in Mediterranean periurban and rural areas: the case of Catalonia
2006, 15(2), 187-196

Palma, CD

Assessing the impact of standlevel harvests on the flammability of forest landscapes **2007**, *16*(5), 584-592

Pan, Y

Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens **2009**, *18*(3), 268-277

Panov. PI

Pyric properties of some dominant Mediterranean vegetation species **2001**, *10*(1), 23-27

Pantis, JD

Effects of Fire on Soil Macroinvertebrates in a Mediterranean Phryganic Ecosystem 1995, 5(2), 113-121

Pappa, A

Effect of fire retardant application on phosphorus leaching from Mediterranean forest soil: short-term laboratory-scale study **2006**, *15*(3), 287-292

Papst, WA

Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity **2008**, *17*(6), 793-808

Parent, G

Spectral emission of flames from laboratory-scale vegetation fires **2009**, *18*(7), 875-884

Parisien, M-A

Spatial patterns of forest fires in Canada, 1980–1999 **2006**, *15*(3), 361-374

Parisien, M-A

Comparing landscape-based decision rules for placement of fuel treatments in the boreal mixedwood of western Canada **2007**, *16*(6), 664-672

Parisien, M-A

Large fires as agents of ecological diversity in the North American boreal forest **2008**, *17*(6), 754-767

Parisien, M-A

Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape **2011**, 20(7), 815-828

Park, PS

Temporal and spatial characteristics of forest fires in South Korea between 1970 and **2003 2006**, *15*(3), 389-396

Parks, SA

Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape **2011**, *20*(7), 815-828

Parsons, BC

Contemporary fire regimes in a fragmented and an unfragmented landscape: implications for vegetation structure and persistence of the fire-sensitive malleefowl **2011**, 20(2), 184-194

Parsons, R

Using simulation to map fire regimes: an evaluation of approaches, strategies, and limitations

2003, 12(3&4), 309-322

Parsons, RA

Relative importance of fuel management, ignition management and weather for area burned: evidence from five landscape–fire–succession models

2009, 18(2), 147-156

Pasalodos-Tato, M

Optimal management of *Pinus* pinaster in Galicia (Spain) under risk of fire **2010**, 19(7), 937-948

Pasqualini, V

Volatile and semi-volatile organic compounds in smoke exposure of firefighters during prescribed burning in the Mediterranean region **2010**, *19*(5), 606-612

Pastor, E

Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations **2004**, *13*(1), 1-15

Pastor, F

Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain) **2007**, *16*(5), 619-632

Patterson, M

Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens **2009**, *18*(3), 268-277

Paula, S

Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies **2010**, *19*(6), 783-794

Pausas, JG

Fire regime and post-fire Normalized Difference Vegetation Index changes in the eastern Iberian peninsula (Mediterranean basin) **2006**, *15*(3), 407-413

Pausas, JG

Spatial and temporal patterns of plant functional types under simulated fire regimes **2007**, *16*(4), 484-492

Pausas, JG

Are wildfires a disaster in the Mediterranean basin? – A review **2008**, *17*(6), 713-723

Pausas, JG

Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies **2010**, *19*(6), 783-794

Paveglio, TB

Adoption and perceptions of shelter-in-place in California's Rancho Santa Fe Fire Protection District **2010**, *19*(6), 677-688

Payne, D

Prescribed fire, soils, and stream water chemistry in a watershed in the Lake Tahoe Basin, California **2004**, *13*(1), 27-35

Paysen, TE

Burning California Chaparral - an Exploratory Study of Some Common Shrubs and Their Combustion Characteristics. **1991**, *I*(3), 153-158

Paysen, TE

Indications of vigor loss after fire in Caribbean pine (*Pinus caribaea*) from electrical resistance measurements **2006**, *15*(3), 415-425

Pearson, DW

Experimental validation in Mediterranean shrub fuels of seven wildland fire rate of spread models **2001**, *10*(1), 15-22

Pearthree, PA

Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA **2011**, *20*(1), 125-141

Pellizzaro, G

Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species **2007**, *16*(2), 232-241

Pellizzaro, G

Evaluation of FARSITE simulator in Mediterranean maquis

2007, 16(5), 563-572

Pellizzaro, G

Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin **2007**, *16*(5), 633-641

Peng, R

Detection of non-linearities in the dependence of burn area on fuel age and climatic variables **2003**, *12*(1), 1-6

Penman, TD

Soil temperatures during autumn prescribed burning: implications for the germination of fire responsive species? **2008**, *17*(5), 572-578

Penman, TD

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Penman, TD

Bayes Nets as a method for analysing the influence of management actions in fire planning

2011, 20(8), 909-920

Peñuelas, J

Influence of water and terpenes on flammability in some dominant Mediterranean species

2008, 17(2), 274-286

Peppin, DL

Recent trends in post-wildfire seeding in western US forests: costs and seed mixes **2011**, *20*(5), 702-708

Pereira, JMC

Structural-Properties and Dimensional Relations of Some Mediterranean Shrub Fuels 1995, 5(1), 35-42

Pereira, JMC

Remote sensing of burned areas in tropical savannas **2003**, *12*(3&4), 259-270

Pereira, JMC

Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004)

2009, 18(8), 983-991

Perera, AH

What do we know about forest fire size distribution, and why is this knowledge useful for forest management?

2008, 17(2), 234-244

Perevolotsky, A

The Management Implications of the Mt. Carmel Research Project **1997**, 7(4), 343-350

Pérez-Cabello, F

Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images **2011**, 20(2), 195-208

Pérez-Gorostiaga, P

Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds **2009**, *18*(8), 951-969

Pérez-Gorostiaga, P

Effects of soil burn severity on germination and initial establishment of maritime pine seedlings, under greenhouse conditions, in two contrasting experimentally burned soils **2011**, *20*(2), 209-222

Perrakis, DDB

The transferability of a dNBR-derived model to predict burn severity across 10 wildland fires in western Canada

2011, 20(4), 518-531

Peters, VS

Spatial patterns of forest fires in Canada, 1980–1999 **2006**, *15*(3), 361-374

Peterson, DL

Postfire Growth of Pseudotsuga menziesii and *Pinus contorta* in the Northern Rocky Mountains, USA

1991, *1*(1), 63-71

Peterson, DL

The Effects of Repeated Prescribed Burning on *Pinus* ponderosa Growth **1994**, 4(4), 239-247

Peterson, DL

Extrapolation Problems in Modeling Fire Effects at Large Spatial Scales: a Review 1996, 6(4), 165-176

Peterson, DW

Impacts of erosion control treatments on native vegetation recovery after severe wildfire in the Eastern Cascades, USA **2010**, *19*(4), 490-499

Peterson, J

The BlueSky smoke modeling framework **2009**, *18*(8), 906-920

Peterson, RL

Predicting the Height to Live Crown Base in Plantations of Four Boreal Forest Species 1994, 4(2), 103-106

Peterson, SH

Modelling long-term fire regimes of southern California shrublands

2011, 20(1), 1-16

Pfaff, AH

Fire suppression impacts on postfire recovery of Sierra Nevada chaparral shrublands **2005**, *14*(3), 255-265

Pickett, BM

Flame interactions and burning characteristics of two live leaf samples

2009, 18(7), 865-874

Pickett, BM

Experimental measurements during combustion of moist individual foliage samples **2010**, *19*(2), 153-162

Pickford, S

A Note on Fuelbeds and Fire Behavior in Alang-Alang (*Imperata Cylindrica*) **1992**, 2(1), 41-46

Picotte, JJ

Validation of remote sensing of burn severity in south-eastern US ecosystems

2011, 20(3), 453-464

Pierce, J

Long-term fire history from alluvial fan sediments: the role of drought and climate variability, and implications for management of Rocky Mountain forests **2008**, *17*(1), 84-95

Pierson, FB

Impacts of wildfire on soil hydrological properties of steep sagebrush-steppe rangeland **2002**, *11*(2), 145-151

Pimont. F

Validation studies of EUMETSAT's active fire monitoring product over Turkey 2009, 18(5), 517-526

Pimont, F

Validation of FIRETEC windflows over a canopy and a fuelbreak

2009, 18(7), 775-790

Pimont, F

Exploring three-dimensional coupled fire-atmosphere interactions downwind of wind-driven surface fires and their influence on backfires using the HIGRAD-FIRETEC model **2011**, 20(6), 734-750

Piñol, J

Estimating live fine fuels moisture content using meteorologically-based indices **2001**, *10*(2), 223-240

Piñol, J

Generalization of the fire line rotation model to curved fire lines

2006, 15(4), 447-456

Piromsopa, K

Climatological and statistical characteristics of the Haines Index for North America **2007**, *16*(2), 139-152

Pita, LP

Fire spread in canyons **2004**, *13*(3), 253-274

Pitman, AJ

Regional signatures of future fire weather over eastern Australia from global climate models

2011, 20(4), 550-562

Planas, E

Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations **2004**, *13*(1), 1-15

Platt, WJ

Effects of exotic grasses on potential fine fuel loads in the groundcover of south Florida slash pine savannas **2001**, *10*(2), 155-159

Plucinski, MP

Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation **2008**, *17*(5), 628-637

Plucinski, MP

The initiation of fire spread in shrubland fuels recreated in the laboratory **2010**, 19(4), 512-520

Podur. J

Defining fire spread event days for fire-growth modelling **2011**, 20(4), 497-507

Podur, JJ

A simulation model of the growth and suppression of large forest fires in Ontario **2007**, *16*(3), 285-294

Poespowati, T

The role of extinction on the reignition potential of woodbased embers in bushfires **2007**, *16*(5), 547-555

Pollet, J

Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests

2002, 11(1), 1-10

Pollock, GH

Postfire Growth of Pseudotsuga menziesii and *Pinus contorta* in the Northern Rocky Mountains, USA

1991, *1*(1), 63-71

Polykrati, AD

A model for calculating the temperature of aluminium particles ejected from overhead low-voltage lines owing to a short-circuit **2009**, *18*(6), 722-726

Pompa, J

A critical assessment of the Burning Index in Los Angeles County, California **2007**, *16*(4), 473-483

Pons, X

Statistical analysis of fire frequency models for Catalonia (NSpain), 1975–1998) based on fire scar maps from Landsat MSS data **2004**, *13*(1), 89-99

Pook, EW

Variation of Live and Dead Fine Fuel Moisture in *Pinus* radiata Plantations of the Australian-Capital-Territory **1993**, 3(3), 155-168

Porterie, B

A numerical study of buoyant plumes in cross-flow conditions **1999**, *9*(2), 101-108

Porterie, B

Fire spread across pine needle fuel beds: characterization of temperature and velocity distributions within the fire plume

2004, *13*(1), 37-48

Porterie, B

Spectral emission of flames from laboratory-scale vegetation fires **2009**, *18*(7), 875-884

Portier, D

The effects of slope and fuel bed width on laboratory fire behaviour **2011**, 20(2), 272-288

Poth, M

Prescribed fire, soils, and stream water chemistry in a watershed in the Lake Tahoe Basin, California **2004**, *13*(1), 27-35

Potter, BE

Atmospheric Properties Associated With Large Wildfires 1996, 6(2), 71-76

Potter, BE

A dynamics based view of atmosphere–fire interactions **2002**, *11*(3&4), 247-255

Potter, BE

The role of released moisture in the atmospheric dynamics associated with wildland fires **2005**, *14*(2), 77-84

Potter, BE

In situ measurements of water vapor, heat, and CO_2 fluxes within a prescribed grass fire **2006**, 15(3), 299-306

Potter, BE

Climatological and statistical characteristics of the Haines Index for North America **2007**, *16*(2), 139-152

Potter, BE

Preface to 'Fire and Forest Meteorology' **2007**, *16*(2), iii-iii

Powers, RF

Lethal soil temperatures during burning of masticated forest residues

2005, 14(3), 267-276

Prasad, AM

A comparison of thermocouples and temperature paints to monitor spatial and temporal characteristics of landscapescale prescribed fires **2004**, *13*(3), 311-322

Preece, N

Customary use of fire by indigenous peoples in northern Australia: its contemporary role in savanna management **2003**, *12*(3&4), 415-425

Preece, N

Traditional and ecological fires and effects of bushfire laws in north Australian savannas **2007**, *16*(4), 378-389

Preisler, HK

Probability based models for estimation of wildfire risk **2004**, *13*(2), 133-142

Preisler, HK

Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices **2008**, *17*(3), 305-316

Preisler, HK

Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information **2009**, *18*(5), 508-516

Preisler, HK

Spatially explicit forecasts of large wildland fire probability and suppression costs for California

2011, 20(4), 508-517

Prestemon, JP

Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida **2006**, *15*(1), 87-97

Prestemon, JP

Economic optimisation of wildfire intervention activities **2010**, *19*(5), 659-672

Price, O

Fine-scale patchiness of different fire intensities in sandstone heath vegetation in northern Australia **2003**, *12*(2), 227-236

Price, C

Monitoring the impacts of fire regimes on vegetation in northern Australia: an example from Kakadu National Park **2003**, *12*(3&4), 427-440

Price, O

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Price, O

Bayes Nets as a method for analysing the influence of management actions in fire planning **2011**, 20(8), 909-920

Price, OF

Efficacy of permanent firebreaks and aerial prescribed burning in western Arnhem Land, Northern Territory, Australia

2007, 16(3), 295-305

Price, OF

The effect of fuel age on the spread of fire in sclerophyll forest in the Sydney region of Australia

2010, 19(1), 35-45

Price, OF

Quantifying the influence of fuel age and weather on the annual extent of unplanned fires in the Sydney region of Australia

2011, 20(1), 142-151

Prior, T

The art of learning: wildfire, amenity migration and local environmental knowledge **2011**, *20*(4), 612-624

Pritchard, JM

Remote sensing of burn severity: experience from western Canada boreal fires **2008**, 17(4), 476-489

Pritchard, JN

Estimating direct carbon emissions from Canadian wildland fires **2007**, *16*(5), 593-606

Prober, SM

Effects of fire frequency and mowing on a temperate, derived grassland soil in south-eastern Australia

2008, 17(5), 586-594

Prober, SM

Repeated disturbance through chaining and burning differentially affects recruitment among plant functional types in fire-prone heathlands **2010**, *19*(1), 52-62

Prodon, R

Seed predation by birds shortly after a wildfire in a Corsican pine forest

2006, 15(1), 81-86

Prosper-Laget, V

A Satellite Index of Risk of Forest Fire Occurrence in Summer in the Mediterranean Area

1998, 8(4), 173-182

Provencher, L

Implementation of mid-scale fire regime condition class mapping

2008, 17(3), 390-406

Psarros, EG

A model for calculating the temperature of aluminium particles ejected from overhead low-voltage lines owing to a short-circuit **2009**, *18*(6), 722-726

