Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Taxonomic revision and insights into the speciation mode of the spider Dysdera erythrina species-complex (Araneae : Dysderidae): sibling species with sympatric distributions

Milan Řezáč A G , Miquel A. Arnedo B , Vera Opatova B C D , Jana Musilová A E , Veronika Řezáčová F and Jiří Král E
+ Author Affiliations
- Author Affiliations

A Biodiversity Lab, Crop Research Institute, Drnovská 507, CZ-161 06 Prague 6-Ruzyně, Czechia.

B Department of Evolutionary Biology, Ecology & Environmental Sciences & Biodiversity Research Institute, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain.

C Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-128 44 Prague 2, Czechia.

D Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL 36849, USA.

E Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, CZ-128 44 Prague 2, Czechia.

F Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-142 20 Prague, Czechia.

G Corresponding author. Email: rezac@vurv.cz

Invertebrate Systematics 32(1) 10-54 https://doi.org/10.1071/IS16071
Submitted: 3 March 2016  Accepted: 3 May 2017   Published: 8 January 2018

Abstract

The genus Dysdera Latreille, 1804, a species-rich group of spiders that includes specialised predators of woodlice, contains several complexes of morphologically similar sibling species. Here we investigate species limits in the D. erythrina (Walckenaer, 1802) complex by integrating phenotypic, cytogenetic and molecular data, and use this information to gain further knowledge on its origin and evolution. We describe 16 new species and redescribe four poorly known species belonging to this clade. The distribution of most of the species in the complex is limited to southern France and the north-eastern Iberian Peninsula. The species studied do not show any obvious differences in habitat preference, and some of them even occur sympatrically at certain sites. They probably feed on the same type of prey as they readily capture woodlice. On the other hand, they differ in body size, mouthparts shape, sculpturing of carapace, morphology of the copulatory organs, karyotype and DNA sequences. Experimental interspecific mating showed a partial precopulatory behavioural barrier between D. erythrina and D. cechica, sp. nov. Our data suggest that karyotype evolution of the complex included chromosome fusions and fissions as well as translocations (between autosomes as well as autosomes and sex chromosomes). We hypothesise that chromosome rearrangements generating reproductive incompatibility played a primary role in speciation within Dysdera complexes. Dysdera spiders are poor dispersers, and their original distribution areas (forested areas in the Mediterranean) were repeatedly fragmented during Quarternary climatic oscillations, facilitating integration of chromosome rearrangements into karyotypes by genetic drift. Sympatric occurrence of closely related species may have been promoted by prey segregation as suggested by differentiation in body size in co-occurring species. The following new species are described: D. catalonica, sp. nov., D. cechica, D. dolanskyi, sp. nov., D. fabrorum, sp. nov., D. garrafensis, sp. nov., D. graia, sp. nov., D. kropfi, sp. nov., D. minairo, sp. nov., D. portsensis, sp. nov., D. pradesensis, sp. nov., D. pyrenaica, sp. nov., D. quindecima, sp. nov., D. septima, sp. nov., D. stahlavskyi, sp. nov., D. tredecima, sp. nov. and D. undecima, sp. nov.

Additional keywords: holokinetic, interspecific recognition, karyotype evolution, Mediterranean, new species, precopulatory barrier, prey segregation, sex chromosome, woodlice.


References

Agnarsson, I., Gotelli, N. J., Agostini, D., and Kuntner, M. (2016). Limited role of character displacement in the coexistence of congeneric Anelosimus spiders in a Madagascan montane forest. Ecography 39, 743–753.
Limited role of character displacement in the coexistence of congeneric Anelosimus spiders in a Madagascan montane forest.Crossref | GoogleScholarGoogle Scholar |

Alicata, P. (1964). Le specie Italiane di Harpactocrates e di Parachtes n. gen. (Araneae, Dysderidae). Annuario dell’Instituto e Museo di Zoologia dell’Università di Napoli 16, 1–40.

