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Abstract. At low temperatures (18�C), seedlings of an indica rice (Oryza sativa L.) cultivar Kasalath showed
symptoms of chlorosis, although the leaves of a japonica cultivar Arroz da Terra remained green. In this study,
transcripts related to the chlorophyll content of rice seedlings grown at 18�C were investigated using RNA-sequencing
(RNA-Seq) data for F2 crosses between cultivars Arroz da Terra and Kasalath, as well as their parental cultivars.
Differential expression analysis revealed that gene ontology terms related to ‘photosynthesis’ were significantly
enriched in lowly expressed genes at 18�C than at 25�C in Kasalath. However, the gene ontology terms related to
‘response to stress’were significantly enriched in highly expressed genes at 18�C than at 25�C in Kasalath. When the F2
plants were grown at 18�C, their chlorophyll contents varied. Transcripts with expression levels related to chlorophyll
content were statistically selected using RNA-Seq data from 21 F2 plants. In regression models, frequently selected
genes included four photosynthetic and two stress-responsive genes. The expression values of four photosynthetic and
two stress-responsive genes in high-frequency selected genes were significantly correlated with chlorophyll content not
only in plants analysed using RNA-Seq but also in 95 F2 plants.
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Introduction

Low temperatures have negative effects on plants including
reduced growth rates and increased leaf chlorosis (Huner et al.
1993; Yoshida et al. 1996; Mackill and Lei 1997; Fukuda and
Terao 2015; Yamori et al. 2011; Bai et al. 2021). During the
direct seeding of rice (Oryza sativa L.), low temperature can
cause serious problems, including increased seedling
mortality. Therefore, elucidation of the genetic factors
affecting low-temperature tolerance is important in rice
breeding to improve direct seeding efficacy. Two major rice
cultivars, indica and japonica, are known to have differences
in their tolerance to low temperatures. The cultivar indica
originated in the tropics and is more sensitive to low-
temperature stress than the cultivar japonica, which is
adapted to temperate conditions (Mackill and Lei 1997;
Ohsumi et al. 2012; Fukuda and Terao 2015). indica
cultivars develop symptoms of chlorosis at low
temperatures (below 18�C). Low chlorophyll contents in
leaves have also been observed, which reduce seedling

growth rates. Generally, indica cultivars have larger heads
and are useful for improving yield capacity (Nagata et al.
2002; Ando et al. 2008; Terao et al. 2010) but their sensitivity
to low temperatures at the seedling stage limits their utilisation
in temperate regions. Thus, improvement of the low-
temperature tolerance of indica-based cultivars is required.
Previous studies have examined the quantitative trait loci
(QTLs) involved in cold-induced leaf chlorosis (Zhang
et al. 2014; Fukuda and Terao 2015) and have found that
multiple genes with weak effects control chlorophyll content
under cold conditions. However, QTL analysis is laborious and
time-consuming, and it is difficult to identify the candidate
genes associated with multiple weak QTLs.

An alternate method for elucidating which physiological
mechanism is involved in low-temperature tolerance is
transcriptome analysis. This measures gene expression levels
in a genome-wide manner and reveals genes related to many
endogenous and environmental factors (Nagano et al. 2012;
Kudapa et al. 2013; Yogendra and Kushalappa 2016; Onaga
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et al. 2017; Li et al. 2019; Han et al. 2020). RNA sequencing
(RNA-Seq) analyses have been performed on cold-tolerant
and cold-sensitive rice seedling varieties following short
periods of severe cold stress (2–13�C) (Shen et al. 2014;
Zhang et al. 2016; da Maia et al. 2017; Buti et al. 2018;
Pradhan et al. 2019), and the results of these analyses have
suggested that there are transcriptional differences among
cultivars under cold stress conditions. However, indica
cultivars display symptoms of chlorosis even at medium-low
temperatures (18�C). Therefore, it is necessary to analyse gene
expression under medium to low temperature stress (hereafter
referred to as ‘low temperature’) at 18�C. This temperature is
commonly experienced during direct seeding.