Pu R

A dynamic algorithm for wildfire mapping with NOAA/AVHRR data **2004**, *13*(3), 275-285

Pukkala, T

Optimal management of *Pinus pinaster* in Galicia (Spain) under risk of fire **2010**, *19*(7), 937-948

Putnam, T

Fire shelter performance in simulated wildfires: an exploratory study **2001**, *10*(1), 29-44

Putnam, T

Effect of fire shelters on perceived fire danger: implications for risk compensation **2005**, *14*(3), 297-306

Puttonen, P

Experimental fire behaviour in managed *Pinus sylvestris* and *Picea abies* stands of Finland **2007**, *16*(4), 414-425

Putz, FE

Fire ignition patterns affect production of charcoal in southern forests **2011**, 20(3), 474-477

PWalsh, RPD

Wildfire Impacts on Soil-Erosion and Hydrology in Wet Mediterranean Forest, Portugal **1993**, 3(2), 95-110

Pyne, SJ

Problems, paradoxes, paradigms: triangulating fire research **2007**, *16*(3), 271-276

Pyrke A

Fire modelling in Tasmanian buttongrass moorlands. IV. Sustaining versus nonsustaining fires **2001**, *10*(2), 255-262

Pyrke, A

Simulation of prescribed burning strategies in south-west Tasmania, Australia: effects on unplanned fires, fire regimes, and ecological management values

2006, 15(4), 527-540

Qu, JJ

Smoke incursions into urban areas: simulation of a Georgia prescribed burn **2009**, *18*(3), 336-348

Queen, LP

Fire modeling and information system technology **2001**, *10*(3&4), 343-352

Quero, MO

Recent fire regime in peninsular Spain in relation to forest potential productivity and population density **2006**, *15*(3), 397-405

Ouinn, JF

Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA **2011**, *20*(2), 223-239

Rabelo, ERC

Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire **2010**, *19*(6), 795-799

Radeloff, VC

Wildland–urban interface housing growth during the 1990s in California, Oregon, and Washington **2007**, 16(3), 255-265

Radeloff, VC

Predicting spatial patterns of fire on a southern California landscape

2008, 17(5), 602-613

Radeloff, VC

Allocating fuel breaks to optimally protect structures in the wildland–urban interface **2011**, *20*(1), 59-68

Radke, LF

A prescription for controlling the air pollution resulting from the use of prescribed biomass fire: clouds **2001**, *10*(2), 103-111

Raffaele, E

The historical range of variability of fires in the Andean–Patagonian *Nothofagus* forest region **2008**, *17*(6), 724-741

2000, 17 (0), 72

Raffuse, S

The BlueSky smoke modeling framework **2009**, *18*(8), 906-920

Raftoyannis, Y

Evaluation of log and branch barriers as post-fire rehabilitation treatments in a Mediterranean pine forest in Greece

2005, 14(2), 183-188

Raimundo, AM

Numerical Predictions on the Soil Thermal Effect Under Surface Fire Conditions **1997**, *7*(1), 51-63

Ralph, CJ

Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California

2006, 15(2), 237-245

Ram, SC

Fire and Nutrient Cycling in Seral Grasslands of Cherrapunji in North-Eastern India 1992, 2(3), 131-138

Ramakrishnan, PS

Fire and Nutrient Cycling in Seral Grasslands of Cherrapunji in North-Eastern India 1992, 2(3), 131-138

Ramon Vallejo, VR

Soil responses to fire in Mediterranean forest landscapes in relation to the previous stage of land abandonment **2009**, *18*(2), 222-232

Rasmussen, K

Utilization of NOAA AVHRR for assessing the determinants of savanna fire distribution in Burkina Faso **2001**, *10*(2), 129-135

Ratle, F

Detection of clusters using space–time scan statistics **2009**, *18*(7), 830-836

Ratz, A

Long-Term Spatial Patterns Created by Fire: a Model Oriented Towards Boreal Forests 1995, 5(1), 25-34

Rausch, M

The development of fireinduced damage functions for forest recreation activity in Alberta, Canada **2010**, 19(1), 63-74

Raventós, J

Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands **2004**, *13*(1), 79-87

Raventós, J

Fire and torrential rainfall: effects on seedling establishment in Mediterranean gorse shrublands **2005**, *14*(4), 413-422

Rawambaku, A

Remote sensing of fire regimes in semi-arid Nusa Tenggara Timur, eastern Indonesia: current patterns, future prospects **2006**, *15*(3), 307-317

Rawet, D

A Comparison of Water Additives for Mopping-up After Forest Fires **1996**, *6*(1), 37-43

Raymond, DA

Estimating direct carbon emissions from Canadian wildland fires **2007**, *16*(5), 593-606

Reardon,

Measuring duff moisture content in the field using a portable meter sensitive to dielectric permittivity **2004**, *13*(3), 343-353

Reardon, J

Prediction and measurement of thermally induced cambial tissue necrosis in tree stems **2006**, *15*(1), 3-17

Reardon, J

Factors affecting sustained smouldering in organic soils from pocosin and pond pine woodland wetlands **2007**, *16*(1), 107-118

Reardon, J

Soil moisture dynamics and smoldering combustion limits of pocosin soils in North Carolina, USA **2009**, 18(3), 326-335

Reardon, JJ

Simulation of Crown Fire Effects on Canopy Seed Bank in Lodgepole Pine **1996**, 6(1), 45-49

Rebbeck, J

A comparison of thermocouples and temperature paints to monitor spatial and temporal characteristics of landscapescale prescribed fires **2004**, *13*(3), 311-322

Redmann, RE

Nitrogen Losses to the Atmosphere From Grassland Fires in Saskatchewan, Canada 1991, 1(4), 239-244

Reeves, HC

Wildfire in the Yugoslav Area and Eastern Mediterranean Region **1993**, *3*(3), 123-130

Reeves, HC

Classifying fuels with aerial photography in East Texas **1999**, *9*(2), 109-113

Reeves, MC

Spatial fuel data products of the LANDFIRProject **2009**, *18*(3), 250-267

Regelbrugge, JC

Modeling Tree Mortality Following Wildfire in *Pinus ponderosa* Forests in the Central Sierra-Nevada of California **1993**, 3(3), 139-148

Rego, FC

Demographic Patterns and Productivity of Post-Fire Regeneration in Portuguese Mediterranean Maquis 1996, 6(1), 5-12

Rego, FC

A New Method to Estimate Fuel Surface Area-to-Volume Ratio Using Water Immersion 1998, 8(2), 59-66

Rego, FC

A New Method to Estimate Fuel Surface Area-to-Volume Ratio Using Water Immersion. 1998, 8(3), 121-128

Rego, FC

Soil water dynamics after fire in a Portuguese shrubland **2006**, *15*(1), 99-111

Rego, FC

Empirical modelling of surface fire behaviour in maritime pine stands

2009, 18(6), 698-710

Rego, FC

Modeling and mapping wildfire ignition risk in Portugal **2009**, *18*(8), 921-931

Rehm, RG

A simple model for wind effects of burning structures and topography on wildland–urban interface surface-fire propagation **2009**, *18*(3), 290-301

Rehm, RG

The wildland–urban interface fire problem – current approaches and research needs **2010**, 19(2), 238-251

Reich RM

Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA **2004**, *13*(1), 119-129

Reinbold, HJ

Evaluation of the Experimental Climate Prediction Center's fire danger forecasts with remote automated weather station observations **2005**, *14*(2), 19-36

Reineking, B

Environmental determinants of lightning- v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland **2010**, *19*(5), 541-557

Reinhardt, E

Evaluation of a post-fire tree mortality model for western USA conifers **2007**, *16*(6), 679-689

Reinhardt, ED

Modeling Ignition and Burning Rate of Large Woody Natural Fuels 1995, 5(2), 81-91

Reinhardt, ED

Calibration of a Large Fuel Burnout Model 1995, 5(3), 173-192

Reinhardt, ED

Improved Calibration of a Large Fuel Burnout Model **1997**, 7(1), 21-28

Reinhardt, ED

Modeling fire effects **2001**, *10*(3&4), 373-380

Reisch, NB

Long-term impacts of prescribed burns on soil thermal conductivity and soil heating at a Colorado Rocky Mountain site: a data/model fusion study **2008**, *17*(1), 131-146

Reisner, J

Studying wildfire behavior using FIRETEC **2002**, *11*(3&4), 233-246

Retana, J

Topography and forest composition affecting the variability in fire severity and post-fire regeneration occurring after a large fire in the Mediterranean basin **2004**, *13*(2), 209-216

Retana, J

Post-dispersal seed predation in Pinus halepensis and consequences on seedling establishment after fire 2008, 17(3), 407-414

Retana, J

Factors influencing the pattern of fire severities in a large wildfire under extreme meteorological conditions in the Mediterranean basin 2009, 18(7), 755-764

Reuter, G

Fire-growth modelling using meteorological data with random and systematic perturbations 2007, 16(2), 174-182

Reuter, G

An approach to operational forest fire growth predictions for Canada 2009, 18(8), 893-905

Effect of particle orientation and of flow velocity on the combustibility of Pinus pinaster and Eucalyptus globulus firebrand material 2011, 20(8), 946-962

Reyes, O

Influence of heat and smoke treatments on the germination of six leguminous shrubby species

2006, 15(1), 73-80

Reynolds, JH

Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests

2008, 17(4), 490-499

Rhoades, CC

The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado 2011, 20(3), 430-442

Riaño, D

Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging **2007**, *16*(3), 341-348

Ribeiro, LM

Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging **2007**, 16(3), 341-348

Ribeiro, LM

Linear model for spread rate and mass loss rate for mixedsize fuel beds **2010**, 19(5), 531-540

Richard, PJH

Effects of vegetation zones and climatic changes on fireinduced atmospheric carbon emissions: a model based on paleodata **2010**, 19(8), 1015-1025

Richard, PJH

Resilience of the boreal forest in response to Holocene firefrequency changes assessed by pollen diversity and population dynamics 2010, 19(8), 1026-1039

Richards, GD

A General Mathematical Framework for Modeling Two-Dimensional Wildland Fire Spread **1995**, 5(2), 63-72

Richards, GD

A Computer Algorithm for Simulating the Spread of Wildland Fire Perimeters for Heterogeneous Fuel and Meteorological Conditions 1995, 5(2), 73-79

Richards, GD

The mathematical modelling and computer simulation of wildland fire perimeter growth over a 3-dimensional surface **1999**, 9(3), 213-221

Richardson, DM

A Computer-Based System for Fire Management in the Mountains of the Cape Province, South-Africa **1994**, 4(1), 17-32

Rideout-Hanzak, S

Fuel characterization in the southern Appalachian Mountains: an application of Landscape Ecosystem Classification 2009, 18(4), 423-429

Riebau, AR

The new smoke management 2001, 10(3&4), 415-427

Rieck, JD

Built structure identification in wildland fire decision support 2011, 20(1), 78-90

Rielev, JO

Effect of repeated fires on landcover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005 **2011**, 20(4), 578-588

Riesterer, H

Snag dynamics in a chronosequence of 26 wildfires on the east slope of the Cascade Range in Washington State, USA

1999, 9(4), 223-234

Riggan, PJ

A prescription for controlling the air pollution resulting from the use of prescribed biomass fire: clouds 2001, 10(2), 103-111

Riordan, K

Development of calibration algorithms for selected water content reflectometry probes for burned and non-burned organic soils of Alaska

2010, 19(7), 961-975

Ripabelli, G

Effects of Heating on the Microbial Populations of a Grassland Soil **1996**, 6(2), 67-70

Rivas Soriano, L

Prediction of the daily number of forest fires

1999, 9(3), 207-211

Rivas, M

Influence of heat and smoke treatments on the germination of six leguminous shrubby species

2006, 15(1), 73-80

Roads, J

Seasonal fire danger forecasts for the USA 2005, 14(2), 1-18

Roads, J

NCEP-ECPC monthly to seasonal US fire danger forecasts **2010**, 19(4), 399-414

Roads, JO

Medium-range fire weather forecasts

1991, 1(3), 159-176

Roads, JO

Evaluation of the Experimental Climate Prediction Center's fire danger forecasts with remote automated weather station observations 2005, 14(2), 19-36

Robak, D

Assessing the impact of standlevel harvests on the flammability of forest landscapes 2007, 16(5), 584-592

Robberecht, R

The Relative Sensitivity of Two Bunchgrass Species to Fire **1995**, 5(3), 127-134

Robberecht, R

Length and Timing of Grazing on Postburn Productivity of Two Bunchgrasses in an Idaho Experimental Range **1998**, 8(1), 15-20

Robert, F

Experimental validation in Mediterranean shrub fuels of seven wildland fire rate of spread models 2001, 10(1), 15-22

Roberts, G

Southern African fire regimes as revealed by remote sensing 2010, 19(7), 861-878

Robertson, KM

Validation of remote sensing of burn severity in south-eastern US ecosystems

2011, 20(3), 453-464

Robichaud, PR

Spatial interpolation and simulation of post-burn duff thickness after prescribed fire **1999**, 9(2), 137-143

Robichaud, PR

Measuring duff moisture content in the field using a portable meter sensitive to dielectric permittivity 2004, 13(3), 343-353

Robichaud, PR

Measurement of post-fire hillslope erosion to evaluate and model rehabilitation treatment effectiveness and recovery 2005, 14(4), 475-485

Robichaud, PR

Evaluating the effectiveness of contour-felled log erosion barriers as a post-fire runoff and erosion mitigation treatment in the western United States 2008, 17(2), 255-273

Robichaud, PR

Remote sensing for prediction of 1-year post-fire ecosystem condition

2009, 18(5), 594-608

Robichaud, PR

Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA 2011, 20(2), 255-271

Robichaud, PR

Recent trends in post-wildfire seeding in western US forests: costs and seed mixes 2011, 20(5), 702-708

Robichaud, PR

Predicting post-fire hillslope erosion in forest lands of the western United States 2011, 20(8), 982-999

Robinson, AP

The impacts of large-scale, lowintensity fires on the forests of continental South-east Asia 2008, 17(6), 782-792

Robinson, AP

Validation studies of EUMETSAT's active fire monitoring product over Turkey **2009**, 18(5), 517-526

Robinson, CT

Water quality, substratum and biotic responses of five central Idaho (USA) streams during the first year following the Mortar Creek fire 2001, 10(2), 185-199

Robinson, CT

Benthic macroinvertebrate assemblages in five central Idaho (USA) streams over a 10year period following disturbance by wildfire 2001, 10(2), 201-213

