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OPEN ACCESS 

ABSTRACT 

Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key 
floral trait that promotes outcrossing in many angiosperms. The degree of separation between 
pollen-producing anthers and receptive stigmas has been shown to influence rates of self-
pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing 
in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops 
grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these 
cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing 
body of work elucidating the genetic basis of floral organ development, the genetic and environ-
mental control points regulating herkogamy are poorly understood. A better understanding of the 
developmental and regulatory pathways involved in establishing varying degrees of herkogamy is 
needed to provide insights into the production of flowers more adept at selfing to produce 
consistent, high-quality fruit. This review presents our current understanding of herkogamy from 
a genetics and hormonal perspective. 

Keywords: floral development, herkogamy, mating systems, phytohormones, pollination, stamen 
development, style development. 

Overview 

Herkogamy (from the Greek for fence – herko and marriage – gamos) is broadly defined as 
the spatial separation of anthers and stigmas within complete flowers. It is a key composite 
floral trait that introduces variation in plant mating systems and is central to promoting 
outcrossing as well as reducing interference between male and female functions (Webb 
and Lloyd 1986). As a functional trait, herkogamy has long been considered an important 
component of reproductive interactions in angiosperms and plays a significant role in 
outcrossing rates and autofertility. Floral structures define herkogamy, with the spatial 
positioning of the ‘female’ receptive stigma and ‘male’ pollen producing anthers separated 
either vertically, laterally or both. The height of the stigma depends on the shape and size of 
the gynoecium (female organ comprising the ovary, style and stigma). The position of the 
anthers is determined by the length and angle of the filament that supports the anther. 

Herkogamy types were described in detail in a seminal review by Webb and Lloyd (1986) 
and have been grouped into several additional categories, summarised in Table 1. The three 
main classes of herkogamy are: (1) homomorphic herkogamy; (2) reciprocal herkogamy; 
and (3) interfloral herkogamy. Homomorphic herkogamy is found in populations where 
all of the flowers have a similar morphology. Within homomorphic herkogamy, flowers 
can be ordered or unordered. In unordered herkogamy, there is still physical separation 
of the anthers and stigma but the spatial separation between them may be so small that 
pollinator movement between reproductive organs is disorganised or haphazard (i.e. 
pollinators repeatedly alternate between organs). In ordered herkogamy, there is a 
distinct physical separation of anthers and stigmas facilitating the likelihood that 
pollinators encounter one organ before the other when entering or exiting the flower. 
Ordered types include approach herkogamy (stigmas protruding beyond the anthers so 
that pollinators are likely to contact stigmas first) and reverse herkogamy (stigmas 
positioned behind or below the anthers so that pollinators contact anthers first) (Fig. 1). 
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Table 1. Hierarchical herkogamy classes. 

Type Class Order Description 

Homomorphic All floral morphs of one form; complete flowers 

Unordered Pollinators contact anthers and stigmas within a flower in no ordered sequence 

Ordered Typically, pollinators make contact with pollen and stigmas in an ordered fashion 

Approach Stigmas extend forward of the anthers so that they contact pollinators first 

Reverse Anthers presented forward of the stigma so that pollinators may contact them first 

Movement Stigmas and/or anthers moved into or out of presentation position 

Lateral Style presented horizontally on an angle away from the centre of flower 

Reciprocal Two or more floral morphs of complete/perfect flowers but differing in position of presentation
of anthers or stigmas. Heterostyly, enantiomorphism 

              

Interfloral Two or more different floral morphs, with anthers and stigmas presented either in part or in whole 
within separate morphs. Monoecism, gynomonoecism, andromonoecism, dioecy 

Modified from Webb and Lloyd (1986). 
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Fig. 1. Floral structure and homomorphic types of herkogamy. 
(a) Flower structure showing four whorls of organs – sepals, petals, 
stamens and carpels. (b) Hypothetical flower with petals removed 
showing no herkogamy. (c) Lateral herkogamy. (d) Approach herkogamy. 
(e) Reverse herkogamy. ‘h’ represents the herkogamy distance. 

Movement herkogamy occurs in floral morphs where either 
the stigma or anthers move relative to each other, changing 
the separation as the flower develops or responds to pollina-
tion signals. Situations where anthers and stigmas are in direct 
line with each other may be referred to as neutral herkogamy, 
whilst no (or zero) herkogamy would imply the organs being 
in direct contact. Lateral herkogamy, where styles are 
horizontally positioned on an angle away from the centre of 
the flower, is the least common but can be seen in Linum 
(Ruiz-Martín et al. 2018), Centaurium (Brys and Jacquemyn 
2012) and Hylocereus undatus (Cho and Ding 2021). Some 
species, such as Lysimachia arvensis exhibit both lateral and 
vertical herkogamy (Jiménez-López et al. 2019). 

