Supplementary Material

Different water relations between flower and leaf periods: a case study in flower-before-leaf-emergence Magnolia species

Hui Liu ${ }^{\mathrm{A}, \mathrm{B}}$, Qiu-Yuan Xu ${ }^{\mathrm{A}, \mathrm{C}}$, Marjorie R. Lundgren ${ }^{\mathrm{D}}$ and Qing Ye ${ }^{\mathrm{A}, \mathrm{B}, \mathrm{E}}$
${ }^{\text {A }}$ Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
${ }^{\mathrm{B}}$ Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
${ }^{\text {C}}$ University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
${ }^{\text {D }}$ Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
${ }^{\text {E }}$ Corresponding author. Email: qye@scbg.ac.cn

Table S1. Morphological and ecophysiological traits with significant differences among three tepal whorls or four leaf growth stages of M. denudata and M. soulangeana
Data are mean \pm s.e.m. Sample sizes (n) are given in brackets after each value; results of multiple comparisons are reported.
Abbreviations are the same as in Table 1

	Flower whorl	Leaf stage	Magnolia denudata		Magnolia soulangeana	
			Flower (n)	Leaf (n)	Flower (n)	Leaf (n)
Single tepal or leaf area (cm^{2})	$1{ }^{\text {st }}$	$1{ }^{\text {st }}$		44.69 ± 5.01 (6) a	34.55 ± 5.34 (6) a	51.29 ± 6.89 (6) a
	$2^{\text {nd }}$	$2^{\text {nd }}$		72.07 ± 2.26 (6) b	49.13 ± 4.93 (6) b	70.92 ± 2.72 (6) b
	$3^{\text {rd }}$	$3^{\text {rd }}$		65.39 ± 3.26 (6) b	43.94 ± 4.71 (6) b	70.79 ± 3.82 (6) b
		$4^{\text {th }}$		50.85 ± 1.17 (6) a		42.87 ± 1.35 (6) a
Tepal or leaf thickness (mm)	$1{ }^{\text {st }}$	$1^{\text {st }}$	1.56 ± 0.17 (6) a	0.14 ± 0.01 (6) a	1.35 ± 0.02 (6) a	0.12 ± 0.01 (6) a
	$2^{\text {nd }}$	$2^{\text {nd }}$	2.18 ± 0.11 (6) b	0.15 ± 0.01 (6) b	2.12 ± 0.19 (6) b	$0.15 \pm 0.01 \text { (6) b }$
	$3^{\text {rd }}$	$3{ }^{\text {rd }}$	2.63 ± 0.15 (6) c	0.15 ± 0.01 (6) b	3.04 ± 0.23 (6) c	0.15 ± 0.00 (6) b
		$4^{\text {th }}$		0.16 ± 0.01 (6) b		0.15 ± 0.01 (6) b
Tepal thinnest thickness(mm)	$1^{\text {st }}$				0.17 ± 0.00 (6) a	
	$2^{\text {nd }}$				0.18 ± 0.00 (6) a	
	$3^{\text {rd }}$				0.28 ± 0.00 (6) b	
LDMC (\%)	$1^{\text {st }}$		6.29 ± 0.05 (6) b		6.61 ± 0.15 (6) b	
	$2^{\text {nd }}$		6.01 ± 0.08 (6) a		6.13 ± 0.10 (6) a	
	$3^{\text {rd }}$		5.98 ± 0.15 (6) a		5.99 ± 0.08 (6) a	
$g_{\mathrm{s}}\left(\mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}\right)$	$1^{\text {st }}$	$1^{\text {st }}$	0.018 ± 0.001 (40) a	0.121 ± 0.009 (30) c	0.038 ± 0.006 (40) a	0.108 ± 0.008 (30) c
	$2^{\text {nd }}$	$2^{\text {nd }}$	0.019 ± 0.004 (40) a	0.096 ± 0.008 (30) b	0.028 ± 0.007 (40) a	0.055 ± 0.006 (30) b
	$3^{\text {rd }}$	$3^{\text {rd }}$	0.025 ± 0.005 (40) b	0.052 ± 0.005 (30) a	0.058 ± 0.015 (40) b	$0.044 \pm 0.002(30) \mathrm{a}$
		$4^{\text {th }}$		0.043 ± 0.004 (30) a		0.045 ± 0.002 (30) a
$E\left(\mathrm{mmol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}\right)$	$1^{\text {st }}$	$1^{\text {st }}$	0.25 ± 0.02 (40) a	1.89 ± 0.12 (30) d	0.49 ± 0.05 (40) a	1.41 ± 0.11 (30) c
	$2^{\text {nd }}$	$2^{\text {nd }}$	0.26 ± 0.04 (40) a	1.56 ± 0.08 (30) c	0.39 ± 0.07 (40) a	0.87 ± 0.06 (30) b
	$3^{\text {rd }}$	$3^{\text {rd }}$	0.34 ± 0.04 (40) b	0.94 ± 0.04 (30) b	0.69 ± 0.09 (40) b	0.73 ± 0.04 (30) a
		$4^{\text {th }}$		0.82 ± 0.06 (30) a		0.73 ± 0.04 (30) a