In this study, we aimed to determine the transcripts related
to the chlorophyll content at low temperatures using a
statistical approach. In general, transcriptome analyses
require the comparison of two opposite groups to detect
transcripts with different expression levels. However, most
naturally derived organism traits are continuous and cannot be
separated into two opposite groups. A statistical approach was
previously used to select transcripts affecting the gradated
traits using RNA-Seq data from rice seedlings. This is
considered a useful tool for identifying transcripts related to
initial seedling growth rates (Fukuda et al. 2018). In this
study, we used this statistical approach to select transcripts
affecting the chlorophyll contents of F2 plants grown under
low-temperature conditions. The results showed that this
statistical method effectively selected the genes related to
chlorophyll content using a relatively small sample size of
21 F2 plants.

Materials and methods
Plant materials, growth conditions and experimental design
For the parental cultivars, five seedlings each of japonica
(Arroz da Terra) and indica (Kasalath) were contained in
each biological replicate. There were four biological
replicates per treatment. Seeds were sterilised in water at
60�C for 10 min and imbibed in water at 25�C or 18�C for
2 days in an incubator. Then, one seed was sown in one
compartment (1.6 cm diameter by 2.5 cm depth, with a
distance of 1.9 cm between compartments) within the
seedling pots filled with commercial nursery soil (‘Honens
nursery soil No.1’, Honen Agri Co. Niigata, Japan) to a depth
of 5 mm. Seedling pots were placed in an LH-240 (Nippon
Medical and Chemical Instruments, Osaka, Japan) chamber
under a 12-h artificial light and 12-h dark cycle. Light was
emitted from a neutral white fluorescent lamp (52–77 mmol
m–2 s–1 of photosynthetically active radiation). After 7 days of
growth at 25�C or 21 days of growth at 18�C, seedlings that
reached the second leaf stages were used to measure
chlorophyll content and for RNA-Seq. Because low
temperatures delayed the seedling growth, it took more time
to reach the same growth stage under 18�C (21 days) than 25�C
(7 days). Furthermore, 95 F2 individuals derived from a cross
between Arroz da Terra and Kasalath were grown at 18�C, as
described above, and used in the experiments. There was one
biological replicate per individual.

Analysis of the chlorophyll contents
Chlorophyll content was determined using a digital
chlorophyll meter (soil and plant analyzer development
meter 502Plus, Konica Minolta Inc. Osaka, Japan), which
provides a non-invasive method for estimating leaf
chlorophyll content by measuring the light absorption of
specific spectral bands in living leaves (Kumagai et al.
2009; Takai et al. 2010). Soil plant analysis development
(SPAD) values were measured in the upper, middle and
base sections of the second leaves of each seedling, and the
mean value of the three leaf sections was considered the
phenotypical value of SPAD.

RNA isolation
Second-leaf stage seedlings from the parental cultivars, Arroz
da Terra and Kasalath, and the F2 plants were used for RNA-
Seq analysis. After the seeds and roots of the seedlings were
removed, fresh seedlings were frozen in liquid nitrogen and
stored at –80�C until analysis. Total RNA was extracted using
an RNeasy Mini Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. For the parental cultivars,
Arroz da Terra and Kasalath, total RNA was extracted from
five seedlings per biological replicate. For the F2 individuals,
total RNA was extracted from one individual seedling.

RNA-Seq analysis
RNA samples were used to produce sequencing libraries
according to the Lasy-Seq method (ver. 1.1) (Kamitani
et al. 2019). These were sequenced as 150-bp paired-end
reads using an Illumina Hiseq � platform (Illumina Inc.,
San Diego, CA, USA). Forward-read files of the resulting
Fastq files were deposited into the DNA Data Bank of Japan
Sequence Read Archive (DRA; accession number
DRA011043) (Kodama et al. 2012). RNA-Seq analysis was
performed using the CLC Genomics Workbench ver. 11
(Qiagen, Hilden, Germany). After quality trimming, the raw
reads were mapped to the Oryza sativa-Nipponbare-
Reference-IRGSP-1.0 genome assembly and gene set
(Ensemble plants release 25) (Kersey et al. 2016) using the
following parameters: a mismatch cost of two, an insertion/
deletion cost of three, a length fraction of 0.5, a similarity
fraction of 0.8, and a maximum number of hits for a read of
10. Read numbers that were successfully mapped to the
Os-Nipponbare-Reference-IRGSP-1.0 genome are listed (see
Table S1, available as Supplementary Material to this paper).
Transcript expression was calculated as reads per kilobase
per million (RPKM) based on the number of uniquely mapped
reads that overlapped exon regions.