Reciprocal herkogamy is classed as either heterostyly 
or enantiostyly/enantiomorphy (Webb and Lloyd 1986; 
Almeida et al. 2013, 2018). Heterostyly (Fig. 2) refers to 

(a) 

(b) 

(c) (d) 

Fig. 2. Variations in floral structures. (a) Distyly. (b) Tristyly (anther and 
stamen lengths displaying enantiomorphy). (c) Interfloral herkogamy: 
monoecism (two floral morphs within a plant). (d) Dioecy (plants have 
either only ‘male’ or ‘female’ flowers). Dotted red lines indicate pollen 
transfer between organs of different morphs. 

the system where herkogamy is vertical and presented 
reciprocally in two (distyly) or three (tristyly) floral morphs 
(Arunkumar et al. 2017). Effectively, distylous species have 
two different floral morphs (short-styled S-morphs, or thrums; 
and long-styled L-morphs, or pins) with one presenting 
approach herkogamy and the other reverse herkogamy. In 
tristylous species, a third floral morph is present that has 
an intermediate herkogamy profile relative to the other two 
morphs. In some reproductive systems, the flowers of a 
particular morph may only be compatible with those from 
different morphs – demonstrating organ separation through 
space working in concert with incompatibility systems 
(Barrett and Harder 2005; Arunkumar et al. 2017). 
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Interfloral herkogamy is when a plant contains two or 
more different floral morphologies, with anthers and stigmas 
presented either in part or in whole within separate morphs 
and includes monoecism (Fig. 2) (separate male and female 
flowers on an individual plant), gynomonoecism (female 
and complete flowers on the same individual plant) and 
andromonoecism (male and complete flowers on individual 
plants of a species). 

Homomorphic, ordered, approach herkogamy is the most 
common amongst self-compatible species and tends to be 
associated with a limited number of pollinator species or func-
tional groups (Opedal 2018). It can be found in the families 
Liliaceae, Amaryllidaceae, Boraginaceae, Convolvulaceae, 
Caprifoliaceae, Ericaceae, Papaveraceae and Gentianaceae 
(Kerner and Oliver 1902). The relationship between diverse 
pollinator communities, functional groups and plant repro-
ductive success will not be covered in detail here but has 
been treated extensively by others (Fontaine et al. 2006; 
Albrecht et al. 2012; Ollerton 2017). 

Function and evolution of herkogamy 

Herkogamy has long been considered an important compo-
nent of reproductive interactions in angiosperms and has 
been demonstrated to play a significant role in outcrossing 
rates and autofertility. While traditional interpretations of 
herkogamy posit its role mainly as a promoter of outcrossing 
(thus a mechanism to reduce selfing), its presence in species 
that are genetically self-incompatible, as well as the presence 
of other promoters of outcrossing such as dichogamy and 
dioecy, suggests it may also serve to prevent or reduce 
anther-stigma self-interference within a flower (Galen and 
Gregory 1989; Waser and Price 1991; Fetscher 2001). Self-
interference may occur when self-sourced pollen saturates 
the stigmatic surface and clogs it so that outcrossed pollen 
is restricted from making contact and germinating, or when 
stamens remove pollen from stigmatic surfaces or block access 
to the stigma. Stigmas, depending on floral architecture, 
may also create a barrier to pollen access or redirect released 
pollen. However, in species that exhibit at least some degree 
of self-compatibility, it is logical to conclude that the spatial 
separation of anthers and stigmas will reduce the likelihood of 
self-fertilisation (Webb and Lloyd 1986). 

Large-scale work on floral evolution within angiosperms 
have predicted early floral structures (Sauquet et al. 2017), 
but potential evolvability (capacity to adapt to changing 
conditions or pressures) of herkogamy, was calculated to be 
high and rapid in response to environmental changes and that 
the high degree of herkogamic variation often encountered 
within related species and populations could result from 
adaptive responses to the pollination environment (Opedal 
et al. 2017). It was found that the median evolvability of 
herkogamy was an order of magnitude greater than that of 

other floral measurements and was not strongly constrained 
by genetic covariance between pistil and stamen lengths. 
They concluded that herkogamy can rapidly evolve in 
response to environmental changes, suggesting that variation 
in herkogamy in related species and populations may result 
from variation in pollinator communities and other selective 
factors. More recent work (Opedal et al. 2022) suggests that 
the evolvability of certain floral traits varies throughout 
phenotypic space and that particular trait combinations 
may be subject to strong genetic constraints that stall evolu-
tion towards optimum self-pollination rates. This work on 
the potential genetic constraints of functionally interactive 
floral traits (Opedal et al. 2022) reinforces herkogamy’s 
high level of independent evolutionary potential. 

Effect of herkogamy on pollination success 

Numerous studies have demonstrated negative relationships 
between herkogamy and rates of autofertility (seed set in 
the absence of pollinators) and self-fertilisation (Moeller 
2006; Herlihy and Eckert 2007; Eckert et al. 2009; Dart 
et al. 2012; Opedal et al. 2016), speaking to the functional 
importance of the trait. Additional studies have demonstrated 
positive relationships between pollinator abundance and 
herkogamy (Moeller 2006; Opedal et al. 2016). 

The separation of pollen-producing anthers from recep-
tive stigmas can influence rates of self-pollination amongst 
plants (Müller 1883). The degree of stigma exsertion (relative 
to anthers) has a major influence on the efficacy of self-
pollination in many types of plants and is mainly determined 
by the relative lengths of anthers, styles and ovaries (Shang 
et al. 2021). Reducing herkogamy can lead to improved 
rates of successful self-pollination in species that are self-
compatible (Luo and Widmer 2013; Toräng et al. 2017; 
Opedal 2018). Logically, reducing the space between 
anthers and stigmas may lead to increased or enhanced 
self-pollen transfer during both biotic and abiotic-induced 
floral movements. Approach and reverse herkogamy have 
been shown to have considerably different effects on pollen 
loads, outcrossing rates and seed set (Barrett 2002). Approach 
herkogamous flowers were shown to have captured less total 
pollen but exhibited much higher rates of outcrossing than 
reverse herkogamous flowers, supporting Webb and Lloyd’s 
(1986) assumption that approach herkogamy was superior 
in preventing self-pollination. 