$\Psi_{\text {am }}(\mathrm{MPa})$	$1^{\text {st }}$		-0.22 ± 0.02 (6) a		-0.19 ± 0.04 (6) a	
	$2^{\text {nd }}$		-0.10 ± 0.03 (6) b		-0.11 ± 0.02 (6) b	
	$3^{\text {rd }}$		-0.10 ± 0.03 (6) b		-0.08 ± 0.03 (6) b	
$\Psi_{\text {pm }}(\mathrm{MPa})$	$1^{\text {st }}$		-0.20 ± 0.04 (6) a		-0.16 ± 0.04 (6) a	
	$2^{\text {nd }}$		-0.08 ± 0.02 (6) b		-0.05 ± 0.00 (6) b	
	$3^{\text {rd }}$		-0.05 ± 0.01 (6) b		-0.05 ± 0.00 (6) b	
$\Psi_{\text {tip }}(\mathrm{MPa})$	$1^{\text {st }}$				-0.30 ± 0.03 (6) a	
	$2^{\text {nd }}$				-0.23 ± 0.04 (6) a	
	$3^{\text {rd }}$				-0.15 ± 0.02 (6) b	
HSM (MPa)	$1^{\text {st }}$		0.04 ± 0.01 (6) a		0.07 ± 0.02 (6) a	
	$2^{\text {nd }}$		0.14 ± 0.02 (6) b		0.14 ± 0.01 (6) b	
	$3^{\text {rd }}$		0.18 ± 0.02 (6) b		0.10 ± 0.01 (6) a	
$\mathrm{Cft} \mathrm{(mol} \mathrm{~m}{ }^{-2} \mathrm{MPa}^{-1}$)	$1^{\text {st }}$				3.58 ± 0.74 (6) a	
	$2^{\text {nd }}$				4.98 ± 0.96 (6) a	
	$3^{\text {rd }}$				12.83 ± 1.27 (6) b	
$\left.\begin{array}{l} K_{\text {leaf }} \text { or } K_{\text {tepal }} \\ (\mathrm{mmol} \mathrm{~m} \end{array} \mathrm{s}^{-1} \mathrm{MPa}^{-1}\right), ~ l$	$1{ }^{\text {st }}$	$1^{\text {st }}$	4.26 ± 0.65 (6) a	8.57 ± 1.09 (3) a	3.96 ± 0.76 (6) a	6.79 ± 0.88 (3) a
	$2^{\text {nd }}$	$2^{\text {nd }}$	3.29 ± 0.71 (6) a	19.85 ± 3.79 (3) c	4.54 ± 1.01 (6) ab	15.80 ± 2.87 (3) c
	$3^{\text {rd }}$	$3^{\text {rd }}$	4.84 ± 0.43 (6) b	14.95 ± 2.63 (3) bc	5.91 ± 0.84 (6) b	13.79 ± 2.76 (3) bc
		$4^{\text {th }}$		12.99 ± 1.96 (3) b		11.45 ± 1.64 (3) b

Fig. S1. J_{S} of (a) flowers and (b) leaves measured during two sunny days during flowering and vegetative periods for M. denudata and M. soulangeana. Since D in leaf period overlapped with the whole range of D during the flowering period (Fig. 2a), (c) predicted $J_{\text {s }}$ of leaves during flowering period were calculated based on the relationships between J_{S} and D in two light levels (Fig. 4c d) and the D values on Feb-24.