Araújo, D., Rheims, C. A., Brescovit, A. D., and Cella, D. M. (2008). Extreme degree of chromosome number variability in species of the spider genus Scytodes (Araneae, Haplogynae, Scytodidae). Journal of Zoological Systematics and Evolutionary Research 46, 89–95.
Extreme degree of chromosome number variability in species of the spider genus Scytodes (Araneae, Haplogynae, Scytodidae).Crossref | GoogleScholarGoogle Scholar |

Arnedo, M. A., and Ribera, C. (1999). Radiation of the genus Dysdera (Araneae, Dysderidae) in the Canary Islands: the island of Tenerife. The Journal of Arachnology 27, 604–662.

Arnedo, M. A., Oromí, P., and Ribera, C. (2000). Systematics of the genus Dysdera (Araneae, Dysderidae) in the eastern Canary Islands. The Journal of Arachnology 28, 261–292.
Systematics of the genus Dysdera (Araneae, Dysderidae) in the eastern Canary Islands.Crossref | GoogleScholarGoogle Scholar |

Arnedo, M. A., Oromí, P., and Ribera, C. (2001). Radiation of the spider genus Dysdera (Araneae, Dysderidae) in the Canary Islands: cladistic assessment based on multiple data sets. Cladistics 17, 313–353.
Radiation of the spider genus Dysdera (Araneae, Dysderidae) in the Canary Islands: cladistic assessment based on multiple data sets.Crossref | GoogleScholarGoogle Scholar |

Arnedo, M. A., Oromí, P., Múrria, C., Macías-Hernández, N. E., and Ribera, C. (2007). The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera (Araneae, Dysderidae) in the Canary Islands. Invertebrate Systematics 21, 623–660.
The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera (Araneae, Dysderidae) in the Canary Islands.Crossref | GoogleScholarGoogle Scholar |

Arnedo, M. A., Gasparo, F., and Opatovaá, V. (2009). Systematics and phylogeography of the Dysdera erythrina species complex (Araneae, Dysderidae) in Sardinia. ZooKeys 16, 319–345.
Systematics and phylogeography of the Dysdera erythrina species complex (Araneae, Dysderidae) in Sardinia.Crossref | GoogleScholarGoogle Scholar |

Audouin, V. (1826). Explication sommaire des planches d’arachnides de l’Egypte et de la Syrie. Histoire et Nature 1, 99–186.

Becker, L. (1896). Les arachnides de Belgique. Annales du Musée royal d’histoire naturelle de Belgique 12, 1378.

Bellmann, H. (2001). ‘Kosmos-Atlas Spinnentiere Europas.’ (Kosmos Verlag: Stuttgart, Germany.)

Benavente, R., and Wettstein, R. (1980). Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and long diffuse stage. Chromosoma 77, 69–81.
Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and long diffuse stage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7nvVajsw%3D%3D&md5=5ee6b9232c6ede21666bbe36af9bed86CAS |

Berland, L. (1912). Observations sur l’accouplement des araignées. Archives de Zoologie Expérimentale et Générale. Notes et Revue 9, 47–52.

Bidegaray-Batista, L., Macías-Hernández, N., Oromí, P., and Arnedo, M. A. (2007). Living on the edge: demographic and phylogeographical patterns in the woodlouse-hunter spider Dysdera lancerotensis Simon, 1907 on the eastern volcanic ridge of the Canary Islands. Molecular Ecology 16, 3198–3214.
Living on the edge: demographic and phylogeographical patterns in the woodlouse-hunter spider Dysdera lancerotensis Simon, 1907 on the eastern volcanic ridge of the Canary Islands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVert77J&md5=035e6d549ed64873658e30e87f4d1239CAS |

Blackwall, J. (1864). ‘A History of the Spiders of Great Britain and Ireland.’ (Ray Society: London.)

Blandenier, G., and Fürst, P. A. (1998). Ballooning spiders caught by a suction trap in an agricultural landscape in Switzerland. In ‘Proceedings of the 17th European Colloquium of Arachnology, 1997, Edinburgh’. (Ed. P. Selden.) pp. 177–186. (British Arachnological Society: Bucks, Burnham Beeches, UK.)