Predominately, studies that have investigated herkogamy-
outcrossing or herkogamy-autofertility relationships have 
demonstrated that more herkogamous individuals, popula-
tions, and species tend to be more outcrossed (reviewed 
by Opedal 2018). The effect of greater anther-stigma 
separation on reducing individual selfing rates has been 
established for numerous taxa (Rick et al. 1978; Brunet and 
Eckert 1998; Motten and Stone 2000; Takebayashi et al. 2006). 
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Takebayashi et al. (2006) demonstrated a strong positive 
association between herkogamy and outcrossing rates in Gilia 
achilleifolia, which supports previous findings. Certainly, 
within populations, flowers exhibiting greater herkogamy 
do often tend to be more outcrossed (Opedal 2018). This 
can result from reduced interference between anther and 
stigmas when they are highly separated. In self-incompatible 
species, reduced herkogamy could lead to pollinators being 
restricted from stigmas or lead to an increase in self-
pollen deposition leading to clogged stigmas or increasing 
competition between self- and cross-pollen (Fægri and Van 
der Pijl 1979; Opedal 2018). 

Variation of herkogamy within species 

Herkogamy can exhibit significant variation among genotypes 
within a species and has been proposed to show local 
adaptation to the pollination environment (Opedal 2018). In 
tomato (Solanum lycopersicum), this variation is evident, 
particularly between self-incompatible wild relatives and 
autogamous domesticated varieties. 

Among wild tomato relatives such as Solanum pennellii 
and Solanum peruvianum, exserted stigmas and allogamous 
breeding are prevalent traits (Rick and Lamm 1955; Rick 
1982, Rick and Chetelat 1991). In contrast, commercially 
important domesticated varieties like S. lycopersicum exhibit 
reverse herkogamy, where stigmas are inserted within the 
anther cone, facilitating self-pollination (Rick and Lamm 
1955; Rick et al. 1977; Karron et al. 1997; Motten and Stone 
2000). The transition to inserted stigmas in domesticated 
tomatoes likely occurred alongside the development of 
self-compatibility during domestication (Georgiady and Lord 
2002; Georgiady et al. 2002; Blanca et al. 2012). 

Research by Liu et al. (2016)  on Primula species demon-
strated that reducing the distance between anthers and 
stigmas resulted in decreased outcrossed pollen deposi-
tion and increased self-pollen deposition. However, total 
pollen deposition remained relatively unaffected. Opedal 
(2018) further explored the qualitative relationships between 
herkogamy and mating systems, suggesting a negative associa-
tion between herkogamy and autofertility, with potentially 
more pronounced declines in approach herkogamous 
species. However, the relationship between herkogamy and 
outcrossing rates remains challenging to elucidate due to 
complex interactions with pollinators (Opedal 2018). 

Hormonal control of herkogamy 

The growth and development of all tissues in plants are 
intricately regulated by the interplay of phytohormones. 
From the inception of floral primordia, auxin serves as a mor-
phogenetic catalyst, facilitating the formation of primordia. 

Subsequently, it collaborates with other hormones to 
orchestrate the intricate processes of development, pattern-
ing and functioning of reproductive organs (Dresselhaus and 
Schneitz 2014; Zažímalová et al. 2014). 

Cytokinin plays a crucial role in gynoecium pattern-
ing, particularly in early cell proliferation and inducing 
medial tissues in developing gynoecia (Marsch-Martínez 
et al. 2012). Cytokinin positively regulates reproductive 
meristems, which are relevant to inflorescence architecture. 
It has been proposed that high auxin levels are necessary 
for stigma and style development, low auxin and cytokinin 
induce ovary and ovule development, and high cytokinin 
levels regulate gynophore formation. Moreover, auxin sig-
nalling during gynoecium development has been associated 
with brassinosteroid signalling (Marsch-Martínez and de Folter 
2016). 

Stamen development in Arabidopsis thaliana is influenced 
by auxin, gibberellic acid (GA) and jasmonic acid (JA) 
coordinating and regulating various aspects of stamen 
development (Song et al. 2013). This includes stamen 
primordia formation, filament and anther development, 
pre-anthesis filament elongation, pollen maturation and 
anther dehiscence. Auxin transport from the tapetum through 
the middle layer and toward the filament is essential for 
coordinating anther maturation with filament growth 
(Cecchetti et al. 2017). Auxin is also involved in regulating 
stamen number and outgrowth (Heisler et al. 2005). 

Defects in GA biosynthesis or perception result in shortened 
stamen filaments (Cheng et al. 2004; Tyler et al. 2004; Rieu 
et al. 2008a, 2008b). GA induces the synthesis of JA. 
However, the short stamen phenotype of GA-deficient plants 
cannot be rescued by exogenous JA, suggesting the involve-
ment of other GA-dependent, JA-independent pathways in 
correct stamen filament elongation (Cheng et al. 2009). 