Differential expression analysis
Differential expression analysis was performed using the
RNA-Seq analysis module in CLC Genomics Workbench
ver. 11 (Qiagen). Genes with a false discovery rate (FDR)
< 0.05 and an absolute log2 fold change (FC) of at least one
were considered differentially expressed. Gene ontology (GO)
analysis was conducted on the agriGO database (Du et al.
2010) using singular enrichment analysis with an FDR < 0.05
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and the National Center for Biotechnology Information
(NCBI) ID.

Gene selection frequency
To determine which transcripts were correlated with
chlorophyll content and the selection frequencies for the
explanatory variables, we performed a statistical analysis
method described by Fukuda et al. (2018). Previously, the
transcripts related to initial growth rates of rice seedlings were
statistically selected using 22 RNA-Seq samples (Fukuda et al.
2018). In this study, 21 F2 RNA-Seq samples were used for the
statistical analysis, which was a similar sample size to the
previous study. We used 30 614 genes whose average RPKM
value was above 0.01 in the RNA-Seq analysis data obtained
from the 21 F2 individuals. Gene expression values were log2
transformed after adding 0.01 to each RPKM value.
Explanatory variables were determined using an L1-
regularised linear regression model constructed using
LASSO (Tibshirani 1996). To assess gene selection
frequencies, we repeatedly evaluated explanatory variables
using subsets of the transcriptome. Among the randomly
selected 3061 genes (10% of the transcriptome) used as
input variables for LASSO, eight presented non-zero
coefficients in LASSO, and therefore, these were designated
as explanatory variables. Subset selection and explanatory
variable determination steps were repeated 10 000 times.
Gene selection frequency was defined as the ratio of trials
where the gene was eligible for use as an explanatory variable
to the number of subsets that included that gene. The analysis
was conducted using R version 3.33 software (R Core Team
2015) and glmnet package version 3.0–1 (Friedman et al.
2010).

Quantitative real-time PCR
Total RNA was extracted from seedling samples from the
95 F2 individuals, as described above. One microgram of each
RNA sample was used to synthesise cDNA using the
PrimeScript RT reagent Kit with a gDNA Eraser (Takara
Bio Inc., Shiga, Japan) according to the manufacturer’s
instructions. The resulting cDNA was used for PCR
amplification in a Thermal Cycler Dice Real Time System
III with a TB Green Premix Ex TaqII (Takara Bio Inc.). One
biological replicate and three technical replicates were
conducted in relation to each F2 RNA sample. The primers
used for quantitative real-time PCR are listed (see Table S2).
The relative gene expression values for each target gene were
calculated using the rice polyubiquitin gene (UBI1, The Rice
Annotation Project Database (RAP-DB) (Ohyanagi et al.
2006) ID: Os06 g0681400) as a reference (Wang et al. 2000).

Statistical analyses
Significant differences in SPAD values were evaluated by
analysis of variance (ANOVA) using R ver. 3.33 software
(R Core Team 2015), with a significance level of P < 0.05.
Pearson’s product-moment correlations between expression
values and SPAD were also calculated using R software
(R Core Team 2015), with a significance level of P < 0.05.