Bond, J. E., and Stockman, A. K. (2008). An integrative method for delimiting cohesion species: finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Systematic Biology 57, 628–646.
An integrative method for delimiting cohesion species: finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymsr%2FN&md5=b2898141bd3a57615b7ea17b8936d2f6CAS |

Bösenberg, W. (1902). Die Spinnen Deutschlands. II–IV. Zoologica (Stuttgart) 14, 97–384.

Bristowe, W. S. (1958). ‘The World of Spiders.’ (Collins: London.)

British Arachnological Society (2015). Dysdera erythrina. In ‘Spider Recording Scheme. Website and On-line Database Facility’. Available at http://srs.britishspiders.org.uk/portal.php/p/Summary/s/Dysdera+erythrina [20 November 2016].

Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S., and Bremer, K. (2007). Estimating divergence times in large phylogenetic trees. Systematic Biology 56, 741–752.
Estimating divergence times in large phylogenetic trees.Crossref | GoogleScholarGoogle Scholar |

Buchar, J., and Růžička, V. (2002). ‘Catalogue of Spiders of the Czech Republic.’ (Peres: Prague.)

Bureš, P., Zedek, F., and Marková, M. (2012). Holocentric chromosomes. In ‘Plant Genome Diversity. Vol. 2: Physical Structure, Behaviour and Evolution of Plant Genomes’. (Eds I. J. Leitch, J. Greilhuber, J. Doležel and J. F. Wendel.) pp. 187–208. (Springer Verlag: Heidelberg and Berlin, Germany.)

Burger, M. (2011). Functional morphology of female goblin spider genitalia (Arachnida: Araneae: Oonopidae) with notes on fertilization in spiders. Zoologischer Anzeiger 250, 123–133.
Functional morphology of female goblin spider genitalia (Arachnida: Araneae: Oonopidae) with notes on fertilization in spiders.Crossref | GoogleScholarGoogle Scholar |

Charitonov, D. E. (1956). Overview of spiders of the family Dysderidae of the USSR. Uchenie Zapiski Molotovskogo Gosudarstvennogo Universiteta 10, 1739. [In Russian]

Chytrý, M., Kučera, T., and Kočí, M. (Eds) (2001). ‘Catalogue of Biotopes of the Czech Republic.’ (Agency for Nature Conservation and Landscape Protection of the Czech Republic: Prague.) [In Czech]

Chyzer, C., and Kulczyński, W. (1897). ‘Araneae Hungariae. Tomus II.’ (Academia Scientiarum Hungaricae: Budapest).

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=f1e7651b0392e4ec1e17ba3b4c1ca62aCAS |

Cooke, J. A. L. (1965a). A contribution to the biology of the British spiders belonging to the genus Dysdera. Oikos 16, 20–25.
A contribution to the biology of the British spiders belonging to the genus Dysdera.Crossref | GoogleScholarGoogle Scholar |

Cooke, J. A. L. (1965b). Beobachtungen an der Spinnengattung Dysdera. Natur und Museum 95, 179–184.

Cooke, J. A. L. (1965c). Spider genus Dysdera (Araneae, Dysderidae). Nature 205, 1027–1028.
Spider genus Dysdera (Araneae, Dysderidae).Crossref | GoogleScholarGoogle Scholar |

Cooke, J. A. L. (1966). Synopsis of the structure and function of the genitalia in Dysdera crocata (Araneae, Dysderidae). Senckenbergiana Biologica 47, 35–43.

Deeleman-Reinhold, C. L., and Deeleman, P. R. (1988). Révision des Dysderinae (Araneae, Dysderidae), les espèces mediterraneennes occidentales exceptees. Tijdschrift voor Entomologie 131, 141–269.

Deltshev, C. C., Ćurčić, B. P. M., and Blagoev, G. A. (2003). ‘The Spiders of Serbia.’ (Commitee for Karst and Speleology, Serbian Academy of Sciences and Arts; Institute of Zoology, Bulgarian Academy of Sciences: Belgrade, Sofia.)

Díaz, M., and Sáez, F. A. (1966). Investigaciones citogenéticas sobre algunas especies de araneidos uruguayos. In ‘Anales (II) Congreso Latinoamericano de Zoología’. pp. 3–9. (San Pablo: Brazil.)