Mutations in JA biosynthesis genes or components of the 
JA signalling pathway affect filament elongation (Xie et al. 
1998; Stintzi and Browse 2000; Ishiguro et al. 2001; Park 
et al. 2002). Moreover, the development of stamens, 
including filament elongation, anther dehiscence and pollen 
maturation, is regulated by various environmental cues and 
endogenous hormone signals, including GA and JA (Ma 
2005; Plackett et al. 2011; Song et al. 2013). 

In species exhibiting distyly, local changes in genes 
associated with brassinosteroids have been attributed to the 
control of stamen and style length (detailed below). The 
application of brassinosteroids to primrose S-morphs caused 
an increase in style length, but not stamen length (Huu 
et al. 2016). 

Genetic control of herkogamy 

As herkogamy is determined by the positioning of anthers and 
stigmas in the flower, there is a need to understand the 
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molecular control of growth and development of the 
gynoecium and stamens (filaments and anthers). The 
molecular regulation of growth and development of these 
floral structures have been extensively reviewed (Herrera-
Ubaldo et al. 2018, 2023; Thomson and Wellmer 2019) so  
will not be covered in detail here. Key to the determination 
of the gynoecium and stamens are the floral homeotic B, C 
and E function genes. The C function gene AGAMOUS (AG) 
together with the E function genes SEPALLATA (SEP) 
determine gynoecium development, and AG togetherwith 
PISTILLATA (PI), APETALA3 (AP3) and SEP genes determine 
stamen development. 

This review will focus on genes that have been reported to 
alter the differential length of these organs with respect to 
herkogamy. As may be expected, many of these genes are 
associated with the hormones detailed in the section above. 
It is well documented that hormones work together to 
control different aspects of development, and this seems to 
be the case in the control of gynoecium length and stamen 
length. As the genetic control of the gynoecium and stamen 
are independently controlled, for this review we will 
examine the molecular control of these organs separately. 

Molecular control of gynoecium development 

Variability in gynoecium length may be determined by ovary 
length, or, more commonly, style length. The gynoecium in 
the model plant Arabidopsis is predominantly ovary tissue 

Table 2. Genes involved in ovary and style length. 

with very little style tissue. However, there are a number of 
mutations associated with stylar tissue (Table 2, Fig. 3a). 
Genes associated with Arabidopsis ovary length appear to 
be key regulators of herkogamy with an E3 ubiquitin ligase 
gene, specifically ARM-Repeat Containing1 (ARC1), being 
shown to control ovary length among different Arabidopsis 
ecotypes and promote approach herkogamy in Arabidopsis 
flowers (Indriolo et al. 2014). In other model species, such 
as S. lycopersicum, the style comprises the majority of the 
gynoecium length. 

Style development appears to be associated with marginal 
tissue development, with the style positioned at the distal end 
of the gynoecium. Disruption of marginal tissue and organ 
fusion often leads to a loss of stylar tissue. The MADS-
box transcription factor SHATTERPROOF (SHP) (Colombo 
et al. 2010) and other key transcription factors AUXIN 
RESPONSE FACTOR6/8 (ARF6/8), CRABSCLAW (CRC), 
AINTEGUMENTA (ANT), FILIMENTOUS FLOWER (FIL), 
SUESS (SEU), LUNIG (LUG) and SPATULA (SPT) have 
been characterised through mutation studies and shown to 
be associated with marginal tissue and style development. 
In cases where these genes are mutated individually or 
in combination, Arabidopsis gynoecia fail to fuse and often 
lack stylar and/or stigmatic tissue (Bowman et al. 1999; Liu 
et al. 2000; Alvarez and Smyth 2002; Groszmann et al. 2008). 

The STYLISH1 (STY/SHI) gene family comprises zinc-
finger transcription factors expressed in the gynoecium, ovule 
primordia and style. Their status as downstream genes has 
been established through genetic investigations, wherein 

Organism Gene Gene model Gene class Function References 
number 

Brassica rapa ARM Repeat LOC103865322 U-box domain-containing Controls ovary length; promotes Indriolo et al. (2014) 
Containing1 (ARC1) protein approach herkogamy in A. thaliana 

Arabidopsis STIGMA AND AT1G56020 Unknown gene; serine/ Suppresses style elongation Li et al. (2020) 
thaliana STYLE arginine repetitive matrix-like 

STYLIST (SSS) protein 

A. thaliana NGATHA1 (NGA1) AT2G46870 AP2/B3-like transcriptional Involved in stigma development Alvarez et al. (2009) and 
factor and style elongation Fourquin and Ferrándiz 

(2014) 

Solanum Long styles (Lst) Solyc12g027610.1 Ethylene receptor EIN4-like Inhibitor of style exsertion Cheng et al. (2021) 
lycopersicum 

S. lycopersicum Style2.1 (Se2.1) Style21 Polypeptide bearing a helix- Promotes style growth Chen et al. (2007) 
loop-helix; transcription factor 

S. lycopersicum Stigma Solyc03g098070 C2H2 zinc finger transcription Regulates anther and style length to Shang et al. (2021) 
exsertion 3.1 (SE3.1) factor control flush stigma development 

S. lycopersicum Woolly (Wo) Solyc02g080260 HD ZIP (IV) Regulates the expression of SE2.1 Wu et al. (2024) 

Oryza sativa subsp. GRAIN SIZE 3 OSNPB_030407400 M-type_MADS Regulates stigma length and Takano-Kai et al. (2011) 
japonica (GS3) exsertion 

Primula forbesii CYP734A50 AOA32958 Cytochrome P450 Inactivates brassinosteroid mediated Huu et al. (2016) 
growth activity 