Robinson, LJ

Postfire Growth of Pseudotsuga menziesii and Pinus contorta in the Northern Rocky Mountains, USA

1991, 1(1), 63-71

Robinson, LJ

The Effects of Repeated Prescribed Burning on Pinus ponderosa Growth 1994, 4(4), 239-247

Robitaille, A

The effects of surficial depositdrainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada **2010**, 19(8), 1083-1098

Roccaforte, JP

Landscape-scale changes in canopy fuels and potential fire behaviour following ponderosa pine restoration treatments **2008**, *17*(2), 293-303

Röder, A

Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain) **2007**, 16(5), 619-632

Rodréguez y Silva, F 'SINAMI': a tool for the economic evaluation of forest fire management programs in Mediterranean ecosystems 2010, 19(7), 927-936

Post-dispersal seed predation in Pinus halepensis and consequences on seedling establishment after fire **2008**, 17(3), 407-414

Rodrigo, A

Are wildfires a disaster in the Mediterranean basin? - A review

2008, 17(6), 713-723

Rodríguez-Pérez, JR Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging

2007, 16(3), 341-348

Rodríguez-Trejo, DA Fire ecology of Mexican pines and a fire management proposal **2003**, 12(1), 23-37

Rodríguez-Trejo, DA First year survival of Pinus hartwegii following prescribed burns at different intensities and different seasons in central Mexico

2007, 16(1), 54-62

Rodriquez, MO

Indications of vigor loss after fire in Caribbean pine (Pinus caribaea) from electrical resistance measurements 2006, 15(3), 415-425

Rogers, C

Relationships between prescribed burning and wildfire occurrence and intensity in pine-hardwood forests in north Mississippi, USA **2006**, 15(2), 203-211

Rollins, MG

Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns

2001, 10(3&4), 329-342

Rollins, MG

LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment 2009, 18(3), 235-249

Rollins, MG

Spatial fuel data products of the LANDFIRProject 2009, 18(3), 250-267

Romme, WH

Initial Floristics in Lodgepole Pine (Pinus contorta) Forests Following the 1988 Yellowstone Fires 1991, 1(2), 119-124

Romme, WH

Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming **1999**, 9(1), 21-36

Romme, WH

Predicting and mitigating weed invasions to restore natural post-fire succession in Mesa Verde National Park, Colorado, USA

2006, 15(2), 247-259

Rorig, ML

Evaluation of MM5 model resolution when applied to prediction of National Fire Danger Rating indexes 2006, 15(2), 147-154

Rorig, ML

The BlueSky smoke modeling framework

2009, 18(8), 906-920

Roselle, L

Delaying sheep grazing after wildfire in sagebrush steppe may not affect vegetation recovery

2010, 19(1), 115-122

Ross, MS

Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests 2006, 15(4), 463-478

Roswintiarti, O

Characterizing and mapping fuels for Malaysia and western Indonesia

2004, 13(3), 323-334

Relationships between landscape patterns and fire occurrence within a successional gradient in sagebrush steppe-juniper woodland

2011, 20(1), 69-77

Rothermel, RC

Predicting Behavior of the 1988 Yellowstone Fires: Projections versus Reality **1991**, 1(1), 1-10

Rothermel, RC

Fire Behavior Experiments in Mixed Fuel Complexes **1993**, 3(1), 45-57

Roundy, BA

Influence of Canopy Removal by Burning or Clipping on Emergence of Eragrostis lehmanniana Seedlings **1991**, 1(1), 35-40

Roy, DP

Field estimation of ash and char colour-lightness using a standard grev scale 2010, 19(6), 698-704

Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product **2010**, 19(6), 705-709

Roy, DP

Southern African fire regimes as revealed by remote sensing 2010, 19(7), 861-878

Rubio, E

Is the net new carbon increment of coppice forest stands of Quercus ilex ssp. ballota affected by post-fire thinning treatments and recurrent fires? 2010, 19(5), 637-648

Rubio, JL

Postfire Effects on Soil Properties and Nutrient Losses **1996**, 6(2), 53-58

Ruby, BC

Wildland firefighter load carriage: effects on transit time and physiological responses during simulated escape to safety zone **2003**, 12(1), 111-116

Ruiz González, AD

Construction of empirical models for predicting Pinus sp. dead fine fuel moisture in NW Spain. I: Response to changes in temperature and relative humidity

2009, 18(1), 71-83

Ruiz-Gallardo, JR

Application of remote sensing and GIS to locate priority intervention areas after wildland fires in Mediterranean systems: a case study from south-eastern Spain

2004, 13(3), 241-252

Ruiz-Valera, M

Soil responses to fire in Mediterranean forest landscapes in relation to the previous stage of land abandonment 2009, 18(2), 222-232

Rundel, P

Detection of non-linearities in the dependence of burn area on fuel age and climatic variables 2003, 12(1), 1-6

Running, SW

Remote Sensing of Forest Fire Severity and Vegetation Recovery **1996**, 6(3), 125-136

Rupp, TS

Analysis of Alaskan burn severity patterns using remotely sensed data 2007, 16(3), 277-284

Russell-Smith, J

A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia 2001, 10(1), 79-89

Russell-Smith, J

Fine-scale patchiness of different fire intensities in sandstone heath vegetation in northern Australia 2003, 12(2), 227-236

Russell-Smith, J

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia 2003, 12(3&4), 271-281

Russell-Smith, J

Contemporary fire regimes of northern Australia, 1997-2001: change since Aboriginal occupancy, challenges for sustainable management 2003, 12(3&4), 283-297

Russell-Smith, J

Fire regimes and vegetation sensitivity analysis: an example from Bradshaw Station, monsoonal northern Australia 2003, 12(3&4), 349-358

Russell-Smith, J

Patterns of landscape fire and predicted vegetation response in the North Kimberley region of Western Australia 2003, 12(3&4), 369-379

Russell-Smith, J

Monitoring the impacts of fire regimes on vegetation in northern Australia: an example from Kakadu National Park 2003, 12(3&4), 427-440

Russell-Smith, J

Fire and savanna landscapes in northern Australia: regional lessons and global challenges 2003, 12(3&4), v-ix

Russell-Smith, J

Remote sensing of fire regimes in semi-arid Nusa Tenggara Timur, eastern Indonesia: current patterns, future prospects 2006, 15(3), 307-317

Russell-Smith, J

Seasonality and fire severity in savanna landscapes of monsoonal northern Australia 2006, 15(4), 541-550

Russell-Smith, J

Fire regimes and soil erosion in north Australian hilly savannas 2006, 15(4), 551-556

Russell-Smith, J

Efficacy of permanent firebreaks and aerial prescribed burning in western Arnhem Land, Northern Territory, Australia 2007, 16(3), 295-305

Russell-Smith, J

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning 2007, 16(4), 361-377

Russell-Smith, J

Big fires and their ecological impacts in Australian savannas: size and frequency matters 2008, 17(6), 768-781

Russell-Smith, J

Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications **2009**, 18(1), 1-18

Russell-Smith, J

Ecological thresholds and the status of fire-sensitive vegetation in western Arnhem Land, northern Australia: implications for management **2009**, 18(2), 127-146

Russell-Smith, J

Fire severity in a northern Australian savanna landscape: the importance of time since previous fire **2010**, 19(1), 46-51

Wildland fire spread modelling using cellular automata: evolution in large-scale spatially heterogeneous environments under fire suppression tactics 2011, 20(5), 633-647

Rutherford, MD

Evaluation of ERS SAR data for prediction of fire danger in a Boreal region **1999**, 9(3), 183-194

Ruthford, JE

Measuring moisture dynamics to predict fire severity in longleaf pine forests 2002, 11(3&4), 267-279

Rutigliano, FA

Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires 2005, 14(4), 355-363

Rutigliano, FA

Post-fire stimulation of soil biogenic emission of CO2 in a sandy soil of a Mediterranean shrubland 2007, 16(5), 573-583

Rvan, K

Factors affecting sustained smouldering in organic soils from pocosin and pond pine woodland wetlands 2007, 16(1), 107-118

Ryan, KC

Basal Injury From Smoldering Fires in Mature Pinus ponderosa Laws **1991**, 1(2), 107-118

Ryan, KC

Remote Sensing of Forest Fire Severity and Vegetation Recovery **1996**, 6(3), 125-136

Ryan, KC

Introduction: Integrating spatial technologies and ecological principles for a new age in fire management 2001, 10(3&4), 263-265

Ryan, KC

Evaluation of a post-fire tree mortality model for western USA conifers **2007**, 16(6), 679-689

Ryan, KC

Spatial fuel data products of the LANDFIRE Project 2009, 18(3), 250-267

Sackett, SS

The Effects of Repeated Prescribed Burning on Pinus ponderosa Growth **1994**, 4(4), 239-247

Safford, HD

Fire suppression impacts on postfire recovery of Sierra Nevada chaparral shrublands 2005, 14(3), 255-265

Safriel, UN

The Carmel Fire and Its Conservation Repercussions **1997**, 7(4), 277-284

Sağlam, B

Estimating crown fuel loading for calabrian pine and Anatolian black pine

2008, 17(1), 147-154

Sah, JP

Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests **2006**, 15(4), 463-478

Saint-Germain, M

Effect of fire severity on longterm occupancy of burned boreal conifer forests by saproxylic insects and woodforaging birds 2010, 19(4), 500-511

Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging 2007, 16(3), 341-348

Salinesi, P

Physical modelling of forest fire spreading through heterogeneous fuel beds 2011, 20(5), 625-632

Salis, M

Evaluation of FARSITE simulator in Mediterranean maquis **2007**, 16(5), 563-572

Sammarco, ML

Effects of Heating on the Microbial Populations of a Grassland Soil **1996**, 6(2), 67-70

Sampson, RN

Spatial data for national fire planning and fuel management 2001, 10(3&4), 353-372

San, JJ

Mass and Energy Transfer Within and Between Burned and Unburned Savanna Environments 1992, 2(4), 153-160

Sánchez Palomares, O

Recent fire regime in peninsular Spain in relation to forest potential productivity and population density 2006, 15(3), 397-405

Sánchez, JM

Fire danger estimation from MODIS Enhanced Vegetation Index data: application to Galicia region (north-west Spain) 2011, 20(3), 465-473

Sánchez-Flores, E

Site environment characterization of downed woody fuels in the Rincon Mountains, Arizona: regression tree approach 2004, 13(4), 467-477

Sandberg, DV

Characterizing fuels in the 21st Century 2001, 10(3&4), 381-387

Sandberg, DV

Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire 2010, 19(6), 795-799

Sanecki, GM

Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity **2008**, 17(6), 793-808

Santana, VM

Fuel structural traits modulating soil temperatures in different species patches of Mediterranean Basin shrublands 2011, 20(5), 668-677

Santelices, R

Early post-fire succession in a Nothofagus glauca forest in the Coastal Cordillera of southcentral Chile 2002, 11(2), 115-125

Santoni, PA

Dynamic modelling of fire spread across a fuel bed 1999, 9(4), 275-284

Santoni, PA

Dynamic modelling of upslope fire growth **1999**, 9(4), 285-292

Santoni, PA

A two-dimensional model of fire spread across a fuel bed including wind combined with slope conditions 2002, 11(1), 53-63

Santoni, PA

Fire spread across pine needle fuel beds: characterization of temperature and velocity distributions within the fire plume 2004, 13(1), 37-48

Santos, JC

Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire 2010, 19(6), 795-799

Santos, P

Smoke measurements during Gestosa-2002 experimental field fires 2005, 14(2), 107-116

Saphir, N

Seedling Mortality in Regeneration of Aleppo Pine Following Fire and Attack by the Scale Insect Matsucoccus josephi **1997**, 7(4), 327-333

Sarà, M

Great tit (Parus major) breeding in fire-prone oak woods: differential effects of post-fire conditions on reproductive stages **2011**, 20(4), 605-611

Satoh, K

Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk 2009, 18(6), 640-647

Saura-Mas, S

Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies **2010**, 19(6), 783-794

Sauvagnargues-Lesage, S Experimental validation in Mediterranean shrub fuels of seven wildland fire rate of spread models 2001, 10(1), 15-22

Savadogo, P

Fuel and fire characteristics in savanna-woodland of West Africa in relation to grazing and dominant grass type 2007, 16(5), 531-539

Sawadogo, L.

Fuel and fire characteristics in savanna-woodland of West Africa in relation to grazing and dominant grass type 2007, 16(5), 531-539

Scarborough, J

A dynamic algorithm for wildfire mapping with NOAA/AVHRR data 2004, 13(3), 275-285

Schatz, J

Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications **2009**, *18*(1), 1-18

Scheller, RM

Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA **2011**, 20(3), 364-383

Schellhaas, R

Snag dynamics in a chronosequence of 26 wildfires on the east slope of the Cascade Range in Washington State, USA

1999, 9(4), 223-234

Schiller, G

Seedling Mortality in Regeneration of Aleppo Pine Following Fire and Attack by the Scale Insect *Matsucoccus josephi*

1997, 7(4), 327-333

Schiller, G

The Management Implications of the Mt. Carmel Research Project **1997**, 7(4), 343-350

Schmidt, KM

Spatial data for national fire planning and fuel management **2001**, *10*(3&4), 353-372

Schmidtlein, S

Spatial variation of trends in wildfire and summer drought in British Columbia, Canada, 1920–2000 **2010**, *19*(3), 272-283

Schneller, MC

A Stirred Water Calorimeter for Measuring Heat Flux From Smoldering Combustion 1998, 8(3), 129-135

Schoenberg, FP

Detection of non-linearities in the dependence of burn area on fuel age and climatic variables **2003**, *12*(1), 1-6

Schoenberg, FP

A critical assessment of the Burning Index in Los Angeles County, California **2007**, *16*(4), 473-483

Schoennagel, T

Landscape heterogeneity following large fires: insights from Yellowstone National Park, USA 2008, 17(6), 742-753

Schoettle, AW

Fire and stand history in two limber pine (*Pinus flexilis*) and Rocky Mountain bristlecone pine (*Pinus aristata*) stands in Colorado

2008, 17(3), 339-347

Scholes, RJ

Methods to determine the impact of rainfall on fuels and burned area in southern African savannas

2010, 19(6), 774-782

Scholes, RJ

Southern African fire regimes as revealed by remote sensing **2010**, *19*(7), 861-878

Schulte, LA

Ecological effects of large fires on US landscapes: benefit or catastrophe? **2008**, *17*(6), 696-712

Schulze, R

Methods to determine the impact of rainfall on fuels and burned area in southern African savannas

2010, 19(6), 774-782

Scott, CA

El Niño and its impact on fire weather conditions in Alaska **2001**, *10*(1), 1-13

