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Environmental context. Understanding the exchange of energy, gases and particles at the ocean–atmosphere
interface is critical for the development of robust predictions of, and response to, future climate change. The
international Surface Ocean–Lower Atmosphere Study (SOLAS) coordinates multi-disciplinary ocean–
atmosphere research projects that quantify and characterise this exchange. This article details five new SOLAS
research strategies – upwellings and associated oxygen minimum zones, sea ice, marine aerosols, atmospheric
nutrient supply and ship emissions – that aim to improve knowledge in these critical areas.

Abstract. This review focuses on critical issues in ocean–atmosphere exchange that will be addressed by new research

strategies developed by the international Surface Ocean–Lower Atmosphere Study (SOLAS) research community.
Eastern boundary upwelling systems are important sites for CO2 and trace gas emission to the atmosphere, and the
proposed research will examine how heterotrophic processes in the underlying oxygen-deficient waters interact with the
climate system. The second regional research focus will examine the role of sea-ice biogeochemistry and its interaction

with atmospheric chemistry.Marine aerosols are the focus of a research theme directed at understanding the processes that
determine their abundance, chemistry and radiative properties. A further area of aerosol-related research examines
atmospheric nutrient deposition in the surface ocean, and how differences in origin, atmospheric processing and

composition influence surface ocean biogeochemistry. Ship emissions are an increasing source of aerosols, nutrients
and toxins to the atmosphere and ocean surface, and an emerging area of research will examine their effect on ocean
biogeochemistry and atmospheric chemistry. The primary role of SOLAS is to coordinate coupled multi-disciplinary

research within research strategies that address these issues, to achieve robust representation of critical ocean–atmosphere
exchange processes in Earth System models.
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Introduction

The exchange of energy, gases and particles across the air–sea
interface is controlled by a variety of biological, chemical and
physical processes that operate across a broad range of spatial

and temporal scales. These influence the composition and bio-
geochemical processes of both phases and ultimately interac-
tions and feedbacks with the climate system. The significance of
this exchange across the air–sea interface is readily apparent in

global budgets; for example, the oceans have taken up,48% of
the anthropogenic CO2 released into the atmosphere since the
late 18th century,[1] and 90% of the total energy increase in

the air–sea–land–cryosphere climate system (1961–2003).[2]

The ocean also accounts for 50% of global oxygen produc-

tion,[3] and annually receives 500Mt of terrestrially derived dust
and aerosols.[4] The magnitude and variability of air–sea fluxes
and associated control processes are the focal point for the

Surface Ocean–Lower Atmosphere Study (SOLAS), a multi-
disciplinary international project involving 1900 scientists from
75 countries. Initiated in 2004, the aim of SOLAS is the
‘quantitative understanding of the key biogeochemical–

physical interactions and feedbacks between the ocean and the
atmosphere, and of how this coupled system affects and is
affected by climate and environmental change’. The SOLAS

Science Plan and Implementation Strategy (SP&IS)[5] promoted
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coupled studies between ocean and atmosphere in three focus

areas: (i) biogeochemical interactions and feedbacks between
the ocean and atmosphere; (ii) exchange processes at the air–sea
interface and the role of transport and transformation in the

atmospheric and oceanic boundary layers and (iii) air–sea flux
of CO2 and other long-lived radiatively active gases (see Fig. 1).
The overarching research strategy of the SOLAS SP&IS sub-
sequently stimulated a wide range of experiments and field

observations that have increased process-orientated under-
standing and improved the representation of biogeochemical
processes in Earth System models.