Dobigny, G., Aniskin, V., Granjon, L., Cornette, R., and Volobouev, V. (2005). Recent radiation in West African Taterillus (Rodentia, Gerbillinae): the concerted role of chromosome and climatic changes. Heredity 95, 358–368.
Recent radiation in West African Taterillus (Rodentia, Gerbillinae): the concerted role of chromosome and climatic changes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MrntFGktg%3D%3D&md5=0410cebca5eceb0d049acd916a4624f4CAS |

Drensky, P. (1938). Die Spinnenfauna Bulgariens. II. Unterordnung arachnomorphae, I gruppe Tetrastica, familien: Filistatidae, Dysderidae und Oonopidae. Mitteilungen aus den Königlichen Naturwissenschaftlichen Instituten in Sofia 11, 81106.

Dresco, E. (1973). Araignées de Bretagne. Le genre Dysdera (fam. Dysderidae). Bulletin de la Société Scientifique de Bretagne 47, 245–256.

Drummond, A. J., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Thierer, T., and Wilson, A. (2009). Geneious v. 4.7. Available at http://www.geneious.com [accessed 11 August 2011].

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenet cs with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenet cs with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=7bdb4f2b26d240256a0aac67a36902f8CAS |

Duffey, E. (1956). Aerial dispersion in a known spider population. Journal of Animal Ecology 25, 85–111.
Aerial dispersion in a known spider population.Crossref | GoogleScholarGoogle Scholar |

Dufour, L. (1820). Observations sur quelques arachnides quadripulmonaires. Annales Générales des Sciences Physiques 5, 96–116.

Eberhard, W. G. (1985). ‘Sexual Selection and Animal Genitalia.’ (Harvard University Press: Cambridge and London.)

Fage, L. (1913). Etudes sur les Araignées cavernicoles. II. Revision des Leptonetidae. Biospelogica, XXIX. Archives de Zoologie Expérimentale et Générale 10, 479–576.

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit i from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=009fb0981a512fd7fdf1010a026c7977CAS |

Forster, R. R., and Platnick, N. I. (1985). A review of the austral spider family Orsolobidae (Arachnida, Araneae), with notes on the superfamily Dysderoidea. Bulletin of the American Museum of Natural History 181, 212–229.

Friesen, V. L., Smith, A. L., Gómez-Díaz, E., Bolton, M., Furness, R. W., González-Solís,, J., and Monteiro, L. R. (2007). Sympatric speciation by allochrony in a seabird. Proceedings of the National Academy of Sciences of the United States of America 104, 18589–18594.
Sympatric speciation by allochrony in a seabird.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2ku7nM&md5=d4c20a7449df49f1750b33ceee56d081CAS |

Fujisawa, T., and Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets.Crossref | GoogleScholarGoogle Scholar |

Funk, D. J., and Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 34, 397–423.
Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Gajdoš, P., Svatoň, J., and Sloboda, K. (1999). ‘Catalogue of Slovakian Spiders.’ (Institute of Landscape Ecology, Slovak Academy of Sciences: Bratislava, Slovakia.)

Hahn, C. W. (1831). ‘Die Arachniden. Erster Band.’ (C.H. Zehschen Buchhandlung: Nürnberg, Germany).

Hamilton, C. A., Hendrixon, B. E., and Bond, J. E. (2016). Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States. ZooKeys 560, 18–25.
Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States.Crossref | GoogleScholarGoogle Scholar |

Hart, M. W., and Sunday, J. (2007). Things fall apart: biological species form unconnected parsimony networks. Biology Letters 3, 509–512.
Things fall apart: biological species form unconnected parsimony networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2hs77K&md5=1f03074990970e5e30a77dfa4005ce5dCAS |

Heimer, S., and Nentwig, W. (1991). ‘Spinnen Mitteleuropas.’ (Verlag Paul Parey: Hamburg, Germany.)

Hewitt, G. (2004). Genetic consequences of climatic oscillations in the quaternary. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 183–195.
Genetic consequences of climatic oscillations in the quaternary.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c3gsVSjuw%3D%3D&md5=c5f13d4ef5319418b608c139f6d165cdCAS |

Hewitt, G., and Ibrahim, K. (2001). ‘Inferring Glacial Refugia and Historical Migrations with Molecular Phylogenies.’ (Blackwell: Oxford.)