Scott, K

Fuel loading prediction models developed from aerial photographs of the Sangre de Cristo and Jemez mountains of New Mexico, USA 2002, 11(1), 85-90

Seavy, NE

Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California **2006**, *15*(2), 237-245

Seefeldt, SS

Delaying sheep grazing after wildfire in sagebrush steppe may not affect vegetation recovery

2010, 19(1), 115-122

Seema, A

Autonomous field-deployable wildland fire sensors **2003**, *12*(2), 237-244

Seli, RC

Simulation of long-term landscape-level fuel treatment effects on large wildfires **2007**, *16*(6), 712-727

Sequeira, NMS

Structural-Properties and Dimensional Relations of Some Mediterranean Shrub Fuels **1995**, *5*(1), 35-42

Sesbou, A

Alternative equations to estimate the surface-to-volume ratio of different forest fuel particles

2011, 20(5), 648-656

Sessions, J

Applying LiDAR technology for tree measurements in burned landscapes

2010, *19*(1), 104-114

Seydack, AHW

Shrubland fire regime scenarios in the Swartberg Mountain Range, South Africa: implications for fire management **2007**, *16*(1), 81-95

Sgardelis, SP

Effects of Fire on Soil Macroinvertebrates in a Mediterranean Phryganic Ecosystem **1995**, 5(2), 113-121

Shadbolt, RP

Climatological and statistical characteristics of the Haines Index for North America **2007**, *16*(2), 139-152

Shafer, SI

Temporal and spatial structure in a daily wildfire-start data set from the western United States (1986–96)

2008, 17(1), 8-17

Shakesby, RA

Wildfire Impacts on Soil-Erosion and Hydrology in Wet Mediterranean Forest, Portugal 1993, 3(2), 95-110

Shakesby, RA

Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures

2004, 13(2), 157-163

Shamir, R

Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat **2009**, *18*(8), 1010-1020

Sharples, JJ

Review of formal methodologies for wind–slope correction of wildfire rate of spread

2008, 17(2), 179-193

Sharples, JJ

An overview of mountain meteorological effects relevant to fire behaviour and bushfire

2009, 18(7), 737-754

Sharples, JJ

Evaluation of a very simple model for predicting the moisture content of eucalypt

2011, 20(8), 1000-1005

Shelburne, VB

Fuel characterization in the southern Appalachian Mountains: an application of Landscape Ecosystem Classification **2009**, *18*(4), 423-429

Shelton, MG

Viability of Litter-Stored *Quercus falcata* Michx. Acorns After Simulated Prescribed Winter Burns 1998, 8(4), 199-203

Shepperd, WD

Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA **2006**, *15*(4), 557-566

Shepperd, WD

Predicting mortality of ponderosa pine regeneration after prescribed fire in the Black Hills, South Dakota, USA **2009**, *18*(2), 176-190

Shepperd, WD

Short-term impact of post-fire salvage logging on regeneration, hazardous fuel accumulation, and understorey development in ponderosa pine forests of the Black Hills, SD, USA

2009, 18(4), 451-458

Sheridan, GJ

Paired *Eucalyptus* forest catchment study of prescribed fire effects on suspended sediment and nutrient exports in south-eastern Australia **2010**, *19*(5), 624-636

Sherriff, RL

Variability in fire-climate relationships in ponderosa pine forests in the Colorado Front Range

2008, *17*(1), 50-59

Sherwin, CB

Paired *Eucalyptus* forest catchment study of prescribed fire effects on suspended sediment and nutrient exports in south-eastern Australia **2010**, *19*(5), 624-636

Shestak, CJ

Lethal soil temperatures during burning of masticated forest residues **2005**, *14*(3), 267-276

Shestak, CJ

Behaviour and effects of prescribed fire in masticated fuelbeds

2011, 20(8), 932-945

Shibistova, O

Declining fires in *Larix*-dominated forests in northern Irkutsk district **2011**, 20(2), 248-254

Shields JR

Ignition of mulch and grasses by firebrands in wildland–urban interface fires **2006**, *15*(3), 427-431

Shindler, B

Reducing fuels in the wildland– urban interface: community perceptions of agency fuels treatments **2011**, 20(3), 340-349

Shindler, BA

Public perspectives of fire, fuels and the Forest Service in the Great Lakes Region: a survey of citizen–agency communication and trust

2009, 18(2), 157-164

Shindler, BA

Trust, acceptance, and citizenagency interactions after large fires: influences on planning processes

2010, 19(1), 137-147

Shinneman, DJ

Environmental and climatic variables as potential drivers of post-fire cover of cheatgrass (Bromus tectorum) in seeded and unseeded semiarid ecosystems

2009, 18(2), 191-202

Shirai, T

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia 2003, 12(3&4), 271-281

Shu, LF

Wildfires and the Canadian Forest Fire Weather Index system for the Daxing'anling region of China 2011, 20(8), 963-973

Sibold, IS

The historical range of variability of fires in the Andean-Patagonian Nothofagus forest region **2008**, 17(6), 724-741

Sieg, CH

The Role of Prescribed Burning in Regenerating Quercus Macrocarpa and Associated Woody Plants in Stringer Woodlands in the Black Hills, South Dakota **1996**, 6(1), 21-29

Sieg, CH

Fire History in Interior Ponderosa Pine Communities of the Black Hills, South Dakota, USA

1996, 6(3), 97-105

Sieg, CH

Development of post-fire crown damage mortality thresholds in ponderosa pine 2010, 19(5), 583-588

Sieg, CH

Minimal effectiveness of native and non-native seeding following three high-severity wildfires

2010, 19(6), 746-758

Sieg, CH

Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA 2011, 20(1), 125-141

Sieg, CH

Recent trends in post-wildfire seeding in western US forests: costs and seed mixes 2011, 20(5), 702-708

Siegert, F

Burnt area estimation for the year 2005 in Borneo using multi-resolution satellite imagery **2007**, 16(1), 45-53

Siettos, CI

Wildland fire spread modelling using cellular automata: evolution in large-scale spatially heterogeneous environments under fire suppression tactics 2011, 20(5), 633-647

Sikkink, PG

A comparison of five sampling techniques to estimate surface fuel loading in montane forests 2008, 17(3), 363-379

Šilc, U

Long-term post-fire succession of Pinus brutia forest in the east Mediterranean **2010**, 19(5), 599-605

Soil water dynamics after fire in a Portuguese shrubland 2006, 15(1), 99-111

Silva, JS

Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard 2009, 18(5), 563-574

Silvani, X

Experimental investigation of the physical mechanisms governing the spread of wildfires 2010, 19(5), 570-582

Silver, NC

Effect of fire shelters on perceived fire danger: implications for risk compensation **2005**, 14(3), 297-306

Silverstein, RP

Factors influencing large wildland fire suppression expenditures

2008, 17(5), 650-659

Silverstein, RP

Integrating fuel treatment into ecosystem management: a proposed project planning process

2010, 19(6), 725-736

Simard, SJ

Fire Severity, Changing Scales, and How Things Hang Together **1991**, 1(1), 23-34

Simeoni, A

Fire spread across pine needle fuel beds: characterization of temperature and velocity distributions within the fire plume

2004, 13(1), 37-48

Simeoni, A

Volatile and semi-volatile organic compounds in smoke exposure of firefighters during prescribed burning in the Mediterranean region **2010**, 19(5), 606-612

Simeoni, A

Physical modelling of forest fire spreading through heterogeneous fuel beds 2011, 20(5), 625-632

Simmons, D

Does firefighting foam affect the growth of some Australian native plants?

2004, 13(3), 335-341

Simões, F

Feasibility of forest-fire smoke detection using lidar

2003, 12(2), 159-166

Singh, RS

Changes in Soil Nutrients Following Burning Burning of Dry Tropical Savanna **1994**, 4(3), 187-194

Singhania, A

Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics 2009, 18(6), 676-685

Siqueira, A

Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat **2009**, 18(8), 1010-1020

Sitch, S

Strategy for a Fire Module in Dynamic Global Vegetation Models **1999**, 9(1), 79-84

Skinner, CN

Climatic influences on fire regimes in montane forests of the southern Cascades, California, USA 2008, 17(1), 60-71

Skinner, CN

Behaviour and effects of prescribed fire in masticated fuelbeds 2011, 20(8), 932-945

Skowronski, N

Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens 2009, 18(3), 268-277

Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics 2009, 18(6), 676-685

Slawski, J

Development of calibration algorithms for selected water content reflectometry probes for burned and non-burned organic soils of Alaska 2010, 19(7), 961-975

Slijepcevic, A

An optimisation modelling approach to seasonal resource allocation for planned burning **2011**, 20(2), 175-183

Using visual obstruction to estimate heathland fuel load and structure

2008, 17(3), 380-389

Smith, AMS

Estimating combustion of large downed woody debris from residual white ash 2005, 14(3), 245-248

Smith, AMS

Remote classification of head and backfire types from MODIS fire radiative power and smoke plume observations **2005**, 14(3), 249-254

Smith, AMS

Remote sensing techniques to assess active fire characteristics and post-fire effects 2006, 15(3), 319-345

Smith, AMS

Validation studies of EUMETSAT's active fire monitoring product over Turkey **2009**, 18(5), 517-526

Smith, AMS

Remote sensing for prediction of 1-year post-fire ecosystem condition 2009, 18(5), 594-608

Smith, AMS

Beyond Landsat: a comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA 2010, 19(4), 449-458

Smith, AMS

Field estimation of ash and char colour-lightness using a standard grey scale 2010, 19(6), 698-704

Smith, AMS

Spectral analysis of charcoal on soils: implicationsfor wildland fire severity mapping methods 2010, 19(7), 976-983

Smith, AMS

The combustion of sound and rotten coarse woody debris: a review

2011, 20(2), 163-174

Smith, DW

Early Vegetative Response to Wildfire in a Table Mountain-Pitch Pine Forest 1992, 2(4), 177-184

Wildfire Effects on Forest Floor and Surface Soil in a Table Mountain Pine-Pitch Pine Forest 1993, 3(3), 149-154

Smith, FW

Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA 2006, 15(4), 557-566

Smith, FW

Predicting mortality of ponderosa pine regeneration after prescribed fire in the Black Hills, South Dakota, USA 2009, 18(2), 176-190

Smith, FW

Short-term impact of post-fire salvage logging on regeneration, hazardous fuel accumulation, and understorey development in ponderosa pine forests of the Black Hills, SD, USA

2009, 18(4), 451-458

Smith, HG

Paired *Eucalyptus* forest catchment study of prescribed fire effects on suspended sediment and nutrient exports in south-eastern Australia **2010**, *19*(5), 624-636

Smith, JK

Microplot Sampling of Fire Behavior on *Populus tremuloides* Stands in North-Central Colorado **1993**, 3(2), 85-94

Smith, PL

Regional signatures of future fire weather over eastern Australia from global climate models

2011, 20(4), 550-562

Smith, R

A Comparison of Water Additives for Mopping-up After Forest Fires **1996**, *6*(1), 37-43

Smith, R

A review of current space-based fire monitoring in Australia and the GOFC/GOLD program for international coordination **2003**, *12*(3&4), 247-258

Smith, R

Contemporary fire regimes of northern Australia, 1997–2001: change since Aboriginal occupancy, challenges for sustainable management **2003**, *12*(3&4), 283-297

Smith, R

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning **2007**, *16*(4), 361-377

Smith, RH

Prescribed Burning of Thinning Slash in Regrowth Stands of Karri (*Eucalyptus diversicolor*) .1. Fire Characteristics, Fuel Consumption and Tree Damage **1997**, 7(1), 29-40

Smith, SL

Evaluation of a post-fire tree mortality model for western USA conifers **2007**, *16*(6), 679-689

Smith, WS

Coupled influences of topography and wind on wildland fire behaviour **2007**, *16*(2), 183-195

Smithwick, EAH

Landscape heterogeneity following large fires: insights from Yellowstone National Park, USA 2008, 17(6), 742-753

Snyder, JR

Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests **2006**, *15*(4), 463-478

Sol, B

Comparative study of various methods of fire danger evaluation in southern Europe **1999**, *9*(4), 235-246

Solomon, AM

Temporal and spatial structure in a daily wildfire-start data set from the western United States (1986–96)

2008, 17(1), 8-17

Solomon, R

The BlueSky smoke modeling framework **2009**, *18*(8), 906-920

Sommers, WT

2007 EastFIRConference: introduction to special issue **2009**, *18*(3), 233-234

Song, W-G

Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk **2009**, *18*(6), 640-647

Sönmez, I

Validation studies of EUMETSAT's active fire monitoring product over Turkey **2009**, 18(5), 517-526

Sorbel, B

Assessing the differenced Normalized Burn Ratio's ability to map burn severity in the boreal forest and tundra ecosystems of Alaska's national parks

2008, *17*(4), 463-475

Soto, I

Heat-Induced Degradation Processes in Forest Soils **1991**, *I*(3), 147-152

Soto, B

Interactions Between Plant Ash Leachates and Soil 1993, 3(4), 207-216

Southgate, R

Post-fire ephemerals and spinifex-fuelled fires: a decision model for bilby habitat management in the Tanami Desert, Australia **2007**, *16*(6), 741-754

Southworth, D

Mechanical mastication and prescribed fire in conifer—hardwood chaparral: differing responses of ectomycorrhizae and truffles **2011**, *20*(7), 888-896

Soverel, NO

The transferability of a dNBR-derived model to predict burn severity across 10 wildland fires in western Canada **2011**, 20(4), 518-531

Spaeth, KE

Impacts of wildfire on soil hydrological properties of steep sagebrush-steppe rangeland **2002**, *11*(2), 145-151

Spano, D

Evaluation of FARSITE simulator in Mediterranean maquis

2007, 16(5), 563-572

Spanos, I

Evaluation of log and branch barriers as post-fire rehabilitation treatments in a Mediterranean pine forest in Greece

2005, 14(2), 183-188

Sparks, SR

Photosynthate Allocation Patterns Along a Fire-Induced Age Sequence in Two Shrub Species From the California Chaparral 1993, 3(1), 21-30

Spear, TM

Mixmaster exposure to dust during mixing of wildland fire retardant chemicals **2002**, *11*(1), 65-73

Speer, MS

The Sydney Australia Wildfires of January 1994 Meteorological Conditions and High Resolution Numerical Modeling Experiments 1996, 6(3), 145-154

Spencer, CN

Phosphorus and Nitrogen Dynamics in Streams Associated With Wildfire: a Study of Immediate and Longterm Effects 1998, 8(4), 183-198

Spencer, WD

Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA **2011**, *20*(3), 364-383