Results

Chlorophyll content of second leaves grown at 25�C or 18�C

To investigate differences in low-temperature tolerance among
cultivars, the seedlings of a japonica (cv. Arroz da Terra) and
indica (cv. Kasalath) were grown at 25�C or 18�C. When
grown at 18�C, leaves from Kasalath showed symptoms of
chlorosis, although the leaves of Arroz da Terra remained
green (Fig. 1). The mean SPAD value of second leaves from
Arroz da Terra was 26.7 in the low-temperature treatment
(18�C), which was 76% of the value (35.0) calculated for the
same cultivar grown in the high-temperature treatment (25�C)
(P < 0.001). However, the SPAD value of Kasalath leaves
grown at 18�C was 5.8, which was 21% of the value (27.5)
calculated for the same cultivar grown at 25�C (P < 0.001).
Comparing the cultivars, the SPAD value calculated for
Kasalath was 22% of the SPAD value for Arroz da Terra
grown at 18�C (P < 0.001). SPAD values for Kasalath were
lower than those for Arroz da Terra even at 25�C (P < 0.001),
although this difference was small (79%).

Differentially expressed genes depending on temperature

RNA-Seq analysis was performed on seedling tissues from
Arroz da Terra and Kasalath grown at 25�C or
18�C. Approximately 1.9–14.8 million reads per sample
were obtained, and 83.7–87.6% of the clean reads were
successfully mapped to the Oryza sativa-Nipponbare-
Reference-IRGSP-1.0 genome (see Table S1).

Differential expression analysis was performed on samples
taken from both temperature treatments (Table 1). The total
number of differentially expressed genes (DEGs) between the
25�C and 18�C treatments was 468 for Arroz da Terra, which
was lower than the total number found for Kasalath (1348).
Gene ontology (GO) enrichment analysis was conducted on
genes with high or low expression in samples from the 18�C
treatment. Significantly enriched GO categories for Arroz da
Terra and Kasalath samples are listed (see Tables S3 and S4).
In the analysis of genes with higher expressions in samples
from the 18�C treatment than the 25�C treatment, it was found
that 17 GO terms in Arroz da Terra and 40 GO terms in
Kasalath were significantly enriched. In Arroz da Terra, the
most significant GO terms for the higher expressed genes from
the 18�C treatment for biological processes were ‘chitin
metabolic process,’ ‘chitin catabolic process,’ ‘amyloglycan
metabolic process’ and ‘amyloglycan catabolic process.’
Additionally, the most significant GO term for molecular
function was ‘chitinase activity’ in Arroz da Terra. These
GO terms related to chitin metabolism were also significantly
enriched in genes with a higher expression in Kasalath samples
from the 18�C treatment (see Table S4). Three chitinase genes
(RAP-DB ID: Os04 g0493400, Os04 g0494100 and Os10
g0542900) belonging to these chitin metabolism-related GO
terms were significantly higher in samples from the 18�C
treatment than the 25�C treatment, in both Arroz da Terra
and Kasalath (see Fig. S1).

However, the most significant GO terms representing
biological processes were ‘response to stress’ and ‘response
to stimulus’ in the highly expressed genes from Kasalath
samples grown at 18�C compared with those grown at
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25�C. These stress response-related GO terms were not
significantly enriched in Arroz da Terra.

No GO terms were significantly enriched for genes with
lower expressions at 18�C compared with 25�C in Arroz da
Terra samples. However, in Kasalath samples, 43 GO terms
were significantly enriched for the lower expressed genes at
18�C. The most significantly enriched GO term related to
biological processes was ‘photosynthesis’ for the lower
expressed genes in Kasalath samples grown at 18�C.

Differentially expressed genes between low temperature
tolerant or sensitive cultivars

By comparing Arroz da Terra and Kasalath (Table 2), we
found that the total number of DEGs was 2976 in the 18�C
treatment samples, whereas it was 2104 in the 25�C treatment
samples. Significantly enriched GO categories for DEGs
between Arroz da Terra and Kasalath are listed in (see
Table S5). At 25�C, two GO terms related to cellular
components, ‘cytoplasmic part’ and ‘cytoplasm’ were

Table 1. Number of differentially expressed genes between the seedlings grown under 188C and
258C treatments

Differentially expressed genes were selected based on an FDR < 0.05 and |log2 FC| > 1. Common
genes indicate the number of differentially expressed genes in both Arroz da Terra and Kasalath

Comparison Number of
genes with higher
expression at 18�C

(log2FC > 1)

Number of
genes with lower
expression at 18�C
(log2FC < –1)

Total

Arroz da Terra 18�C vs 25�C 264 204 468
Kasalath 18�C vs 25�C 729 619 1348
Common genes 74 57 131
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Fig. 1. Effects of the growth temperatures on the leaf chlorophyll contents of Arroz da Terra and
Kasalath. (a) Seedlings grown under 25�C or 18�C conditions. (b) Chlorophyll content of the second
leaves. Columns indicate averages � s.d. for 20 seedlings. **, P < 0.01.
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significantly enriched in higher expressed genes found in
Arroz da Terra. No significantly enriched GO terms were
detected in the lower expressed genes found in Arroz da
Terra samples from the 25�C treatment.