Hopkin, S. P., and Martin, M. H. (1985). Assimilation of zinc, cadmium, lead, copper, and iron by the spider Dysdera crocata, a predator of woodlice. Bulletin of Environmental Contamination and Toxicology 34, 183–187.
Assimilation of zinc, cadmium, lead, copper, and iron by the spider Dysdera crocata, a predator of woodlice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXptFSluw%3D%3D&md5=0f8f2cc0ae02409930bc8e49523f455eCAS |

Irwin, D. E. (2002). Phylogeographic breaks without geographic barriers to gene flow. Evolution 56, 2383–2394.
Phylogeographic breaks without geographic barriers to gene flow.Crossref | GoogleScholarGoogle Scholar |

Iversen, J. (1964). Retrogressive vegetational succession in the post-glacial. Journal of Ecology 52, 59–70.

Jacobs, D. H. (2004). The evolution of a neo-XY1Y2 sex chromosome system by autosome-sex chromosome fusion in Dundocoris nodulicarinus Jacobs (Heteroptera: Aradidae: Carventinae). Chromosome Research 12, 175–191.
The evolution of a neo-XY1Y2 sex chromosome system by autosome-sex chromosome fusion in Dundocoris nodulicarinus Jacobs (Heteroptera: Aradidae: Carventinae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt12qug%3D%3D&md5=56b7b947de67fd3db9b3a84448960a12CAS |

Jiggins, C. S., and Mallet, J. (2000). Bimodal hybrid zones and speciation. Trends in Ecology & Evolution 15, 250–255.
Bimodal hybrid zones and speciation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sbitVGmuw%3D%3D&md5=bd8ab8ad6c09d290eeefd7b39af7e1bbCAS |

King, M. (1993). ‘Species Evolution: the Role of Chromosome Change.’ (Cambridge University Press: Cambridge, UK.)

Koch, C. L. (1838). ‘Die Arachniden. Vierter Band, Fünfter Band.’ (C.H. Zehschen Buchhandlung: Nürnberg, Germany).

Král, J., Musilová, J., Št´áhlavský, F., Řezáč, M., Akan, Z., Edwards, R. L., Coyle, F. A., and Ribera, C. (2006). Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae). Chromosome Research 14, 859–880.
Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae).Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=26f6e036355c63beec261d5ea5725683CAS |

Latreille, P. A. (1804). Tableau methodique des insectes. Nouveau Dictionnaire d’Histoire Naturelle, Paris 24, 129–295.

Locket, G. H., and Millidge, A. F. (1951). ‘British Spiders. I.’ (Ray Society: London.)

Loksa, I. (1969). Araneae I. Fauna Hungariae 97, 1–133.

Macgregor, H. C. (1993). ‘An Introduction into Animal Cytogenetics.’ (Chapman & Hall: London.)

Macías-Hernández, N., Oromí, P., and Arnedo, M. A. (2008). Patterns of diversification on old volcanic islands as revealed by the woodlouse-hunter spider genus Dysdera (Araneae, Dysderidae) in the eastern Canary Islands. Biological Journal of the Linnean Society. Linnean Society of London 94, 589–615.
Patterns of diversification on old volcanic islands as revealed by the woodlouse-hunter spider genus Dysdera (Araneae, Dysderidae) in the eastern Canary Islands.Crossref | GoogleScholarGoogle Scholar |

Maddison, W. P. (1982). XXXY sex chromosomes in males of the jumping spider genus Pellenes (Araneae: Salticidae). Chromosoma (Berlin) 85, 23–37.
XXXY sex chromosomes in males of the jumping spider genus Pellenes (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar |

Mallet, J. (2007). Species, concepts of. In ‘Encyclopedia of Biodiversity’. (Ed. S. A. Levin.) pp. 1–15. (Elsevier: Oxford, UK.)