Turnera subulata TsBAHD QDP16902 Cytochrome P450 Homologous to CYP73A50 similar Shore et al. (2019) 
to above 
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Fig. 3. Genes and hormones shown to control (a) ovary and style length and (b) filament length. Ovals, genes; red, Arabidopsis; 
green, tomato; blue, rice; purple, Primula/Turnera; clouds, hormones; IAA, auxin; BR, brassinosteroids; CK, cytokinins; ET, ethylene; 
JA, jasmonic acid; GA, gibberellins; arrows, positive reported relationships; lines with bars, negative reported relationships. 

lug mutations were found to be epistatic over sty mutations, 
and lug mutants exhibited reduced expression of STY1 (Kuusk 
et al. 2006). Ectopic expression of STY1 rescues style defects 
of lug, seu, crc, jag (JAGGED) and spt mutant gynoecia (Ståldal 
et al. 2008). Supporting the downstream status of STY1 from 
these genes, sty1 mutants result in only minor style develop-
ment defects compared with mutations in the upstream genes 
(Sundberg and Ferrándiz 2018). The auxin biosynthesis gene 
YUCCA4 (YUC4) is among the downstream targets of STY1, 
indicating that SHI/STY family genes have a positive 
regulatory effect on local auxin biosynthesis (Sohlberg et al. 
2006; Eklund et al. 2010). Supporting this, the application 
of exogenous auxin on the apical region of immature sty1 
sty2 mutant gynoecia leads to a reversion to the wild-type 
style and stigma (Sundberg and Ferrándiz 2018). 

Once patterning has been established, the control of style 
length has been studied using mutants in Arabidopsis and by 
gene mapping in other species. The Arabidopsis NGATHA 
(NGA) B3-domain transcription factors (Alvarez et al. 2009; 
Trigueros et al. 2009) serve as redundant regulators influ-
encing the establishment of apical gynoecium and stylar 
length. Inactivation of individual or multiple NGA members 
leads to elongated and misshapen stylar tissue. Fourquin 
and Ferrándiz (2014) identified NGA orthologues in the 
longer-styled species Eschscholzia californica (Californian 
poppy) and Nicotiana benthamiana. Expression patterns of 
EcNGA and NbNGA genes closely resembled Arabidopsis 
NGA. Inactivation of these genes caused severe defects in 
style. Downstream of the NGA transcription factors are the 
STIGMA AND STYLE STYLIST (SSS) genes (Li et al. 2020), 
which encode a novel class of angiosperm-specific genes 

with unknown function. Arabidopsis possesses three partially 
redundant SSS genes with slightly different expression 
zones. Similar to nga mutants, suppression of SSS genes leads 
to elongated stylar tissue, whereas overexpression of SSS 
causes significant reduction in stylar length. Moreover, 
SSS overexpression effectively rescues the stylar defect in 
nga1nga3 double mutants, affirming the pivotal role of 
NGA transcription factors in regulating these genes. 

Genetic investigations into stigma position in tomato 
have revealed a quantitative determination influenced by 
relatively few genes with high heritability and dominance 
effects (Rick and Dempsey 1969). One major quantitative 
trait locus (QTL) named style2.1 (se2.1) was identified on 
chromosome 2 (Chr2) using an interspecific mapping popula-
tion derived from S. lycopersicum and Solanum habrochaites 
(Bernacchi and Tanksley 1997). The gene responsible for 
se2.1 was subsequently characterised and found to encode 
a polypeptide with a helix-loop-helix (HLH) motif, but 
lacking the typical basic region found in the broader class 
of basic-helix-loop-helix (bHLH) transcription factors (Chen 
et al. 2007). The SE2.1 protein promotes cell elongation in 
the style. The effect of the se2.1 allele can be attributed to 
a deletion in the promoter region and a resultant decrease 
in gene transcription in cultivated tomato, explaining part 
of the transition from long to short styles (Chen et al. 2007; 
Vosters et al. 2014). SE2.1 expression has been shown to be 
controlled by three HD-ZIP proteins, WO, HD7, HD7L. 
A dominant mutation of WO (woW106R) causes further style-
length reduction to create reverse herkogamy (Wu et al. 
2024). Additional QTLs for style exsertion have been 
identified through interspecific biparental populations. 
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Three QTLs were reported on Chr4, Chr8 and Chr9 using a 
cross with Solanum pimpinellifolium (Georgiady et al. 2002), 
and one QTL was found on the long arm of Chr5 using a cross 
with S. habrochaites (Gorguet et al. 2008). Another locus, 
SE3.1, was identified through a genome-wide association 
study (GWAS) (Shang et al. 2021). This study identified a 
mutation in a C2H2 zinc finger transcription factor that 
plays a role in controlling stylar length. The long styles (Lst) 
phenotype in S. lycopersicum was suggested to be linked to an 
EIN4-like ethylene receptor (Solyc12g027610.1), implicating 
ethylene in conferring this style exsertion phenotype (Cheng 
et al. 2021). 