Fig. S2. Flower and leaf areas (S) versus stem diameters (d) for M. denudata (close symbols) and M. soulangeana (open symbols). (a) Total flower (triangles) or leaf (circles) areas for each of the 16 branches with sap flow monitoring ($n=6$ for M. denudata and 10 for M. soulangeana). Flower areas on each branch are calculated as mean single flower area \times total flower numbers, while leaf areas on each branch are predicted by models in (b) and (c). (b) Leaf area for larger branches ($d=2 \sim 40 \mathrm{~mm}, n=35$ for M. denudata and 44
for M. soulangeana) based on diameters of all the smaller branches ($d<10 \mathrm{~mm}$) on each branch, and (c) carefully measured leaf areas on small branches ($d<10 \mathrm{~mm}$). Relationships are: (a) M. soulangeana leaf, $S=0.0016 \times d^{2.3085}\left(\mathrm{R}^{2}=0.99^{* * *}\right)$; M. denudata leaf, $S=0.0021 \times d^{2.0818}\left(\mathrm{R}^{2}=0.99^{* * *}\right) ; \quad$. soulangeana flower, $S=0.0001 \times d^{2.5765}$ $\left(\mathrm{R}^{2}=0.96^{* * *}\right)$; M. denudata flower, $S=0.0061 \times d^{1.386}\left(\mathrm{R}^{2}=0.98^{* * *}\right)$; (b) M. soulangeana leaf, $S=0.0014 \times d^{2.3563}\left(\mathrm{R}^{2}=0.97^{* * *}\right) ;$. denudata leaf, $S=0.0028 \times d^{1.9781}\left(\mathrm{R}^{2}=0.96^{* * *}\right)$; and (c) M. soulangeana leaf, $S=0.0376 \times d-0.923\left(\mathrm{R}^{2}=0.89^{* * *}\right) ;$. denudata leaf, $S=0.0417 \times d-$ $0.1151\left(\mathrm{R}^{2}=0.96^{* * *}\right)$.

Fig. S3. Daily changes in flower and leaf stomatal conductance (g_{s}) of M. denudata and M. soulangeana during two sunny days. Flowers of (a) M. denudata and (b) M. soulangeana have tepals in three whorls ($1^{\text {st }}$ outer whorl, black; $2^{\text {nd }}$ middle whorl, grey; $3^{\text {rd }}$ inner whorl, white), and are divided into fully-open (bars without dashes) and halfopen (bars with dashes, bars with higher values are put as the background) groups. Leaves of (c) M. denudata and (d) M. soulangeana are divided into four growth stages in each cluster ($1^{\text {st }}$ half-expanded leaves: closed circles; $2^{\text {nd }}$ fully-expanded leaves: closed triangles; $3^{\text {rd }}$ mature leaves: closed square; $4^{\text {th }}$ small basal leaves: open circles). In (a) and (b), italic letters on the top of each bar indicate the multiple comparison results among three whorls in half-open flowers, while regular letters at the bottom of each bar indicate comparisons in fully-open flowers; in (c) and (d), results of statistical analysis using ANOVA on leaf growth stages are labelled ($* * *, P<0.001$).

Fig. S4. Daily changes in flower and leaf water potential (Ψ) of M. denudata and M. soulangeana during two sunny days. Colours and symbols for different flower whorls, fully-open and half-open flowers, and leaf growth stages are the same as in Fig. S3. In (a) and (b), bars with higher values are put as the background, with italic letters on the top of each bar indicate the multiple comparison results among three whorls in half-open flowers, while regular letters at the bottom of each bar indicate comparisons in fully-open flowers; in (c) and (d), results of statistical analysis using ANOVA on leaf growth stages are labelled (ns, $P>0.05$). Red lines indicate mean $\Psi_{\text {tlp }}$ (dashed red lines are minimum and maximum $\Psi_{\text {tlp }}$ values among tepal whorls or leaf growth stages). The differences between minimum Ψ and Ψ_{tlp} are hydraulic safety margins.