Mcheidze, T. S. (1997). ‘Spiders of Georgia: Systematics, Ecology, Zoogeographic Review.’ (Tbilisi University: Tbilisi, Georgia.) [In Georgian]

Meier, R., Shiyang, K., Vaidya, G., and Ng, P. K. L. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55, 715–728.
DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success.Crossref | GoogleScholarGoogle Scholar |

Miller, F. (1971). Order Spiders – Araneida. In ‘Key to the Fauna of Czechoslovakia. IV’. (Eds M. Daniel and V. Černý.) pp. 51–306. (Czechoslovak Academy of Sciences: Prague.) [In Czech]

Mola, L. M., and Papeschi, A. G. (2006). Holokinetic chromosomes at a glance. Journal of Basic & Applied Genetics 16, 1–4.

Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J. G., Lees, D. C., Ranaivosolo, R., Eggleton, P., Barraclough, T. G., and Vogler, A. P. (2009). Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58, 298–311.
Accelerated species inventory on Madagascar using coalescent-based models of species delineation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wqu7%2FO&md5=9df7e3be72f42089712f2470b98012faCAS |

Muller, L. (1967). Les haplogynes dans le Grand-Duché de Luxembourg. Archives de l’Institut Grand-Ducal de Luxembourg 32, 117–127.

Nedvěd, O., Pekár, S., Bezděčka, P., Líznarová, E., Řezáč, M., Schmitt, M., and Sentenská, L. (2011). Ecology of Arachnida alien to Europe. BioControl 56, 539–550.
Ecology of Arachnida alien to Europe.Crossref | GoogleScholarGoogle Scholar |

Nentwig, W. (1987). The diet of spiders. In ‘Ecophysiology of Spiders’. (Ed. W. Nentwig.) pp. 250–263. (Springer Verlag: Heidelberg and Berlin, Germany.)

Otte, D., and Endler, J. A. (Eds) (1989). ‘Speciation and its Consequences.’ (Sinauer: Sunderland, MA.)

Pekár, S., Líznarová, E., and Řezáč, M. (2016). Suitability of woodlice prey for generalist and specialist spider predators: a comparative study. Ecological Entomology 41, 123–130.
Suitability of woodlice prey for generalist and specialist spider predators: a comparative study.Crossref | GoogleScholarGoogle Scholar |

Pollard, S. D., Jackson, R. R., van Olphen, A., and Robertson, M. V. (1995). Does Dysdera crocata (Araneae Dysderidae) prefer woodlice as prey? Ethology Ecology and Evolution 7, 271–275.
Does Dysdera crocata (Araneae Dysderidae) prefer woodlice as prey?Crossref | GoogleScholarGoogle Scholar |

Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlim, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar |

Qumsiyeh, M. B. (1994). Evolution of number and morphology of mammalian chromosomes. The Journal of Heredity 85, 455–465.
Evolution of number and morphology of mammalian chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FovVemsg%3D%3D&md5=4f404b24468355f31e3c9c768ea21c8eCAS |

Raupach, M. J. (2005). Die Bedeutung von Landasseln als Beutetiere für Insekten und andere Arthropoden. Entomologie Heute 17, 3–12.

Řezáč, M. (2012). Distribution of the six-eyed spiders of the genus Dysdera (Araneae: Dysderidae) in Czechia. Příroda 30, 117–162. [In Czech]

Řezáč, M., and Pekár, S. (2007). Evidence for woodlice-specialization in Dysdera spiders: behavioural versus developmental approaches. Physiological Entomology 32, 367–371.
Evidence for woodlice-specialization in Dysdera spiders: behavioural versus developmental approaches.Crossref | GoogleScholarGoogle Scholar |

Řezáč, M., Král, J., Musilová, J., and Pekár, S. (2006). Unusual karyotype diversity in the European spiders of the genus Atypus (Araneae: Atypidae). Hereditas 143, 123–129.
Unusual karyotype diversity in the European spiders of the genus Atypus (Araneae: Atypidae).Crossref | GoogleScholarGoogle Scholar |

Řezáč, M., Král, J., and Pekár, S. (2007). The spider genus Dysdera (Araneae, Dysderidae) in central Europe: revision and natural history. The Journal of Arachnology 35, 432–462.
The spider genus Dysdera (Araneae, Dysderidae) in central Europe: revision and natural history.Crossref | GoogleScholarGoogle Scholar |