Riccini et al. (2021) demonstrated a significant involve-
ment of genes related to indole-3-acetic acid (IAA) function 
in exserted stigma genotype groups in tomato, supporting 
the accepted role of auxin in the apical-basal patterning 
development of the gynoecium in Arabidopsis (Ståldal and 
Sundberg 2009). In tomato, downregulation of ARF6 and 
ARF8 via miRNA167 overexpression resulted in shortened 
floral organs compared with control plants (Liu et al. 2014). 
This phenotype was accompanied by a decrease in SE2.1 
expression, suggesting that ARF6 and ARF8 may function 
upstream of SE2.1, and the reduced expression of SE2.1 
in MIR167a-plants contributes to reduced style growth 
(Liu et al. 2014). 

In rice (Oryza sativa), GRAIN SIZE 3 (GS3), a MADS box 
gene known for regulating seed length, has been found also 
to influence style and (non-brush) stigma length resulting 
in stigma exsertion (Takano-Kai et al. 2011). Its basal mRNA 
expression is detected in young rice stigmas, and a nonsense 
mutation in its second exon leads to cell proliferation, 
resulting in elongated stigmas. 

In distylous species, both the stamen and the style 
length are controlled by an ‘S-locus’ containing several genes 
recently reviewed (Kappel et al. 2017). In Primula (Huu et al. 
2016, 2022) and Turnera (Shore et al. 2019; Matzke et al. 
2021), cytochrome P450 genes that are homologous to 
Arabidopsis CYP72B1 (BAS1) have been shown to control 
style length. BAS1 modulates brassinosteroid associated 
growth (Neff et al. 1999) providing a possible mechanism 
for how this class of gene can regulate different stylar 
morphs (Henning et al. 2020). 

In the mangrove species Lumnitzera littorea, Zhang et al. 
(2020) identified 12 MADS-box genes, including four 
MIKC-type and eight M-type transcription factors, associated 
with herkogamy. Some species exhibit stylar polymorphisms, 
leading to individuals with either approach or reverse 
herkogamy. Several major loci influencing such polymorphisms 
have been identified in genetic studies (Barrett et al. 2000; 
Ushijima et al. 2012; Nowak et al. 2015). Additionally, in 
other species, style length exhibits continuous variation, 
resulting in individual flower profiles ranging between 
approach and reverse herkogamy (Motten and Stone 2000; 
Takebayashi et al. 2006). The regulation of style length and 
stamen position often involves multiple loci with minor 

effects, and covariation between floral organs is not 
uncommon (Conner and Sterling 1996; Herrera 2001; Kulbaba 
and Worley 2008). Lande and Arnold (1983) suggest this 
continuous covariation could limit the evolvability of 
herkogamy, in contrast to earlier studies that proposed it to 
be highly evolvable (Opedal et al. 2017). 

In an RNA-seq comparison of inserted- and exserted-
stigma tomato genotypes (Riccini et al. 2021), the exserted 
genotypes showed an over-representation of genes involved 
in regulating cell wall structure and metabolism. Notably, 
two xyloglucan endotransglucosylase-hydrolases (XTH1 and 
XTH7), three expansins or expansin-precursor genes (EXP5, 
EXP12 and EXPA4), genes related to sucrose metabolism 
(STD1, SPS, SUSY), and the auxin efflux facilitator PIN-
FORMED3 (PIN3) were identified among the cell wall-related 
genes in the exserted genotypes. 

Molecular control of stamen development 

Stamens, consisting of filaments and anthers and collectively 
known as the androecium, produce male gametophytes 
(D’Arcy 1996). The floral homeotic gene AG regulates 
stamen specification in part through JA genes (Bowman et al. 
1991; Sieburth and Meyerowitz 1997). AG directly regulates 
DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1), a JA 
catalytic enzyme, and controls stamen identity and differentia-
tion through transcriptional cascades at different floral stages, 
including the regulation of SPOROCYTLESS/NOZZLE 
(SPL/NZZ) and JA biosynthesis (Ito et al. 2004, 2007). 

For correct stamen development in Arabidopsis (Table 3, 
Fig. 3b), repression of Class I KNOX genes must occur during 
early flower development (Tabata et al. 2010; Rubio-Somoza 
and Weigel 2013). At late pre-anthesis, stamen growth 
typically increases rapidly before decreasing as the stamen 
reach the top of the pistil (Tashiro et al. 2009). In post-
anthesis stages, it has been suggested that KNAT1 works 
redundantly with (SHOOTMERISTEMLESS) STM to limit 
stamen growth (Gastaldi et al. 2023). KNAT1 overexpres-
sion was shown to strongly reduce filament elongation. 
Defective GA synthesis causes reduced filament elongation 
(Rieu et al. 2008b). KNAT1 overexpression decreases 
transcription levels of the GA biosynthesis gene GA20OX1, 
indicating filament elongation may be repressed by KNAT1 
via regulation of GA biosynthesis (Gastaldi et al. 2023). 
Late filament elongation is stimulated by members of the 
TCP transcription factor family and KNAT1 directly targets 
TCP15 to modulate filament elongation (Gastaldi et al. 2020, 
2023). Class I TCPs are needed for the GA induction of 
SMALL AUXIN UP RNA 63 (SAUR63) subfamily genes. 
SAUR proteins promote cell expansion by activating plasma 
membrane H+-ATPases (Spartz et al. 2014) and overex-
pression of SAUR63 subfamily members stimulates 
stamen filament elongation (Chae et al. 2012). SAUR63 
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Table 3. Genes involved in filament length in Arabidopsis thaliana. 