Spero, J

Analysing initial attack on wildland fires using stochastic simulation

2006, 15(1), 137-146

Spiers, G

Monitoring the impacts of fire regimes on vegetation in northern Australia: an example from Kakadu National Park **2003**, *12*(3&4), 427-440

Splawinski, TB

Does the post-fire organic layer compress beneath the snowpack? **2010**, *19*(5), 673-676

Spurbeck, D

Snag dynamics in a chronosequence of 26 wildfires on the east slope of the Cascade Range in Washington State, USA

1999, 9(4), 223-234

Stafford Smith, M

Ecological and economic assessment of prescribed burning impacts in semi-arid pastoral lands of northern Australia **2003**, *12*(3&4), 403-413

Stagnitti, F

Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures **2004**, *13*(2), 157-163

Stambaugh, MC

Fire scars reveal source of New England's 1780 Dark Day **2007**, *16*(3), 266-270

Stamou, GP

Effects of Fire on Soil Macroinvertebrates in a Mediterranean Phryganic Ecosystem **1995**, *5*(2), 113-121

Staples, GC

Predicting forest floor moisture for burned and unburned *Pinus* banksiana forests in the Canadian Northwest Territories **2007**, 16(1), 71-80

Staychock, E

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius? **2011**, 20(3), 350-363

Steele, TW

An Economic Evaluation of Public and Organized Wildfire Detection in Wisconsin **1998**, 8(4), 205-215

Stein, SJ

Effects of fire retardant chemical and fire suppressant foam on shrub steppe vegetation in northern Nevada **1999**, 9(2), 115-127

Stella, KA

Minimal effectiveness of native and non-native seeding following three high-severity wildfires **2010**, *19*(6), 746-758

Stephens, SL

Fire history differences in adjacent Jeffrey pine and upper montane forests in the eastern Sierra Nevada **2001**, *10*(2), 161-167

$Stephens,\,SL$

Prescribed fire, soils, and stream water chemistry in a watershed in the Lake Tahoe Basin, California **2004**, *13*(1), 27-35

Stephens, SL

Forest fire causes and extent on United States Forest Service lands

2005, 14(3), 213-222

Stephens, SL

Different interest group views of fuels treatments: survey results from fire and fire surrogate treatments in a Sierran mixed conifer forest, California, USA **2008**, *17*(2), 224-233

Stephens, SL

Effectiveness of prescribed fire as a fuel treatment in Californian coniferous forests **2009**, *18*(2), 165-175

Stephens, SL

The efficacy of fire and fuels reduction treatments in a Sierra Nevada pine plantation **2009**, *18*(7), 791-801

Stewart, SI

Wildland–urban interface housing growth during the 1990s in California, Oregon, and Washington **2007**, *16*(3), 255-265

Stewart, SI

Predicting spatial patterns of fire on a southern California landscape

2008, *1*7(5), 602-613

Stewart, SI

Allocating fuel breaks to optimally protect structures in the wildland–urban interface **2011**, *20*(1), 59-68

Stidham, M

Reducing fuels in the wildlandurban interface: community perceptions of agency fuels treatments

2011, 20(3), 340-349

Stier, JC

An Economic Evaluation of Public and Organized Wildfire Detection in Wisconsin 1998, 8(4), 205-215

Stockmann, KD

Integrating fuel treatment into ecosystem management: a proposed project planning process **2010**, *19*(6), 725-736

Stocks, BJ

Fire, climate change, carbon and fuel management in the Canadian boreal forest **2001**, *10*(3&4), 405-413

Stocks, BJ

Fire weather index system components for large fires in the Canadian boreal forest **2004**, *13*(4), 391-400

Stocks, B.

An index for tracking sheltered forest floor moisture within the Canadian Forest Fire Weather Index System **2005**, *14*(2), 169-182

Stocks, BJ

Spatial patterns of forest fires in Canada, 1980–1999 **2006**, *15*(3), 361-374

Stocks, BJ

Modelling emissions from Canadian wildfires: a case study of the 2002 Quebec fires **2007**, *16*(6), 649-663

Stocks, BJ

Emissions of air pollutants by Canadian wildfires from 2000 to 2004

2011, 20(1), 17-34

Stottlemyer, AD

Fuel characterization in the southern Appalachian Mountains: an application of Landscape Ecosystem Classification **2009**, *18*(4), 423-429

Stow, D

Time series of chaparral live fuel moisture maps derived from MODIS satellite data **2006**, *15*(3), 347-360

Stow, DA

Effect of fire weather, fuel age and topography on patterns of remnant vegetation following a large fire event in southern California, USA **2010**, *19*(4), 415-426

Strand, EK

Relationships between landscape patterns and fire occurrence within a successional gradient in sagebrush steppe—juniper woodland

2011, 20(1), 69-77

Strand, T

The BlueSky smoke modeling framework

2009, 18(8), 906-920

Strauss, D

Modeling Wildland Fire Containment With Uncertain Flame Length and Fireline Width 1993, 3(3), 179-185

Streeks, TJ

Examining fire behavior in mesquite–acacia shrublands **2005**, *14*(2), 131-140

Streetman, S

FFI: a software tool for ecological monitoring **2009**, *18*(3), 310-314

Strittholt, JR

Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA **2011**, *20*(3), 364-383

Stritzke, JF

Fire Behavior and Fire Effects on Eastern Redcedar in Hardwood Leaf-Litter Fires 1995, 5(3), 135-141

Strom, BA

Pre-wildfire fuel treatments affect long-term ponderosa pine forest dynamics **2007**, *16*(1), 128-138

Stuart-Smith, K

Songbird communities in a pyrogenic habitat mosaic **2002**, *11*(1), 75-84

Sturtevant, BR

Human and biophysical factors influencing modern fire disturbance in northern Wisconsin **2007**, *16*(4), 398-413

Sturtevant, V

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

2011, 20(3), 350-363

Sudiana, D

Assessing forest fire potential in Kalimantan Island, Indonesia, using satellite and surface weather data **2003**, *12*(2), 175-184

Subarti M

A Note on Fuelbeds and Fire Behavior in Alang-Alang (*Imperata Cylindrica*) **1992**, 2(1), 41-46

Sullivan, AL

Physical Modelling of Leaf Scorch Height From Prescribed Fires in Young *Eucalyptus Sieberi* Regrowth Forests in South-Eastern Australia **1997**, 7(1), 7-20

Sullivan, AL

A review of radiant heat flux models used in bushfire applications

2003, *12*(1), 101-110

Sullivan, AL

A semi-transparent model of bushfire flames to predict radiant heat flux **2004**, *13*(2), 201-207

Sullivan, AL

Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-physical models **2009**, *18*(4), 349-368

Sullivan, AL

Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models

2009, 18(4), 369-386

Sullivan, AL

Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models

2009, 18(4), 387-403

Sullivan, DC

The BlueSky smoke modeling framework **2009**, *18*(8), 906-920

Sumrall, LB

Influence of Canopy Removal by Burning or Clipping on Emergence of *Eragrostis lehmanniana* Seedlings **1991**, *I*(1), 35-40

Sun, L

Fire spread in chaparral—'go or no-go?'

2005, 14(2), 99-106

Sun, R

The importance of fire—atmosphere coupling and boundary-layer turbulence to wildfire spread **2009**, *18*(1), 50-60

Suran, B

Variation in local weather explains differences in fire regimes within a Québec southeastern boreal forest landscape **2010**, *19*(8), 1073-1082

Susott, RA

Influence of Sample Processing Techniques and Seasonal Variation on Quantities of Volatile Compounds of Gallberry, Saw-Palmetto, and Wax Myrtle 1991, 1(1), 57-62

Sutphen, R

Economic optimisation of wildfire intervention activities **2010**, *19*(5), 659-672

Swetnam, TL

Comparing selected fire regime condition class (FRCC) and LANDFIRvegetation model results with tree-ring data **2010**, *19*(1), 1-13

Swetnam, TW

Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns **2001**, 10(3&4), 329-342

Swetnam, TW

Fire Climatology in the western United States: introduction to special issue **2008**, *17*(1), 1-7

Sydoriak, WM

Physical Properties of Woody Fuel Particles of Sierra Nevada Conifers 1996, 6(3), 117-123

Sydoriak, WM

Heat Content Variation of Sierra Nevada Conifers 1998, 8(3), 147-158

Syphard, AD

Predicting spatial patterns of fire on a southern California landscape **2008**, *17*(5), 602-613

Syphard, AD

Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA **2011**, 20(3), 364-383

Syphard, AD

Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California **2011**, 20(6), 764-775

Takegawa, N

Effects of biomass burning and lightning on atmospheric chemistry over Australia and South-east Asia **2003**, *12*(3&4), 271-281

Takeuchi, N

Assessing forest fire potential in Kalimantan Island, Indonesia, using satellite and surface weather data **2003**, *12*(2), 175-184

Takle, ES

A Synoptic Climatology for Forest-Fires in the NE US and Future Implications From GCM Simulations

1994, 4(4), 217-224

Tamir, M

Soil Erosion and Forestry Management After Wildfire in a Mediterranean Woodland, Mt. Carmel, Israel 1997, 7(4), 285-294

Tansey, KJ

Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005 **2011**, 20(4), 578-588

Tanskanen, H

Experimental fire behaviour in managed *Pinus sylvestris* and *Picea abies* stands of Finland **2007**, *16*(4), 414-425

Tapper, N

Wildfire Activity in the Mallee Shrubland of Victoria, Australia 1993, 3(4), 217-227

Tapper, N

Biomass Burning and Resulting Emissions in the Northern Territory, Australia **1995**, *5*(4), 229-235

Tapper, N

The relationship between the monsoonal summer rain and dry-season fire activity of northern Australia **2008**, *17*(5), 674-684

Tapper, NJ

Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia **2003**, *12*(3&4), 333-340

Tardif, JC

A 229-year dendroclimaticinferred record of forest fire activity for the Boreal Shield of Canada

2006, 15(3), 375-388

Tarrega, R

Regeneration in *Quercus Pyrenaica* Ecosystems After Surface Fires **1991**, 1(4), 205-210

Tarrega, R

Influence of Heat on Seed Germination of *Cistus Laurifolius* and *Cistus Ladanifer* **1992**, 2(1), 15-20

Tarrega, R

First Phases of Regeneration of *Cistus Laurifolius* and *Cistus Ladanifer* After Burning and Cutting in Experimental Plots **1992**, 2(1), 7-14

Tarrega, R

Recolonization of Two Burnt *Quercus pyrenaica* Ecosystems by Coleoptera **1998**, 8(1), 21-27

Tárrega, R

Seedling Regeneration of Two *Cistus* Species After Experimental Disturbances **1996**, *6*(1), 13-19

Taylor, AH

Climatic influences on fire regimes in montane forests of the southern Cascades, California, USA **2008**, *17*(1), 60-71

Taylor, DL

Seventeen Years of Forest Succession Following the Waterfalls Canyon Fire in Grand Teton National Park, Wyoming 1998, 8(1), 45-55

Taylor, E

Indications of vigor loss after fire in Caribbean pine (*Pinus caribaea*) from electrical resistance measurements **2006**, *15*(3), 415-425

Taylor, RS

Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains, California **2008**, *17*(1), 18-27

Taylor, RS

Predicting spatial patterns of fire on a southern California landscape **2008**, *17*(5), 602-613

Taylor, SW

Science, technology, and human factors in fire danger rating: the Canadian experience. **2006**, *15*(1), 121-135

Taylor, SW

Spatial variation of trends in wildfire and summer drought in British Columbia, Canada, 1920–2000 **2010**, 19(3), 272-283

Tekeli, AE

Validation studies of EUMETSAT's active fire monitoring product over Turkey **2009**, 18(5), 517-526

Tellier, R

Predicting the Height to Live Crown Base in Plantations of Four Boreal Forest Species 1994, 4(2), 103-106

Terry, JI

Wildfire Impacts on Soil-Erosion and Hydrology in Wet Mediterranean Forest, Portugal **1993**, 3(2), 95-110

Thackway, R

A tale of two parks: contemporary fire regimes of Litchfield and Nitmiluk National Parks, monsoonal northern Australia **2001**, 10(1), 79-89

Thackway, R

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning **2007**, *16*(4), 361-377

Thanos, CA

Aleppo Pine (*Pinus Halepensis*) Postfire Regeneration: the Role of Canopy and Soil Seed Banks **1996**, 6(2), 59-66

Thanos, CA

Legumes in the Fire-Prone Mediterranean Regions: an Example From Greece 1996, 6(2), 77-82

Thibault, J-C

Seed predation by birds shortly after a wildfire in a Corsican pine forest **2006**, *15*(1), 81-86

Thiele, KR

Effects of fire frequency and mowing on a temperate, derived grassland soil in south-eastern Australia **2008**, *17*(5), 586-594

Thies, WG

Season of prescribed burn in ponderosa pine forests in eastern Oregon: impact on pine mortality **2005**, *14*(3), 223-231

Thies, WG

Prediction of delayed mortality of fire-damaged ponderosa pine following prescribed fires in eastern Oregon, USA **2006**, *15*(1), 19-29

Thode, AE

Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA **2009**, 18(7), 765-774

Thode, AE

Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA **2011**, *20*(2), 223-239

Thomas, PA

Response of cacti and other succulents to fire: a review **1991**, I(1), 11-22

Thomas, PA

Book Review - Burning Bush: a Fire History of Australia, by Stephen J. PynE 1992, 2(2), 97-98

Thompson, DK

Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils

2011, 20(3), 418-429

Thompson, MR

A Synoptic Climatology for Forest-Fires in the NUS and Future Implications From GCM Simulations

1994, 4(4), 217-224

Thompson, TG Spatial fuel data products of the LANDFIRProject **2009**, 18(3), 250-267

Thonicke, K

Spatial variation of trends in wildfire and summer drought in British Columbia, Canada, 1920–2000 **2010**, 19(3), 272-283

Thornicke, K

Strategy for a Fire Module in Dynamic Global Vegetation Models **1999**, *9*(1), 79-84

Tian, XR

Wildfires and the Canadian Forest Fire Weather Index system for the Daxing'anling region of China **2011**, 20(8), 963-973

Tigabu, M

Fuel and fire characteristics in savanna–woodland of West Africa in relation to grazing and dominant grass type **2007**, *16*(5), 531-539

Tihay, V

Comparison of several kinetic approaches to evaluate the pyrolysis of three Mediterranean forest fuels **2011**, *20*(3), 407-417

Titus, SJ

Sampling Intensity for Estimating Fuel Moisture Content in Lodgepole Pine and White Spruce Trees 1992, 2(1), 1-6

Titus, SJ

A Logit Model for Predicting the Daily Occurrence of Human Caused Forest-Fires 1995, 5(2), 101-111