When grown at 18�C, no GO term was significantly
enriched in genes that were more highly expressed in Arroz
da Terra than Kasalath. However, 22 GO terms were
significantly enriched in downregulated genes in Arroz da
Terra. The most significantly enriched GO term related to
biological processes was ‘response to stress’ for genes that
were lowly expressed in Arroz da Terra compared with
Kasalath.

Selection of transcripts related to chlorophyll content using
F2 individuals grown at 18�C

The chlorophyll content of 95 F2 individuals was measured
after 21 days of growth at 18�C. The SPAD values of the
second leaves of F2 plants ranged from 10.9 to 31.8 (Fig. 2a).
To identify transcripts associated with chlorophyll content in
plants grown at 18�C, 21 F2 individuals with varying SPAD
values were analysed using RNA-Seq (Fig. 2b). As a result,
2.2–8.9 million reads per sample were obtained, and
84.8–87.3% of the clean reads were successfully mapped to
the reference genome (see Table S1).

Transcripts whose expression levels were related to
chlorophyll content were statistically selected using

repeated regression analysis of random subsets of the
transcriptome (Fukuda et al. 2018). The selection
frequencies of genes for the regression model were
determined, and 154 high frequency selected genes for each
explanatory variable (frequencies >0.1) are listed (see
Table S6). The expression levels of these 154 genes were
significantly correlated with chlorophyll content in the 21 F2
plants (P < 0.05). Among them, the expression levels of 67
genes were significantly positively correlated with chlorophyll
content. The expression levels of the other 87 genes were
significantly negatively correlated with chlorophyll content.
Among the 67 high frequency selected genes where expression
levels were positively correlated with chlorophyll content,
seven of these genes were classed as being more highly
expressed in Arroz da Terra than in Kasalath under 18�C
conditions. Of the 87 high frequency selected genes where
expression levels negatively correlated with chlorophyll
content, six were found to have lower expression levels in
Arroz da Terra than in Kasalath under 18�C conditions.

Photosynthesis genes included in high frequency
selected genes

Among the 154 high frequency selected genes (see Table S6),
four genes, CAB2R (RAP-DB ID: Os01 g0600900),
PSBW (RAP-DB ID: Os01 g0773700), LHCB (RAP-DB ID:
Os03 g0592500), and Os07 g0562700 were related to

Table 2. Number of differentially expressed genes among cultivars
Differentially expressed genes were selected based on an FDR < 0.05 and |log2 FC| > 1. Common

genes indicate the number of differentially expressed genes at both 258C and 188C

Comparison Number of
genes with higher
expression in
Arroz da Terra
(log2FC > 1)

Number of genes
with lower

expression in
Arroz da Terra
(log2FC < –1)