Organism Gene Gene model Gene class Function/Phenotype References 
number 
(Locus tag) 

Arabidopsis BREVIPEDICELLUS/ AT4G08150 Class 1 knotted-like homeobox Represses TCP15 to limit filament growth Gastaldi 
thaliana KNAT1 gene et al. (2020) 

A. thaliana SHOOT MERISTEMLESS AT1G6230 KNOX/ELK homeobox Works redundantly with KNAT1 to restrict Gastaldi 
(STM) transcription factor stamen growth et al. (2023) 

A. thaliana REPRESSOR OF GA/ AT2G01570/ GRAS family TF; DELLA protein Inhibitors of stamen growth Cheng et al. 
RGA-like2 (RGA)/(RGA2) AT3G03450 (2009) 

A. thaliana TCP15 AT1G69690 TCP family TF Activates SAUR63 in filament elongation Gastaldi 
et al. (2020, 
2023) 

A. thaliana DAD1 AT2G44810 alpha/beta-Hydrolases Anther dehiscence; catalyses the initial step of Ishiguro 
superfamily protein jasmonic acid biosynthesis. et al. (2001) 

A. thaliana MYB21/MYB24 AT3G27810/ TF; MYB domain protein 21/24 Differentiation and development of stamen. Mandaokar 
AT5G40350 Induced by jasmonate. et al. (2006) 

A. thaliana MYB57 AT3G01530 TF; R2R3 factor gene family Specifies stamen identity and filament length Cheng et al. 
(2009) 

A. thaliana BZR1/BES1 AT1G75080 Brassinosteroid signalling positive Influence cell elongation and stamen size Chen et al. 
(BRASINOSTEROID- regulator (BZR1) family protein (2019) 
RELATED GENES) 

A. thaliana SMALL AUXIN UP RNA AT1G29440 SAUR-like auxin-responsive Overexpression restores filament growth Gastaldi 
63 subfamily (SAUR63) protein family et al. (2020) 

A. thaliana LIPOXYGENASE (LOX1) AT1G55020 Lipoxygenase 1; protein coding Activates MYB TFs to mediate filament Cheng et al. 
JA-related gene elongation (2009) 

A. thaliana Jasmonate zim domain AT1G19180 Jasmonate signalling nuclear Represses MYB21 and MYB24 to inhibit stamen Huang et al. 
protein 1 (JAZ1) localised protein filament elongation (2020) 

A. thaliana AUXIN RESPONSE AT1G30330 (ARF6) ARF transcription factors Induce expression of JA biosynthesis in stamen Ghelli et al. 
FACTOR6/8 (ARF6/8) AT5G37020 (ARF8) development; ARF8.4 variant needed for (2023) 

filament elongation 

A. thaliana EMS1/EXS (EXCESS AT5G07280 Leucine-rich repeat Regulates somatic and reproductive cell fates Bai et al. 
MICROSPOROCYTES1) transmembrane protein kinase in anther development (2023) 

A. thaliana BRASSINOSTEROID AT4G39400 Leucine-rich receptor-like Regulates filament elongation via the Bai et al. 
INSENSITIVE 1 (BRI1) protein kinase family protein downstream activity of BZR1/BES1 (2023) 

overexpression in plants expressing a fusion of TCP15 
to a repressor domain (pTCP15::TCP15-EAR) rescued  short  
stamens whilst TCP15 overexpression did the same in 
GA-deficient plants (Gastaldi et al. 2020). 

In Arabidopsis, DELLA proteins play a crucial role in 
regulating phytohormones for filament elongation (Huang 
et al. 2020). Cheng et al. (2009) demonstrated that DELLA 
proteins REPRESSOR OF GA (RGA) and RGA-like2 (RGL2) 
were principal players in inhibition of stamen development. 
GAs supress DELLA proteins and upregulate the JA-related 
genes DAD1 and LIPOXYGENASE (LOX1) to activate MYB21, 
MYB24 and MYB57 transcription factors to mediate filament 
elongation (Cheng et al. 2009). Huang et al. (2020) further 
demonstrated that DELLAs directly targeted MYB21 and 
MYB24 that govern GA-JA interaction in filament elongation 
and that co-expression of DELLA (RGL2) and JASMONATE 
ZIM-domain (JAZ1) proteins repressed MYB21 and MYB24 
to inhibit filament elongation. 

Mutations in genes associated with auxin, specifically 
AUXIN RESPONSE FACTOR genes ARF6 and ARF8, lead 
to deficiencies in stamen filament elongation and anther 
maturation (Nagpal et al. 2005; Cecchetti et al. 2008; 
Tashiro et al. 2009; Tabata et al. 2010; Reeves et al. 2012). 
Specifically, a splice variant of ARF8 (ARF8.4) is required 
for stamen filament elongation and correct expression of 
the auxin-inducible gene AUX/IAA19 (Ghelli et al. 2023). 
ARF6 and ARF8 have been reported to induce the expression 
of JA biosynthesis genes during late stages of stamen develop-
ment, suggesting that auxin acts upstream of JA (Nagpal 
et al. 2005; Tabata et al. 2010; Song et al. 2011; Reeves 
et al. 2012). In arf6 arf8 double null mutants, plants produce 
short filaments and un-dehisced anthers whilst delayed 
filament elongation is observed in arf6 and arf8 single 
mutants homozygous for one mutation and heterozygous 
for the other (Nagpal et al. 2005; Wu et al. 2006; Tabata 
et al. 2010; Reeves et al. 2012). However, the fact that 
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stamen filament elongation is not rescued by JA treatment in 
arf6 arf8 mutants (Nagpal et al. 2005) indicates the involve-
ment of additional pathways. Among the genes downregulated 
in arf6 arf8 mutant flowers, several previously mentioned 
SAUR genes from the SAUR63 subfamily were identified 
(Nagpal et al. 2005). Therefore, the induction of SAUR genes 
by ARF6 and ARF8 may be required, in addition to JA 
biosynthesis, to stimulate filament elongation as JA synthesis 
induces expression of MYB21 and MYB24 (Reeves et al. 2012). 