Tiveau, D

Fuel and fire characteristics in savanna–woodland of West Africa in relation to grazing and dominant grass type **2007**, *16*(5), 531-539

Todd, JB

Fire weather index system components for large fires in the Canadian boreal forest **2004**, *13*(4), 391-400

Tolhurst, K

Effects of the fire retardant Phos-Chek on vegetation in eastern Australian heathlands **2005**, *14*(2), 199-211

Tolsma, AD

Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity **2008**, *17*(6), 793-808

Toman, E

Public perspectives of fire, fuels and the Forest Service in the Great Lakes Region: a survey of citizen—agency communication and trust

2009, 18(2), 157-164

Toman, E

Reducing fuels in the wildland—urban interface: community perceptions of agency fuels treatments **2011**, *20*(3), 340-349

Toney, JL

Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites **2008**, *17*(1), 115-130

Toney, JL

Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA **2008**, *17*(1), 96-114

Tonini, M

Detection of clusters using space–time scan statistics **2009**, *18*(7), 830-836

Torvi, DA

A variable property heat transfer model for predicting soil temperature profiles during simulated wildland fire conditions **2008**, *17*(2), 205-213

Towerton, AL

Soil temperatures during autumn prescribed burning: implications for the germination of fire responsive species? **2008**, *17*(5), 572-578

Tozer, MG

Soil heating and germination: investigations using leaf scorch on graminoids and experimental seed burial

2006, 15(4), 509-516

Tran, C

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Trentmann, J

A new look at the role of firereleased moisture on the dynamics of atmospheric pyroconvection **2009**, 18(5), 554-562

2005, 10(0), 0

Trethewey, D

Development of an index for quick comparison of helicopter costs and benefits **2007**, *16*(4), 444-449

Trigg, SN

Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests **2008**, 17(4), 500-514

Tripp, P

NCEP-ECPC monthly to seasonal US fire danger forecasts **2010**, 19(4), 399-414

Trollope, WSW

Physically motivated empirical models for the spread and intensity of grass fires **2008**, *17*(5), 595-601

Trouet, V

Climatic influences on fire regimes in montane forests of the southern Cascades, California, USA **2008**, *17*(1), 60-71

Tuia, D

Detection of clusters using space–time scan statistics **2009**, *18*(7), 830-836

Tunnell, TR

Honey Mesquite Canopy Responses to Single Winter Fires: Relation to Herbaceous Fuel, Weather and Fire Temperature 1998, 8(4), 241-252

Turetsky, MR

Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests **2008**, *17*(4), 500-514

Turetsky, MR

Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests **2008**, *17*(4), 515-526

Turetsky, MR

Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils

2011, 20(3), 418-429

Turkman, KF

Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004) **2009**, 18(8), 983-991

Turna, I

Effect of heat on seed germination of *Pinus sylvestris* and *Pinus nigra* ssp. *pallasiana* **2006**, *15*(2), 283-286

Turna, I

Effect of heat on seed germination of *Pinus sylvestris* and *Pinus nigra* ssp. *pallasiana* **2006**, *15*(2), 283-286

Turner, MG

Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming **1999**, *9*(1), 21-36

Turner, MG

Landscape heterogeneity following large fires: insights from Yellowstone National Park, USA 2008, 17(6), 742-753

Tyler, CM

The effects of fire on avian communities: spatio-temporal attributes of the literature 1912–2003

2009, 18(5), 609-622

Tymstra, C

Impact of climate change on area burned in Alberta's boreal forest

2007, 16(2), 153-160

Tzamtzis, N

Effect of fire retardant application on phosphorus leaching from Mediterranean forest soil: short-term laboratory-scale study **2006**, *15*(3), 287-292

Úbeda, X

Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain) **2005**, *14*(4), 379-384

Ueyoshi, K

Medium-range fire weather forecasts **1991**, *I*(3), 159-176

Unger, D

Fuel loading prediction models developed from aerial photographs of the Sangre de Cristo and Jemez mountains of New Mexico, USA 2002, 11(1), 85-90

Ustin, SL

Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging **2007**, *16*(3), 341-348

Utkin, AB

Feasibility of forest-fire smoke detection using lidar **2003**, *12*(2), 159-166

Utkin, AB

Eye-safe lidar measurements for detection and investigation of forest-fire smoke **2004**, *13*(4), 401-412

Vachet, P

Thermal infrared emission transmission measurements in flames from a cylindrical forest fuel burner **2007**, *16*(3), 324-340

Vaillant, NM

Effectiveness of prescribed fire as a fuel treatment in Californian coniferous forests **2009**, *18*(2), 165-175

Vakalis, D

Wildland fire spread modelling using cellular automata: evolution in large-scale spatially heterogeneous environments under fire suppression tactics **2011**, *20*(5), 633-647

Valbuena, L

Influence of Heat on Seed Germination of *Cistus Laurifolius* and *Cistus Ladanifer* 1992, 2(1), 15-20

Valbuena, L

Influence of tree age on seed germination response to environmental factors and inhibitory substances in *Pinus pinaster*

2005, 14(3), 277-284

Valbuena, L

Effect of high temperatures on seed germination and seedling survival in three pine species (*Pinus pinaster*, *P. sylvestris* and *P. nigra*) **2007**, 16(1), 63-70

Valente, J

Smoke measurements during Gestosa-2002 experimental field fires **2005**, *14*(2), 107-116

Valente, J

Local-scale modelling system to simulate smoke dispersion **2007**, *16*(2), 196-203

Valette, J.-C.

The effects of slope and fuel bed width on laboratory fire behaviour **2011**, 20(2), 272-288

Valette, JC

Heat-Transfer in the Soil During Very Low-Intensity Experimental Fires - the Role of Duff and Soil-Moisture Content **1994**, 4(4), 225-237

Valette, JC

Combustion and Nutrient Losses During Laboratory Burns 1995, 5(1), 1-12

Vallejo, R

Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain)

2007, 16(5), 619-632

Valleio, R

Are wildfires a disaster in the Mediterranean basin? – A review **2008**, *17*(6), 713-723

Vallejo, VR

Fuel structural traits modulating soil temperatures in different species patches of Mediterranean Basin shrublands 2011, 20(5), 668-677

van Leeuwen, WJD Monitoring post-wildfire

wegetation response with remotely sensed time-series data in Spain, USA and Israel **2010**, 19(1), 75-93

Van Tuvl. S

Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens **2009**, 18(3), 268-277

van Wagtendonk, J

Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling

2001, 10(3&4), 301-319

van Wagtendonk, JW Physical Properties of Woody Fuel Particles of Sierra Nevada Conifers 1996, 6(3), 117-123

van Wagtendonk, JW Heat Content Variation of Sierra Nevada Conifers 1998, 8(3), 147-158 van Wagtendonk, JW Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA 2009, 18(7), 765-774

van Wagtendonk, JW Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA 2011, 20(2), 223-239

van Wilgen, BW
A Computer-Based System for
Fire Management in the
Mountains of the Cape
Province, South-Africa
1994, 4(1), 17-32

van Wilgen, BW A patch mosaic burning system for conservation areas in southern African savannas **2001**, 10(2), 169-183

van Wilgen, BW
The contribution of fire research to fire management: a critical review of a long-term experiment in the Kruger National Park, South Africa **2007**, *16*(5), 519-530

Vandersall, HL Air Attack - Retardants, Rheology and Some New Options 1994, 4(1), 45-51

Varela, ME

Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils **2004**, *13*(2), 195-199

Varner, JM

Novel fuelbed characteristics associated with mechanical mastication treatments in northern California and southwestern Oregon, USA 2009, 18(6), 686-697

Varner, JM

Effects of particle fracturing and moisture content on fire behaviour in masticated fuelbeds burned in a laboratory **2011**, 20(2), 308-317

Varner, JM
Behaviour and effects of prescribed fire in masticated fuelbeds
2011, 20(8), 932-945

Vasconcelos, MJ FIREMAP - Simulation of Fire Growth With a Geographic Information System 1992, 2(2), 87-96

Vasconcelos, MJP Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004) 2009, 18(8), 983-991

Vasilakos, C

Integrating new methods and tools in fire danger rating **2007**, *16*(3), 306-316

Vaske, JJ
The role of trust in residents' fire wise actions **2011**, 20(2), 318-325

Vaz. GV

Estimation of the radiation extinction coefficient of natural fuel beds

2004, 13(1), 65-71

Vaz, P

Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard **2009**, *18*(5), 563-574

Vázquez de la Cueva, A Recent fire regime in peninsular Spain in relation to forest potential productivity and population density **2006**, 15(3), 397-405

Vazquez, A Patterns of Lightning-, and People-Caused Fires in Peninsular Spain 1998, 8(2), 103-115

Veblen, TT
Variability in fire-climate
relationships in ponderosa pine
forests in the Colorado Front
Range

2008, 17(1), 50-59

Veblen, TT
The historical range of variability of fires in the Andean–Patagonian *Nothofagus* forest region **2008**, *17*(6), 724-741

Vega Hidalgo, JA

Construction of empirical models for predicting *Pinus* sp. dead fine fuel moisture in NW Spain. I: Response to changes in temperature and relative humidity

2009, 18(1), 71-83

Vega, JA

Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds **2009**, *18*(8), 951-969

Vega, JA

Effectiveness of three post-fire treatments at reducing soil erosion in Galicia (NW Spain) **2011**, *20*(1), 104-114

Vega, JA

Exploring three-dimensional coupled fire-atmosphere interactions downwind of wind-driven surface fires and their influence on backfires using the HIGRAD-FIRETEC model **2011**, 20(6), 734-750

Vega, JA

Effects of soil burn severity on germination and initial establishment of maritime pine seedlings, under greenhouse conditions, in two contrasting experimentally burned soils **2011**, 20(2), 209-222

Vega-García, C

On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain **2011**, 20(1), 46-58

Venevski, S

Strategy for a Fire Module in Dynamic Global Vegetation Models

1999, 9(1), 79-84

Venn, TJ

Factors influencing large wildland fire suppression expenditures **2008**, *17*(5), 650-659

Venn, TJ

Accommodating non-market values in evaluation of wildfire management in the United States: challenges and opportunities **2011**, *20*(3), 327-339

Ventura, A
Relationships between seasonal

patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species

2007, 16(2), 232-241

Ventura, A

Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin **2007**, *16*(5), 633-641

Ventura, JM

A two-dimensional model of fire spread across a fuel bed including wind combined with slope conditions

2002, 11(1), 53-63

Ventura, JMP

Flame characteristics, temperature–time curves, and rate of spread in fires propagating in a bed of *Pinus pinaster* needles **2003**, *12*(1), 67-84

Ventura, SJ

Occurrence of wildfire in the northern Great Lakes Region: Effects of land cover and land ownership assessed at multiple scales

2001, 10(2), 145-154

Veraverbeke, S

Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece

2010, 19(5), 558-569

Verbyla, AP

The development of fireinduced damage functions for forest recreation activity in Alberta, Canada **2010**, 19(1), 63-74 Verbyla, DL

Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results **2008**, *17*(4), 443-462

Verbyla, DL

Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data **2008**, *17*(4), 527-534

Verdon, DC

Multi-decadal variability of forest fire risk - eastern Australia **2004**, *13*(2), 165-171

Verdú, F

Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem **2009**, 18(4), 430-441

Verkaik, I

Recurrent wildfires constrain long-term reproduction ability in *Pinus halepensis* Mill. **2008**, *17*(5), 579-585

Verstraeten, WW

Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece

2010, 19(5), 558-569

Vescovo, L

Estimation of grassland biophysical parameters using hyperspectral reflectance for fire risk map prediction **2009**, *18*(7), 815-824

Vicente-Serrano, SM

Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images **2011**, 20(2), 195-208

Viedma, O

Landscape structural features control fire size in a Mediterranean forested area of central Spain **2009**, *18*(5), *575-583*

Viedma, O

Landscape variables influencing forest fires in central Spain **2011**, *20*(5), 678-689

Viegas, DX

On the Temperature Distribution Inside a Tree Under Fire Conditions **1991**, *I*(2), 87-96

Viegas, DX

Wall Shear-Stress as a Parameter to Correlate the Rate of Spread of a Wind Induced Forest Fire.

1991, 1(3), 177-188

Viegas, DX

Moisture Content of Fine Forest Fuels and Fire Occurrence in Central Portugal 1992, 2(2), 69-86

Viegas, DX

A Relationship Between Rainfall and Burned Area for Portugal **1994**, 4(1), 11-16

Viegas, DX

Some Thoughts on the Wind and Slope Effects on Fire Propagation **1994**, *4*(2), 63-64

Viegas, DX

Numerical Predictions on the Soil Thermal Effect Under Surface Fire Conditions **1997**, 7(1), 51-63

Viegas, DX

Comparative study of various methods of fire danger evaluation in southern Europe **1999**, *9*(4), 235-246

Viegas, DX

Estimating live fine fuels moisture content using meteorologically-based indices **2001**, *10*(2), 223-240

Viegas, DX

Fire line rotation as a mechanism for fire spread on a uniform slope **2002**, *11*(1), 11-23

Viegas, DX

On the existence of a steady state regime for slope and wind driven fires **2004**, *13*(1), 101-117

Viegas, DX

Estimation of the radiation extinction coefficient of natural fuel beds

2004, *13*(1), 65-71

Viegas, DX

Slope and wind effects on fire propagation **2004**, *13*(2), 143-156

Viegas, DX

Fire spread in canyons **2004**, *13*(3), 253-274

Viegas, DX

Parametric study of an eruptive fire behaviour model **2006**, *15*(2), 169-177

Viegas, DX

Laboratory fire spread analysis using visual and infrared images

2006, 15(2), 179-186

Viegas, DX

Generalization of the fire line rotation model to curved fire lines

2006, 15(4), 447-456

Viegas, DX

Local-scale modelling system to simulate smoke dispersion **2007**, *16*(2), 196-203

Viegas, DX

Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging **2007**, *16*(3), 341-348

Viegas, DX

Zigzag shape of the fire front **2007**, *16*(6), 763-764

Viegas, DX

Linear model for spread rate and mass loss rate for mixedsize fuel beds **2010**, 19(5), 531-540

Viegas, DX

Effect of particle orientation and of flow velocity on the combustibility of *Pinus pinaster* and *Eucalyptus globulus* firebrand material **2011**, 20(8), 946-962

Viegas, MT

A Relationship Between Rainfall and Burned Area for Portugal 1994, 4(1), 11-16

Viegas, MT

Estimating live fine fuels moisture content using meteorologically-based indices **2001**, *10*(2), 223-240