Řezáč, M., Pekár, S., and Johannesen, J. (2008a). Taxonomic review and phylogenetic analysis of central European Eresus species (Araneae: Eresidae). Zoologica Scripta 37, 263–287.
Taxonomic review and phylogenetic analysis of central European Eresus species (Araneae: Eresidae).Crossref | GoogleScholarGoogle Scholar |

Řezáč, M., Pekár, S., and Lubin, Y. (2008b). How oniscophagous spiders overcome woodlouse armour. Journal of Zoology 275, 64–71.
How oniscophagous spiders overcome woodlouse armour.Crossref | GoogleScholarGoogle Scholar |

Řezáč, M., Gasparo, F., Král, J., and Heneberg, P. (2014). Integrative taxonomy and evolutionary history of a newly revealed Dysdera ninnii complex (Araneae: Dysderidae). Zoological Journal of the Linnean Society 172, 451–474.
Integrative taxonomy and evolutionary history of a newly revealed Dysdera ninnii complex (Araneae: Dysderidae).Crossref | GoogleScholarGoogle Scholar |

Řezáč, M., Řezáčová, V., and Heneberg, P. (2016). Enoplognatha bryjai new species, a bizzare cobweb spider of the Pannonian swamps (Araneae, Theridiidae). Zootaxa 4147, 92–96.
Enoplognatha bryjai new species, a bizzare cobweb spider of the Pannonian swamps (Araneae, Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Ribera, C., Ferrández, M. A., and Pérez, J. A. (1986). Los Dysderidae (Arachnida, Araneae) cavernicolas de la Peninsula Iberica. In ‘Proceedings of the Ninth International Congress of Arachnology, Panama 1983’. (Ed. W. G. Eberhard.) pp. 241–244. (Smithsonian Institution Press: Washington, DC.)

Rieseberg, L. H. (2001). Chromosomal rearrangements and speciation. Trends in Ecology & Evolution 16, 351–358.
Chromosomal rearrangements and speciation.Crossref | GoogleScholarGoogle Scholar |

Risso, A. (1826). Les Arachnides. In ‘Histoire Naturelle des Principales Productions de l’Europe Méridionale, et Principalement de Celles des Environs de Nice et des Alpes Maritimes. Vol. 5’. pp. 159–176. (F. G. Levrault: Paris.)

Roberts, M. J. (1985). ‘The Spiders of Great Britain and Ireland. Vol. 1: Atypidae to Theridiosomatidae.’ (Harley Books: Colchester, UK.)

Roberts, M. J. (1995). ‘Spiders of Britain and Northern Europe.’ (Harper Collins Publishers: London.)

Roberts, M. J. (1998). ‘Spinnengids.’ (Tirion: Baarn, the Netherlands.)

Rodríguez Gil, S. G., Mola, L. M., Papeschi, A. G., and Scioscia, C. L. (2002). Cytogenetic heterogeneity in common haplogyne spiders from Argentina (Arachnida, Araneae). The Journal of Arachnology 30, 47–56.
Cytogenetic heterogeneity in common haplogyne spiders from Argentina (Arachnida, Araneae).Crossref | GoogleScholarGoogle Scholar |

Roewer, C. F. (1928). Araneae, Echte oder Webespinnen. Die Tierwelt Mitteleuropas (Leipzig) 3, 1–144.

Romano, R., and Ferrández, M. A. (1983). Dysdera scabricula Simon 1882, nueva especie para la Península Ibérica con notas acerca de los dysderidos de la provincia de Navarra. In ‘Actas I Congreso Ibérico de Entomología, León, 2’. pp. 685–697. (Asociación Española de Entomología: León, Spain.)

Rundle, H. D., and Nosil, P. (2005). Ecological speciation. Ecology Letters 8, 336–352.
Ecological speciation.Crossref | GoogleScholarGoogle Scholar |

Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology & Evolution 16, 372–380.
Ecology and the origin of species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sbks1ajug%3D%3D&md5=e05641f48bac94d33b13b1438d18b559CAS |

Schult, J. (1983a). Taster haplogyner Spinnen unter phylogenetischem Aspekt (Arachnida: Araneae). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 26, 69–84.