Qi et al. (2015) previously demonstrated that transcription 
factors MYC2–5 were JAZ-targeted proteins that worked 
redundantly to regulate filament elongation and formed a 
complex with MYB21 and MYB24 in filament elongation in 
Arabidopsis. In  myb21 null mutants, filament elongation is 
prevented (Mandaokar et al. 2006) and anther opening 
delayed but pollen remains viable, whilst in myb21 myb24 
double mutants filament elongation, anther dehiscence and 
pollen viability are all affected, suggesting MYB21 is essential 
for filament elongation and works redundantly with MYB24 
for anther dehiscence and pollen viability (Mandaokar et al. 
2006; Reeves et al. 2012; Acosta and Przybyl 2019). 

The brassinosteroid-related gene BZR1 and its close 
homologue BES1 (BZR1/BES1) influence cell elongation to 
affect stamen length (Chen et al. 2019). DELLAs, PIFs, 
ARF6, and PKL directly interact with BZR1/BES1 to form a 
cell elongation regulatory network (Li et al. 2018). BZR1/ 
BES1’s transcriptional activity can be constrained by the 
direct physical interaction of DELLAs leading to restrained 
cell elongation (Li et al. 2012). Also involved in influencing 
stamen development in Arabidopsis are EMS1/EXS. Bai et al. 
(2023) reported the transgenic expression of brassinosteroid 
receptor BRI1 rescued short filaments in ems1 mutants that 
were deficient in stamen elongation whilst co-expression of 
EMS1 and TPD1 rescued short filaments in bri1 mutants 
(Bai et al. 2023). Subsequently, EMS1 and BRI1 regulate fila-
ment elongation via the downstream activity of BZR1/BES1 
(Bai et al. 2023). 

Environmental effects on herkogamy 

Herkogamy is subject to the influence of various environ-
mental factors in different plant species. Environmental 
factors, such as water relations, temperature and light 
quality, have been shown to influence herkogamy by affecting 
floral development. In Arabidopsis, temperature and genotype 
have been suggested as determinants of herkogamy (Luo and 
Widmer 2013). Similarly, in tomato, style elongation has been 
linked to genotype dependence and sensitivity to relatively 
high temperatures (Peralta et al. 2005). Saeed et al. (2007) 
found that the length of the style of different tomato 
genotypes increased by 25–55% under high temperatures, 
whilst Sakata et al. (2010) demonstrated that auxin levels 
in tomato decreased under high temperature conditions 

leading to shorter filaments. The possibility of the opposite 
effect on pistils under high temperatures, resulting in stigma 
exsertion, has been proposed (Riccini 2019; Riccini et al. 
2021). Additionally, it was observed that higher temperatures 
were needed to cause tomato stigma exsertion in the STlst1 
mutation (Cheng et al. 2021). 

In the high-altitude plant Aquilegia coerulea, Van Etten and 
Brunet (2013) observed phenotypic plasticity in herkogamy 
in response to changes in both water availability and 
temperature. Plants subjected to higher water treatments 
exhibited longer styles, while stamen lengths remained 
unchanged. In contrast, higher temperatures decreased the 
length of both styles and stamens, resulting in varying 
effects on herkogamy across different study populations in 
Colorado, Utah and Arizona with no change, a decrease, 
and an increase in herkogamy, respectively. 

In a study on Arabidopsis and Brassica floral organs in 
response to light quality, Weinig (2002) found that wild-
type Arabidopsis exposed to low red:far-red (R:FR) light had 
diminished petal and pistil lengths but longer filaments 
relative to petal size compared to those exposed to high R:FR 
light. Similar results were observed for Brassica. Arabidopsis 
mutants lacking phytochrome A exhibited smaller petals, 
pistils, and filaments, while those deficient in phytochrome 
B had longer filaments (Weinig 2002). 

Concluding remarks 

Herkogamy is an important floral trait that plays a crucial 
role in promoting cross-pollination and maintaining genetic 
diversity in plant populations. The genetic and hormonal 
control of herkogamy is a complex and dynamic process that 
involves multiple genetic pathways and environmental 
factors. Abiotic factors such as water availability, temperature, 
and light quality also play significant roles in modulating floral 
development and affecting herkogamy. 

Recent advances in genomic and molecular techniques 
have greatly expanded our understanding of the genetic and 
hormonal regulation of herkogamy. These advances have 
helped to identify key genes and pathways that control 
herkogamy and have shed light on the molecular mechanisms 
underlying the development and maintenance of the trait. 

However, there is still much to learn about the genetic and 
hormonal control of herkogamy, particularly in non-model 
plant species. Future research should focus on identifying addi-
tional genes and pathways involved in herkogamy regulation, 
as well as exploring the role of environmental factors and 
epigenetic modifications in herkogamy development. 
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