Total

Arroz da Terra vs Kasalath at 25�C 1113 991 2104
Arroz da Terra vs Kasalath at 18�C 1569 1407 2976
Common genes 768 571 1339
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Fig. 2. Variation of chlorophyll contents in leaves of F2 plants grown at 18�C. (a) Frequency distribution of the
chlorophyll contents of leaves from 95 F2 plants grown at 18�C. Arrowheads indicate the mean values of Arroz da
Terra and Kasalath cultivars. (b) Chlorophyll content of leaves from 21 F2 plants grown at 18�C and used for RNA
sequencing analysis.
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photosynthesis. These genes encoded chlorophyll a/b binding
protein 2R, photosystem II reaction centre W protein, light-
harvesting chlorophyll a/b-binding protein b2.1, and type III
chlorophyll a/b-binding protein, respectively. The expression
levels of four photosynthetic genes, CAB2R, PSBW, LHCB and
Os07 g0562700 in the parental cultivars and the F2 plants are
in Fig. 3. The expression levels of the above-listed
photosynthetic genes were significantly positively correlated
with the chlorophyll contents of leaves from the 21 F2 plants
(Fig. 3b). Additionally, three genes, CAB2R, LHCB and Os07
g0562700 were more highly expressed in Arroz da Terra than
in Kasalath under 18�C conditions (log2FC = 1.40 and FDR <
0.001, log2FC = 1.18 and FDR < 0.001, and log2FC = 1.35 and
FDR < 0.001, respectively). PSBW was also expressed slightly
higher in Arroz da Terra than in Kasalath at 18�C, although the
log2 FC of expression values were lower than 1 (log2 FC = 0.97
and FDR < 0.001). CAB2R, PSBW, LHCB and Os07 g0562700
photosynthetic genes were not differentially expressed

between Arroz da Terra and Kasalath at 25�C (log2FC =
0.03 and FDR = 1.00, log2FC = 0.18 and FDR = 0.24,
log2FC = 0.07 and FDR = 0.88, and log2FC = 0.58 and
FDR < 0.001, respectively). In Kasalath, these four genes
showed significantly lower expression levels at 18�C than at
25�C (log2 FC = –2.10 and FDR < 0.001, log2 FC = –1.27 and
FDR < 0.001, log2 FC = –1.72 and FDR < 0.001, and log2
FC = –1.37 and FDR < 0.001, respectively). These four
photosynthetic genes were slightly lowly expressed at 18�C
than at 25�C in Arroz da Terra, although the differences in
expression levels were small (log2FC = –0.74 and FDR
< 0.001, log2FC = –0.48 and FDR < 0.001, log2FC = –0.61
and FDR < 0.001, and log2FC = –0.61 and FDR < 0.001,
respectively). To further evaluate the correlation between
photosynthetic gene expression levels and chlorophyll
content, all 95 F2 plants, including those that were not used
for RNA-Seq, were analysed using quantitative real-time
PCR. Results showed that the expression levels of the four
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Fig. 3. Expression levels of the photosynthetic genes. (a) Expression levels of the photosynthetic genes in Arroz da Terra and
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Relationships between the expression levels of photosynthetic genes and chlorophyll contents in leaves from 21 (used for RNA-
Seq) (b) or all 95 (c) F2 plants grown at 18�C. Each symbol represents an individual F2 plant. The r-value indicates the Pearson
correlation coefficient. **, P < 0.01.
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above-listed photosynthetic genes were significantly positively
correlated with chlorophyll content, even in the 95 F2 plants
(Fig. 3c).

Stress response-related genes included in high frequency
selected genes

Two genes related to the stress response, TIFY11C (RAP-DB
ID: Os03g0180900) (Ye et al. 2009; Hakata et al. 2017) and
POX22.3 (RAP-DB ID: Os07g0677200) (Chittoor et al. 1997;
Ning et al. 2010), were included in the 154 high frequency
selected genes. The expression levels of TIFY11C and
POX22.3 in the parental cultivars and the F2 plants are in
Fig. 4. The expression levels of TIFY11 and POX22.3 were
significantly negatively correlated with chlorophyll content in
the 21 F2 plants (Fig. 4b). TIFY11C was one of the genes found
to have lower expression levels in Arroz da Terra compared
with Kasalath at 18�C (log2FC = –2.2 and FDR < 0.001).
Expression levels of POX22.3 were not significantly different
between Arroz da Terra and Kasalath at 18�C (log2FC = –0.39
and FDR = 0.059). TIFY11C and POX22.3 were not
differentially expressed between the Arroz da Terra and
Kasalath cultivars at 25�C (log2FC = 0.24 and FDR = 1.0
and log2FC = 0.66 and FDR = 0.097, respectively). The
expression levels of TIFY11C in Arroz da Terra did not
differ between the 18�C and 25�C treatments (log2FC =
–0.22 and FDR = 1.0). The expression of POX22.3 was
slightly higher at 18�C than at 25�C in Arroz da Terra
(log2FC = 0.79 and FDR < 0.001). However, the expression
levels of TIFY11C and POX22.3 were significantly higher in
Kasalath plants at 18�C than at 25�C (log2FC = 2.3 and FDR
< 0.001 and log2FC = 1.9 and FDR < 0.001, respectively).
Furthermore, a correlation between the expression levels of
stress response-related genes and chlorophyll content in 95 F2
plants was analysed using quantitative real-time PCR. The
expression levels of TIFY11C and POX22.3 were significantly
negatively correlated with chlorophyll content in these 95 F2
plants (this number includes plants that were not used for
RNA-Seq) (Fig. 4c).