Schult, J. (1983b). Dysdera – Portrait einer asseljagenden Spinne. Neue Entomologische Nachrichten 7, 1720.

Simon, E. (1882). Etudes arachnologiques. 13e mémoire. XX. Descriptions d’espèces et de genres nouveaux de la famille des Dysderidae. Annales de la Société Entomologique de France 6, 201–240.

Simon, E. (1914). Les arachnides de France. In ‘Synopsis Générale et Catalogue des Espèces Françaises de l’Ordre des Araneae; Tome VI, 1re Partie’. pp. 1–308. (Roret: Paris.)

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=bf1c47d07b064fc1a91a82830ae5d513CAS |

Staudt, A. (2015). Dysdera erythrina. In ‘Nachweiskarten der Spinnentiere Deutschlands (Arachnida: Araneae, Opiliones, Pseudoscorpiones)’. Available at http://spiderling.de/arages/Verbreitungskarten/species.php?name=dysery [accessed 20 November 2016].

Stockman, A., and Bond, J. E. (2007). Delimiting cohesion species: extreme population structuring and the role of ecological interchangeability. Molecular Ecology 16, 3374–3392.
Delimiting cohesion species: extreme population structuring and the role of ecological interchangeability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyjsb3I&md5=e9f596c8b95b79918d34bb4b4506e436CAS |

Sunderland, K. D., and Sutton, S. L. (1980). A serological study of arthropod predation on woodlice in a dune grassland ecosystem. Journal of Animal Ecology 49, 987–1004.
A serological study of arthropod predation on woodlice in a dune grassland ecosystem.Crossref | GoogleScholarGoogle Scholar |

Sutton, S. L. (1980). ‘Woodlice.’ (Pergamon Press: New York, NY.)

Suzuki, S. (1954). Cytological studies in spiders III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families with general considerations on chromosomal evolution. Journal of Science of the Hiroshima University Series B 1, 23–136.

Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., and Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7, 453–464.
Comparative phylogeography and postglacial colonization routes in Europe.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3ptFCksg%3D%3D&md5=12587adf9a538c810330694e45972610CAS |

Tang, C. Q., Humphreys, A. M., Fontaneto, D., and Barraclough, T. G. (2014). Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data. Methods in Ecology and Evolution 5, 1086–1094.
Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data.Crossref | GoogleScholarGoogle Scholar |

Thaler, K., and Knoflach, B. (2002). Zur Faunistik der Spinnen (Araneae) von Österreich: Atypidae, Haplogynae, Eresidae, Zodariidae, Mimetidae. Linzer Biologische Beiträge 34, 413444.

Thorell, T. (1873). ‘Remarks on Synonyms of European Spiders. Part IV.’ (Uppsala, Sweden.), see pp. 375–645.

Uhl, G. (2000). Two distinctly different sperm storage organs in female Dysdera erythrina (Araneae: Dysderidae). Arthropod Structure & Development 29, 163–169.
Two distinctly different sperm storage organs in female Dysdera erythrina (Araneae: Dysderidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sjltFGqsw%3D%3D&md5=7c074edf1f40d2e8e8463e1953b7265eCAS |

Walckenaer, C. A. (1802). Faune parisienne. Insectes. In ‘Histoire Abrégée des Insectes de Environs de Paris. Vol. 2’. pp. 187–250. (Paris.)

Wiehle, H. (1953). Spinnentiere oder Arachnoidea (Araneae) IX: Orthognatha, Cribellatae, Haplogynae, Entelegynae (Pholcidae, Zodariidae, Oxyopidae, Mimetidae, Nesticidae). In ‘Die Tierwelt Deutschlands und der Angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise. 42. Teil’. (Ed. F. Dahl.) pp. 1–150. (Gustav Fischer Verlag: Jena, Germany.)

World Spider Catalog (2016). World Spider Catalog, version 17 : 0. Natural History Museum Bern. Available at http://research.amnh.org/iz/spiders/catalog [accessed 18 May 2016].

Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWnsbzL&md5=22e5335edf32329a52137c1f7040bdd8CAS |