Viegas, MTSP

Moisture Content of Fine Forest Fuels and Fire Occurrence in Central Portugal 1992, 2(2), 69-86

Vierling, L

Beyond Landsat: a comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA **2010**, 19(4), 449-458

Vigilante, T

Patterns of landscape fire and predicted vegetation response in the North Kimberley region of Western Australia **2003**, *12*(3&4), 369-379

Vihnanek, RE

Critique of Sikkink and Keane's comparison of surface fuel sampling techniques **2010**, *19*(3), 374-376

Vilaça e Moura, PVS

The Relationship of Forest Fires to Agro-Forestry and Socio-Economic Parameters in Portugal 1992, 2(1), 37-40

Vilar, I

A model for predicting humancaused wildfire occurrence in the region of Madrid, Spain **2010**, *19*(3), 325-337

Vilar, R

Feasibility of forest-fire smoke detection using lidar **2003**, *12*(2), 159-166

Vilar I

Eye-safe lidar measurements for detection and investigation of forest-fire smoke **2004**, *13*(4), 401-412

Viney, NR

Estimating Fuel Moisture Response Times From Field Observations **1991**, 1(4), 211-214

Viney, NR

A Review of Fine Fuel Moisture Modelling **1991**, *I*(4), 215-234

Viney, NR

Moisture Diffusivity in Forest Fuels

1992, 2(4), 161-168

Viney, NR

Estimating fuel response time and predicting fuel moisture content from field data **2001**, *10*(2), 215-222

Virzo De Santo, A

Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires **2005**, *14*(4), 355-363

Virzo De Santo, A

Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy **2005**, *14*(4), 365-377

Virzo De Santo, A

Post-fire stimulation of soil biogenic emission of CO₂ in a sandy soil of a Mediterranean shrubland **2007**, *16*(5), 573-583

Vodacek, A

Autonomous field-deployable wildland fire sensors **2003**, *12*(2), 237-244

Vodacek, A

Generation of synthetic infrared remote-sensing scenes of wildland fire **2009**, *18*(3), 302-309

Vuurens, SH

Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures **2004**, *13*(2), 157-163

Waddington, JM

Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils **2011**, 20(3), 418-429

Wade, DD

Thinning Young Loblolly Pine Stands With Fire **1993**, *3*(3), 169-178

Wadleigh, LL

Development of post-fire crown damage mortality thresholds in ponderosa pine **2010**, *19*(5), 583-588

Wagenbrenner, JW

Evaluating the effectiveness of contour-felled log erosion barriers as a post-fire runoff and erosion mitigation treatment in the western United States **2008**, *17*(2), 255-273

Wahren, C-H

Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity **2008**, *17*(6), 793-808

Waitman, BA

The effects of seeding sterile triticale on a native plant community after wildfire in a pinyon pine—mountain mahogany woodland **2009**, *18*(6), 659-664

Wakimoto, RH

Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America **2003**, *12*(1), 39-50

Wakimoto, RH

Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization **2006**, *15*(1), 47-60

Waldrop, TA

Fuel characterization in the southern Appalachian Mountains: an application of Landscape Ecosystem Classification **2009**, 18(4), 423-429

Walker, JL

Within-stand variation in understorey vegetation affects fire behaviour in longleaf pine xeric sandhills **2011**, 20(7), 866-875

Wallace, G

A Numerical Fire Simulation-Model **1993**, *3*(2), 111-116

Wallbrink, P

Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures **2004**, *13*(2), 157-163

Wallenius, T

Declining fires in *Larix*-dominated forests in northern Irkutsk district **2011**, 20(2), 248-254

Walsh, A

Experimental comparison of four remote sensing techniques to map tropical savanna firescars using Landsat-TM imagery **2003**, *12*(3&4), 341-348

Wang, C

Estimation of fire severity using pre- and post-fire LiDAR data in sagebrush steppe rangelands **2009**, *18*(7), 848-856

Wang, GG

Within-stand variation in understorey vegetation affects fire behaviour in longleaf pine xeric sandhills

2011, 20(7), 866-875

Wang, J

NCEP-ECPC monthly to seasonal US fire danger forecasts

2010, 19(4), 399-414

Wang, MY

Wildfires and the Canadian Forest Fire Weather Index system for the Daxing'anling region of China **2011**, 20(8), 963-973

Wang, W

Smoke incursions into urban areas: simulation of a Georgia prescribed burn **2009**, *18*(3), 336-348

Wang, Y

Calibrating the Fine Fuel Moisture Code for grass ignition potential in Sumatra, Indonesia **2005**, *14*(2), 161-168

Wang, Y

Spatial patterns of forest fires in Canada, 1980–1999 **2006**, *15*(3), 361-374

Wang, Y

An evaluation of spatial and temporal patterns of lightningand human-caused forest fires in Alberta, Canada, 1980–2007 **2010**, *19*(8), 1059-1072

Wang, Z

Generation of synthetic infrared remote-sensing scenes of wildland fire **2009**, *18*(3), 302-309

Wanthongchai, K

Effects of fire frequency on prescribed fire behaviour and soil temperatures in dry dipterocarp forests **2011**, *20*(1), 35-45

Ward, BC

Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA **2011**, *20*(3), 364-383

Ward, DE

Burning California Chaparral an Exploratory Study of Some Common Shrubs and Their Combustion Characteristics. **1991**, *I*(3), 153-158

Ward, DE

A prescription for controlling the air pollution resulting from the use of prescribed biomass fire: clouds **2001**, 10(2), 103-111

Wardati.

Calibrating the Fine Fuel Moisture Code for grass ignition potential in Sumatra, Indonesia **2005**, *14*(2), 161-168

Wardle, GM

The fire history of an arid grassland: the influence of antecedent rainfall and ENSO **2009**, *18*(6), 631-639

Wardle, GM

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Watts, JM

Book Review - Young Men and Fire, by Norman Maclean 1992, 2(4), 193-193

Webb, BW

Prediction and measurement of thermally induced cambial tissue necrosis in tree stems **2006**, *15*(1), 3-17

Weber, KT

Assessing the susceptibility of semiarid rangelands to wildfires using Terra MODIS and Landsat Thematic Mapper data **2011**, *20*(5), 690-701

Weber, MG

The Effect of Cutting and Burning on Browse Production in Eastern Canadian Aspen Forests

1991, 1(1), 41-47

Weber, MG

Peer-Review **1993**, *3*(1), 1-2

Weber, MG Editorial **1994**, 4(1), 1-2

Weber, MG Editorial **1994**, 4(2), 61-62

Weber, MG 1996 List of Reviewers **1996**, 6(4), 164-164

Weber, MG

Strategy for a Fire Module in Dynamic Global Vegetation Models **1999**, *9*(1), 79-84

Weber, MH

Climate effects on historical fires (1630–1900) in Utah **2008**, *17*(1), 28-39

Weber, RO

Toward a Comprehensive Wildlife Spread Model **1991**, *I*(4), 245-248

Weber, RO

Plumes Above Line Fires in a Cross-Wind **1994**, *4*(4), 201-207

Weibel, I

Environmental determinants of lightning- v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland **2010**, *19*(5), 541-557

Wein, RW

Betula glandulosa Michx. Response to burning and postfire growth temperature and implications of climate change 1999, 9(1), 51-64 Wein, RW

Physical properties of dead and downed round-wood fuels in the Boreal forests of western and Northern Canada 1999, 9(2), 85-99

Wein, RW

Effects of fire severity and season of burn on Betula glandulosa growth dynamics **2004**, *13*(3), 287-295

Weintraub, A

Assessing the impact of standlevel harvests on the flammability of forest landscapes **2007**, *16*(5), 584-592

Weisberg, PJ

Abiotic and biotic influences on Bromus tectorum invasion and Artemisia tridentata recovery after fire

2011, 20(4), 597-604

Weise, DR

Burning California Chaparral - an Exploratory Study of Some Common Shrubs and Their Combustion Characteristics. **1991**, *1*(3), 153-158

Weise, DR

Fire spread in chaparral—'go or no-go?' **2005**, *14*(2), 99-106

Weise, DR

Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation **2005**, *14*(3), 321-338

Weise, DR

Flame interactions and burning characteristics of two live leaf samples **2009**, *18*(7), 865-874

.. ..

Weise, DR

Wildland-urban interface fire behaviour and fire modelling in live fuels

2010, 19(2), 149-152

Weise, DR

Experimental measurements during combustion of moist individual foliage samples **2010**, *19*(2), 153-162

Weise, DR

A numerical study of slope and fuel structure effects on coupled wildfire behaviour **2010**, *19*(2), 179-201

Weise, DR

Firebrands and spotting ignition in large-scale fires **2010**, *19*(7), 818-843

Weise, DR

The effects of wind on the flame characteristics of individual leaves **2011**, *20*(5), 657-667

Wenk, ES

Within-stand variation in understorey vegetation affects fire behaviour in longleaf pine xeric sandhills **2011**, 20(7), 866-875

Werth, P

Evaluation of MM5 model resolution when applied to prediction of National Fire Danger Rating indexes **2006**, *15*(2), 147-154

Westerling, AL

Spatially explicit forecasts of large wildland fire probability and suppression costs for California **2011**, *20*(4), 508-517

Westerling, AL

Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystem province **2002**, 11(3&4), 257-266

Westerling, AL

Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices **2008**, *17*(3), 305-316

Westlind, DJ

Season of prescribed burn in ponderosa pine forests in eastern Oregon: impact on pine mortality **2005**, *14*(3), 223-231

Westlind, DJ

Prediction of delayed mortality of fire-damaged ponderosa pine following prescribed fires in eastern Oregon, USA **2006**, *15*(1), 19-29

Westrick, KJ

Evaluation of MM5 model resolution when applied to prediction of National Fire Danger Rating indexes **2006**, *15*(2), 147-154

Wetzel, S

Effect of clear-cutting, prescribed burning and scarification on litter decomposition in an Eastern Ontario jack pine (*Pinus banksiana*) ecosystem **1999**, *9*(3), 195-201

Whelan, RJ

Modelling Reservations: A Comment on Baird et al. (1994). **1996**, *6*(1), 1-3

Whelan, RJ

Persistence of obligate-seeding species at the population scale: effects of fire intensity, fire patchiness and long fire-free intervals **2006**, *15*(2), 261-269

Whight, S

Indices of fire characteristics in sandstone heath near Sydney, Australia **1999**, *9*(2), 145-153

Whisenant, SG

Examining fire behavior in mesquite–acacia shrublands **2005**, *14*(2), 131-140

White, J

Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat **2009**, *18*(8), 1010-1020

White, JD

Remote Sensing of Forest Fire Severity and Vegetation Recovery **1996**, *6*(3), 125-136

White, RH

Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation

2005, 14(3), 321-338

White, RH

Combustion properties of *Bromus tectorum* L.: influence of ecotype and growth under four CO₂ concentrations **2006**, *15*(2), 227-236

White, RH

Combustion characteristics of north-eastern USA vegetation tested in the cone calorimeter: invasive versus non-invasive plants

2007, 16(4), 426-443

White, RH

Testing and classification of individual plants for fire behaviour: plant selection for the wildland–urban interface **2010**, *19*(2), 213-227

Whitehead, PJ

Customary use of fire by indigenous peoples in northern Australia: its contemporary role in savanna management **2003**, *12*(3&4), 415-425

Whitehead, PJ

Fire and savanna landscapes in northern Australia: regional lessons and global challenges **2003**, *12*(3&4), v-ix

Whitehead, PJ

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning **2007**, *16*(4), 361-377

Whitlock, C

Long-term relations among fire, fuel, and climate in the north-western US based on lake-sediment studies **2008**, *17*(1), 72-83

Whitten, S

An optimisation modelling approach to seasonal resource allocation for planned burning **2011**, *20*(2), 175-183

Whittle, CA

Soil Seed Bank of a Jack Pine (*Pinus Banksiana*) Ecosystem **1998**, 8(2), 67-71

Wibowo, A

A Note on Fuelbeds and Fire Behavior in Alang-Alang (*Imperata Cylindrica*) **1992**, 2(1), 41-46

Wierzchowski, J

Lightning and lightning fire, central cordillera, Canada **2002**, *11*(1), 41-51

Wilhelm, DF

Climatological and statistical characteristics of the Haines Index for North America **2007**, *16*(2), 139-152

Williams, D

Analysis of the patterns of large fires in the boreal forest region of Alaska

2002, 11(2), 131-144

Williams, DR

Interpreting federal policy at the local level: the wildland–urban interface concept in wildfire protection planning in the eastern United States **2009**, *18*(3), 278-289

Williams, DR

Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?