Discussion

The present study has clarified which transcripts are expressed
in rice seedlings undergoing low-temperature stress (at 18�C).
Our statistical approach, which used RNA-Seq data from 21 F2
plants indicated that four photosynthetic genes and two stress
response genes were present in the high frequency selected
genes related to chlorophyll content found in plants grown in
18�C conditions. Furthermore, the expression values of these
six genes were significantly correlated with chlorophyll
content, not only in plants used for RNA-Seq but in all
95 F2 plants. These results indicate that the statistical
selection using 21 RNA-Seq samples was useful for
predicting the effective genes related to chlorophyll
contents within larger groups. The statistical approaches to
select the expression biomarkers commonly require a large
sample size, comprising more than hundreds of samples, to
decrease ineffectiveness. In this study, we suggested that a
small sample size, consisting of 21 F2 individuals, might be
useful to select transcripts related to rice phenotypes.

Common genes enriched at 18�C in both Arroz da Terra
and Kasalath

The GO term for genes that were more highly expressed at
18�C than at 25�C was related to chitinase activity, and it was
significantly enriched in both Arroz da Terra and Kasalath.
Several chitinase genes have been reported to be induced by
infection with fungal pathogens or various abiotic stresses,
suggesting that they are involved in the stress response
(Takenaka et al. 2009). Additionally, several chitinases
have been reported to display antifreeze activity in
overwintering plants (Yeh et al. 2000). Chitinase may play
a role in rice metabolism under low-temperature conditions in
both tolerant and sensitive cultivars. However, even though
three chitinase genes had significantly higher expressions in
samples from the 18�C treatment than the 25�C treatment in
both Arroz da Terra and Kasalath, their expression levels were
not significantly correlated with chlorophyll content in 21 F2
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plants at 18�C (see Fig. S1). Though chitinase might contribute
to the metabolism at 18�C, it is considered that the expression
levels of chitinase genes have small effect on the chlorophyll
content at 18�C.

Photosynthetic genes related to chlorophyll content

Four photosynthetic genes, included in the high frequency
selected genes, were significantly positively correlated
with the chlorophyll contents of F2 plants grown at
18�C. Additionally, three out of the four photosynthetic
genes were more highly expressed in the tolerant cultivar,
Arroz da Terra, than in the sensitive cultivar, Kasalath, at
18�C. Furthermore, GO terms related to photosynthesis were
significantly enriched for the lower expressed genes in
Kasalath at 18�C than at 25�C. These results are consistent
with previous studies that reported close correlations between
SPAD and photosynthesis values in rice (Kumagai et al. 2009;
Takai et al. 2010). This study also revealed that the genes
related to photosynthesis are suppressed at the transcriptional
level in plants that develop symptoms of chlorosis in low
temperatures.