2011, 20(3), 350-363

Williams, RJ

Seasonal Changes in Fire Behaviour in a Tropical Savanna in Northern Australia 1998, 8(4), 227-239

Williams, RJ

Experimental comparison of four remote sensing techniques to map tropical savanna firescars using Landsat-TM imagery

2003, 12(3&4), 341-348

Williams, RJ

Fire experiments in northern Australia: contributions to ecological understanding and biodiversity conservation in tropical savannas **2003**, *12*(3&4), 391-402

Williams, RJ

Fire and savanna landscapes in northern Australia: regional lessons and global challenges **2003**, *12*(3&4), v-ix

Williams, RJ

Physically motivated empirical models for the spread and intensity of grass fires **2008**, *17*(5), 595-601

Williams, RJ

Large fires and their ecological consequences: introduction to the special issue

2008, 17(6), 685-687

Williams, RJ

Large fires in Australian alpine landscapes: their part in the historical fire regime and their impacts on alpine biodiversity **2008**, *17*(6), 793-808

Williams, RJ

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Williamson, MA

Factors in United States Forest Service district rangers' decision to manage a fire for resource benefit **2007**, 16(6), 755-762

Williamson, NM

Heat content variation of interior Pacific Northwest conifer foliage **2002**, *11*(1), 91-94

Wilson, CA

Season of burn and nutrient losses in a longleaf pine ecosystem **2004**, *13*(4), 443-453

Wilson, GWT

Rhus glabra response to season and intensity of fire in tallgrass prairie

2011, 20(5), 709-720

Wimberly, MC

Influences of forest roads on the spatial pattern of wildfire boundaries

2011, 20(6), 792-803

Wing, MG

Applying LiDAR technology for tree measurements in burned landscapes

2010, *19*(1), 104-114

Winkel, VK

Influence of Canopy Removal by Burning or Clipping on Emergence of *Eragrostis lehmanniana* Seedlings **1991**, *I*(1), 35-40

Winkler, JA

Climatological and statistical characteristics of the Haines Index for North America **2007**, *16*(2), 139-152

Winter, GJ

Assessing the benefits of reducing fire risk in the wildland-urban interface: a contingent valuation approach **1999**, 9(1), 9-20

Winterkamp, J

Studying wildfire behavior using FIRETEC

2002, 11(3&4), 233-246

Winterkamp, J

Modeling interactions between fire and atmosphere in discrete element fuel beds **2005**, *14*(2), 37-48

Winterkamp, J

Coupled influences of topography and wind on wildland fire behaviour **2007**, *16*(2), 183-195

Winterkamp, JL

A numerical study of slope and fuel structure effects on coupled wildfire behaviour **2010**, *19*(2), 179-201

Wise, EK

Meteorologically influenced wildfire impacts on urban particulate matter and visibility in Tucson, Arizona, USA **2008**, *17*(2), 214-223

Wittenberg, L

Soil Erosion and Forestry Management After Wildfire in a Mediterranean Woodland, Mt. Carmel, Israel 1997, 7(4), 285-294

Wittenberg, L

Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel **2010**, *19*(1), 75-93

Wittenberg, U

Strategy for a Fire Module in Dynamic Global Vegetation Models 1999, 9(1), 79-84

Wittich, K-P

An experiment to test the potential for glass fragments to ignite wildland fuels **2009**, *18*(7), 885-891

Wohlgemuth, PM

Evaluating the effectiveness of contour-felled log erosion barriers as a post-fire runoff and erosion mitigation treatment in the western United States **2008**, *17*(2), 255-273

Woinarski, J

Monitoring the impacts of fire regimes on vegetation in northern Australia: an example from Kakadu National Park **2003**, *12*(3&4), 427-440

Woinarski, JCZ

Fire experiments in northern Australia: contributions to ecological understanding and biodiversity conservation in tropical savannas **2003**, *12*(3&4), 391-402

Wood, JT

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia

2009, 18(1), 84-95

Woodard, PM

Sampling Intensity for Estimating Fuel Moisture Content in Lodgepole Pine and White Spruce Trees 1992, 2(1), 1-6

Woodard, PM

A Low Pressure Soaker Hose Containment System for Wildland Fires 1992, 2(4), 185-191

Woodard, PM

Book Review - Young Men and Fire, by Norman Maclean **1993**, *3*(1), 59-64

Woodard, PM

A Logit Model for Predicting the Daily Occurrence of Human Caused Forest-Fires **1995**, *5*(2), 101-111

Woodruff Miller, A

Chino well fire: a hydrologic evaluation of rainfall and runoff from the Mud Canyon watershed 1999, 9(1), 1-8

Woods, J

A critical assessment of the Burning Index in Los Angeles County, California **2007**, *16*(4), 473-483

Woods, SW

The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA **2008**, *17*(5), 535-548

Woods, SW

Effectiveness of aerial seeding and straw mulch for reducing post-wildfire erosion, northwestern Montana, USA **2008**, *17*(5), 559-571

Woolford, DG

A model for predicting humancaused wildfire occurrence in the region of Madrid, Spain **2010**, 19(3), 325-337

Wooster, MJ

Remote classification of head and backfire types from MODIS fire radiative power and smoke plume observations **2005**, *14*(3), 249-254

Wotton, BM

A Study on the Interpolation of Fire Danger Using Radar Precipitation Estimates **1998**, 8(4), 217-225

Wotton, BM

The effect of fire front width on surface fire behaviour **1999**, *9*(4), 247-253

Wotton, BM

Fire, climate change, carbon and fuel management in the Canadian boreal forest **2001**, *10*(3&4), 405-413

Wotton, BM

Fire weather index system components for large fires in the Canadian boreal forest **2004**, *13*(4), 391-400

Wotton, BM

An index for tracking sheltered forest floor moisture within the Canadian Forest Fire Weather Index System **2005**, *14*(2), 169-182

Wotton, BM

Modelling the probability of sustained flaming: predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions **2007**, *16*(2), 161-173

Wotton, BM

Stand-specific litter moisture content calibrations for the Canadian Fine Fuel Moisture Code **2007**, *16*(4), 463-472

Wotton, BM

Implications of changing climate for global wildland fire **2009**, *18*(5), 483-507

Wotton, BM

Wildland–urban interface fire behaviour and fire modelling in live fuels **2010**, *19*(2), 149-152

Wotton, BM

Forest fire occurrence and climate change in Canada **2010**, *19*(3), 253-271

Wotton, BM

Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils **2011**, 20(3), 418-429

Wotton, BM

Defining fire spread event days for fire-growth modelling **2011**, *20*(4), 497-507

Wouters, M

Effects of the fire retardant Phos-Chek on vegetation in eastern Australian heathlands **2005**, *14*(2), 199-211

Woycheese, JP

Firebrands and spotting ignition in large-scale fires **2010**, *19*(7), 818-843

Wozniak, E

Analysis of the evolution of soil erosion classes using multitemporal Landsat imagery **2008**, *17*(5), 549-558

Wright, BR

Resprouting responses of Acacia shrubs in the Western Desert of Australia – fire severity, interval and season influence survival **2007**, *16*(3), 317-323

Wright, C

Measuring moisture dynamics to predict fire severity in longleaf pine forests **2002**, *11*(3&4), 267-279

Wright, CS

Critique of Sikkink and Keane's comparison of surface fuel sampling techniques **2010**, *19*(3), 374-376

Wright, D

Measuring moisture dynamics to predict fire severity in longleaf pine forests **2002**, *11*(3&4), 267-279

Wright, HA

The Role of Prescribed Burning in Regenerating *Quercus Macrocarpa* and Associated Woody Plants in Stringer Woodlands in the Black Hills, South Dakota **1996**, *6*(1), 21-29

Wu. A-M

Rapid locating of fire points from Formosat-2 high spatial resolution imagery: example of the 2007 California wildfire **2009**, *18*(4), 415-422

Wunder, I

Flame interactions and burning characteristics of two live leaf samples

2009, 18(7), 865-874

Wunder, R

Experimental measurements during combustion of moist individual foliage samples **2010**, *19*(2), 153-162

Xanthopoulos, G

Evaluation of forest fire retardant removal from forest fuels by rainfall

2006, 15(3), 293-297

Xanthopoulos, G
Investigation of the wind speed
threshold above which
discarded cigarettes are likely to

be moved by the wind **2006**, *15*(4), 567-576

Yu (

Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China

2007, 16(1), 34-44

Xu, H

A critical assessment of the Burning Index in Los Angeles County, California **2007**, *16*(4), 473-483

Yakubailik, O

The spatial and temporal distribution of fires on Sakhalin Island, Russia **2007**, *16*(5), 556-562

Yan, W

Fire-climate relationships and long-lead seasonal wildfire prediction for Hawaii **2002**, *11*(1), 25-31

Yang, JC

Ignition of mulch and grasses by firebrands in wildland–urban interface fires

2006, 15(3), 427-431

Yates, C

Contemporary fire regimes of northern Australia, 1997–2001: change since Aboriginal occupancy, challenges for sustainable management **2003**, *12*(3&4), 283-297

Yates, C

Fire-created patchiness in Australian savannas **2003**, *12*(3&4), 323-331

Vates (

Fire regimes and vegetation sensitivity analysis: an example from Bradshaw Station, monsoonal northern Australia **2003**, *12*(3&4), 349-358

Yates, C

Patterns of landscape fire and predicted vegetation response in the North Kimberley region of Western Australia **2003**, *12*(3&4), 369-379

Yates, C

Fire regimes and soil erosion in north Australian hilly savannas **2006**, *15*(4), 551-556

Yates, CJ

Repeated disturbance through chaining and burning differentially affects recruitment among plant functional types in fire-prone heathlands

2010, 19(1), 52-62

Yates, CP

Bushfires 'down under': patterns and implications of contemporary Australian landscape burning **2007**, *16*(4), 361-377

Yates, CP

Big fires and their ecological impacts in Australian savannas: size and frequency matters **2008**, *17*(6), 768-781

Yaussy, DA

A comparison of thermocouples and temperature paints to monitor spatial and temporal characteristics of landscapescale prescribed fires **2004**, *13*(3), 311-322

Yebra, M

Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem **2009**, 18(4), 430-441

Yedinak, KM

An examination of fire spread thresholds in discontinuous fuel beds

2010, 19(2), 163-170

Yedinak, KM

An examination of flame shape related to convection heat transfer in deep-fuel beds **2010**, *19*(2), 171-178

Yen, S-Y

Rapid locating of fire points from Formosat-2 high spatial resolution imagery: example of the 2007 California wildfire **2009**, 18(4), 415-422

Yin, ZY

Fire Regime of the Okefenokee Swamp and Its Relation to Hydrological and Climatic Conditions 1993, 3(4), 229-240

Yool, SR

Modeling potential erosion due to the Cerro Grande Fire with a GIS-based implementation of the Revised Universal Soil Loss Equation **2003**, *12*(1), 85-100

Yool, SR

Site environment characterization of downed woody fuels in the Rincon Mountains, Arizona: regression tree approach **2004**, *13*(4), 467-477

York, A

Prescribed burning: how can it work to conserve the things we value?

2011, 20(6), 721-733

Young, JA

Influence of Simulated Burning of Soil-Litter From Low Sagebrush, Squirreltail, Cheatgrass, and Medusahead on Water-Soluble Anions and Cations 1996, 6(3), 137-143

Young, MK

Effects of wildfire on stream temperatures in the Bitterroot River Basin, Montana **2011**, 20(2), 240-247

Zabowski, D

Fire severity effects on soil organic matter from a ponderosa pine forest: a laboratory study **2010**, *19*(5), 613-623

Zamudio, DC

The Influence of Wildfire on Aqueous-Extractable Soil Solutes in Forested and Wet Meadow Ecosystems Along the Eastern Front of the Sierra-Nevada Range, California 1998, 8(2), 79-85

Zanner, CW

Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California **2005**, *14*(4), 343-354

Zara, P

Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species **2007**, *16*(2), 232-241

Zara. 1

Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin **2007**, *16*(5), 633-641

Zárate, L

Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations **2004**, *13*(1), 1-15

Zavala, G

Landscape variables influencing forest fires in central Spain **2011**, *20*(5), 678-689

Zahavi A

Seedling Mortality in Regeneration of Aleppo Pine Following Fire and Attack by the Scale Insect *Matsucoccus josephi*

1997, 7(4), 327-333

Zepeda-Bautista, M

First year survival of *Pinus* hartwegii following prescribed burns at different intensities and different seasons in central Mexico

2007, 16(1), 54-62

Zhang, Y

Experimental comparison of four remote sensing techniques to map tropical savanna firescars using Landsat-TM imagery

2003, 12(3&4), 341-348

Zhao, FJ

Wildfires and the Canadian Forest Fire Weather Index system for the Daxing'anling region of China 2011, 20(8), 963-973

Zhien, W

Project Aquarius 5. Activity Distribution, Energy Expenditure, and Productivity of Men Suppressing Free-Running Wildland Fires With Hand Tools 1997, 7(2), 105-118

Zhien, W

Project Aquarius 6. Heat Load From Exertion, Weather, and Fire in Men Suppressing Wildland Fires 1997, 7(2), 119-131

Zhien, W

Project Aquarius 7. Physiological and Subjective Responses of Men Suppressing Wildland Fires **1997**, 7(2), 133-144

Zhien, W

Project Aquarius 8. Sweating, Drinking, and Dehydration in Men Suppressing Wildland Fires 1997, 7(2), 145-158

Zhien, W

Project Aquarius 9. Relative Influence of Job Demands and Personal Factors on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires 1997, 7(2), 159-166

Zhien, W

Project Aquarius 10. Effects of Work, Weather, and Fire on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 167-180

Zhien, W

Project Aquarius 11. Effects of Fitness, Fatness, Body Size, and Age on the Energy Expenditure, Strain, and Productivity of Men Suppressing Wildland Fires **1997**, 7(2), 181-199

Zhien, W

Project Aquarius 12. Effects of Style, Fabric, and Flame-Retardant Treatment on the Effectiveness and Acceptability of Wildland Firefighters' Clothing 1997, 7(2), 201-206

Zhien, W

Project Aquarius 13. The Thermal Burden of High Insulation and Encapsulation in Wildland Firefighters' Clothing 1997, 7(2), 207-218

Zhien, W

Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer Bushfires With Hand Tools: Background, Objectives, and Methods 1997, 7(2), 69-76

Zhien, W

Project Aquarius 2. Limitations of Maximum Oxygen Uptake for Predicting the Strains of Building Fireline With a Rakehoe 1997, 7(2), 77-85

Zhien, W

Project Aquarius 3. Effects of Work Rate on the Productivity, Energy Expenditure, and Physiological Responses of Men Building Fireline With a Rakehoe in Dry Eucalypt Forest 1997, 7(2), 87-98

Zhien, W

Project Aquarius 4.
Experimental Bushfires,
Suppression Procedures, and
Measurements
1997, 7(2), 99-104

Zhong, S

Validation of the Haines Index predicted from real-time high-resolution MM5 forecasts using rawinsonde observations over the eastern half of the USA **2005**, 14(3), 233-244

Zhong, S

In situ measurements of water vapor, heat, and CO₂ fluxes within a prescribed grass fire **2006**, *15*(3), 299-306

Zhong, S

A North American regional reanalysis climatology of the Haines Index **2011**, *20*(1), 91-103

Zhou, X

Fire spread in chaparral—'go or no-go?' **2005**, *14*(2), 99-106

Zhuang, Q

Characterization of wildfire regimes in Canadian boreal terrestrial ecosystems **2009**, 18(8), 992-1002

Zida, D

Fuel and fire characteristics in savanna–woodland of West Africa in relation to grazing and dominant grass type **2007**, *16*(5), 531-539

Zielonka, T

A 400-year history of fires on lake islands in south-east Sweden **2010**, *19*(8), 1050-1058

Ziga, S

A Study on the Interpolation of Fire Danger Using Radar Precipitation Estimates **1998**, 8(4), 217-225

Zimmerman, GT

Changing fuel management strategies - The challenge of meeting new information and analysis needs **2001**, *10*(3&4), 267-275

Zipperer, WC

Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildlandurban interface **2004**, *13*(3), 355-365

Zipperer, WC

Testing and classification of individual plants for fire behaviour: plant selection for the wildland–urban interface **2010**, *19*(2), 213-227

Ziska, LH

Combustion properties of Bromus tectorum L.: influence of ecotype and growth under four CO₂ concentrations **2006**, 15(2), 227-236

Zulauf, MA

The importance of fire—atmosphere coupling and boundary-layer turbulence to wildfire spread **2009**, *18*(1), 50-60

Zuloaga-Aguilar, S

Effect of heat shock on germination of 23 plant species in pine–oak and montane cloud forests in western Mexico **2010**, 19(6), 759-773