Stress response genes and chlorophyll content

Differential expression analysis between growth temperatures
showed that GO terms related to the stress response were
significantly enriched in genes with higher expression levels at
18�C than at 25�C, but this was only evident in Kasalath. The
comparison between Arroz da Terra and Kasalath also
revealed that GO terms related to the stress response were
significantly enriched in genes with higher expression levels in
Kasalath than in Arroz da Terra at 18�C. Statistical selection
using F2 plants also revealed that the expression levels of
the stress response genes, TIFY11C and POX22.3, were
significantly negatively correlated with chlorophyll content
at 18�C. TIFY11C proteins, as transcriptional regulators, are
induced by jasmonic acid, which is related to the abiotic stress
response (Ye et al. 2009; Hakata et al. 2017), while POX22.3
encodes peroxidase (Chittoor et al. 1997; Ning et al. 2010).
These results suggest that low-temperature sensitive plants
have higher expression levels of stress response genes than
tolerant plants under long-term low temperature (18�C) stress.
During a short-term (33–57 h) response to severe cold stress at
2�C, the opposite has been reported where more stress
response pathways were enriched in a low-temperature
tolerant rice cultivar than in a sensitive cultivar (Zhang
et al. 2016). These studies indicate that the short-term
response to severe cold stress and the long-term response to
mild temperature stress are metabolically quite different.

During stress conditions, cellular homeostasis is disrupted
and reactive oxygen species production is enhanced (Suzuki
and Mittler 2006; Huang et al. 2012; You and Chan 2015).
Several stress response genes are thought to scavenge reactive
oxygen species, protecting cells from oxidative damage. It
was reported that the expression levels of POX22.3 are
downregulated in drought-sensitive mutant lines, suggesting
that the regulation of reactive oxygen species is important for
stress tolerance (Ning et al. 2010). However, reactive oxygen
species are known to play a role in signal transduction in a

plant’s stress response. During a short-term response to severe
cold stress, accumulation of reactive oxygen species and
upregulation of transcriptional factors mediating oxidative
signals were observed in cold-tolerant rice cultivars (Zhang
et al. 2016). During short-term responses to stress, a rapid
increase in reactive oxygen species and transcription factors
are important for controlling cell homeostasis (Suzuki and
Mittler 2006; Huang et al. 2012; You and Chan 2015). In this
study, a metabolic imbalance may have occurred in the cold-
sensitive plants following long-term (mild) low-temperature
stress, causing the accumulation of reactive oxygen species
and induction of stress response genes. However, cold-tolerant
plants are thought to maintain normal cell conditions following
long-term (mild) low-temperature stress.

Furthermore, cold response transcription factors also
function, in part, in the suppression of cold tolerance. One
MYB transcriptional factor, OsMYB30, and a member of the
TIFY family, OsJAZ9 (OsTIFY11A), can be induced by cold
stress and enhance cold sensitivity (Lv et al. 2017). In our
study, for the first time, the expression levels of TIFY11C
were found to be negatively correlated with stress tolerance
levels at 18�C. If TIFY11C has the effect of weakening
the low-temperature tolerance of rice, it might be possible
to increase the low-temperature tolerance of rice by
suppressing its expression. Elucidating transcripts related to
cold tolerance might lead to the development of strategies
for enhancing cold tolerance. Further analysis of the functions
of genes whose expression levels are related to tolerance is
necessary to elucidate the mechanisms underlying the complex
networks involved in the stress response.

Conclusions

We utilised differential expression analyses between the
parental cultivars Arroz da Terra and Kasalath, and growth
temperatures and incorporated these into a statistical approach
using the RNA-Seq data of 21 F2 plants to select transcripts
related to chlorophyll content under low-temperature
conditions. Our analysis revealed that several photosynthetic
genes were repressed at the transcriptional level in low-
temperature sensitive plants at 18�C. Furthermore, low-
temperature sensitive plants had higher expression levels of
stress response genes, suggesting the presence of a metabolic
imbalance at 18�C. Our findings also suggest that our statistical
approach, which utilised small groups of F2 plants, was
effective in isolating genes related to chlorophyll content at
18�C in larger groups. It suggested that the relatively small
number of RNA-Seq samples might help select the transcripts
related to rice phenotypes. These results indicate that RNA-
Seq is a useful tool for clarifying metabolic mechanisms at low
temperatures. In this study, the expression levels of two stress-
responsive genes, TIFY11C and POX22.3, were found to be
negatively correlated with stress-tolerance levels at 18�C for
the first time. It indicates that plants with high expression
levels of stress-responsive genes are not necessarily stress-
tolerant. Due to low-temperature tolerance being an important
trait for rice breeding, this study provides important
information for strategies to improve stress tolerance.
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