There have been major advances in our knowledge of ocean–
atmosphere exchange processes in the last decade.[6] The
significance of air–sea exchange to marine nutrient budgets

has been established for nitrogen,[7] iron[8,9] and phosphorus.[10]

Large databases, such as SOCAT (CO2), MEMENTO (nitrous
oxide (N2O) and methane),[11] and GSS (dimethyl sulfide,
DMS) have supported the development of global climatolo-

gies,[12] reassessment of regional and global ocean sinks and
sources[13,14] and development of prognostic models.[15] Studies
of physical processes have produced new parameterisations and

algorithms[16–19] and remote sensing approaches[20] for quanti-
fying air–sea exchange. Observational frameworks and predic-
tive models have increased in coverage, complexity and

robustness,[21–23] which is critical for establishing mitigation
and adaptation responses to climate change. SOLAS research

has also become increasingly more relevant to environmental

policy in areas such as ocean acidification,[24] iron fertilisation
and geoengineering.[25–28]

As predicted in the SP&IS new challenges have arisen in this

rapidly evolving field of research that now require reassessment
of the SOLAS research aims. In 2008 the SOLAS Scientific
Steering Committee indentified several unresolved issues of
significance to the global climate system that would benefit

from additional international coordination and networking.
These ideas subsequently evolved in a series of white papers
that articulated research priorities and identified optimal frame-

works and solutions for improved understanding in these novel
cross-cutting areas. In the following sections the status of these
issues is reviewedwith details of the research strategies required

to address them, with an appendix of acronym and abbreviation
definitions at the end of the article. The five research strategies,
two of which are regionally based with the remainder issue
based, do not represent an exclusive list of SOLAS research

topics but instead focus on areas where international coordina-
tion by SOLAS can deliver major advances. Other active areas
of SOLAS research, such as ocean carbon and ocean acidifica-

tion research coordination, are not covered by these strategies,
as support mechanisms already exist (e.g. the SOLAS–IMBER
carbon working group). The five new research strategies com-

plement the research aims of the SP&IS (see Fig. 1), and
maintain the SOLAS focus on multi-disciplinary coupled ocean
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and atmosphere research. As such they contribute to the goals of
the IGBP AIMES project, and represent an important step
towards the understanding of climate–ecosystem interactions

required for the Future Earth Initiative (http://www.icsu.org/
future-earth, accessed 26 February 2013).

Air]sea gas fluxes at eastern boundary upwelling systems
and oxygen minimum zones

Eastern boundary upwelling systems (EBUSs) are characterised
by high biological activity and heterotrophy that, in combination
with weak ventilation, leads to the formation of oxygen mini-
mum zones (OMZs) in sub-surface waters. The latter are char-

acterised by intense suboxic waters that extend from shallow
depths over several hundredmetres of the water column and that
support major perturbation of marine biogeochemical cycles

(Fig. 2). Surfacewaters in EBUSs are characterised by high trace
gas and CO2 emissions, elevated nutrients and low pH,[29] as a
result of upwelling of subsurface water that has experienced

high levels of heterotrophy, and so influence climate, cloud
properties and marine productivity. OMZs contribute to the
cycling of climate reactive trace gases,[30] including methane

and hydrogen sulfide,[31,32] and represent the primary open
ocean regions for fixed nitrogen loss, N2O production[33] and
emission of reactive halogen compounds.[34,35] However,
feedback effects of OMZs are complex and currently largely

unquantified. Stramma et al.[22] have shown that OMZs are

expanding in the equatorial Pacific and eastern tropical Atlantic
with decreasing dissolved oxygen concentrations between 300-
and 700-m depth over the last 50 years. In contrast to these

observations, most models predict an increase in oxygen con-
centrations in the tropical thermocline with an associated
reduction in the extent of suboxic areas in 21st century projec-

tions.[36,37] The tendency towards higher oxygen concentrations
in model scenarios of the future tropical thermoclinemay reflect
the mixing intensity employed in the models.[38] Nevertheless,

as ocean warming, acidification and deoxygenation will act
synergistically as stressors on marine ecosystems,[39,40] further
insight is required into the functioning of OMZs.

An articulated international project has been developed to

address these issues that builds upon collaboration with other
IGBP projects (IMBER, IGAC and PAGES), GEOTRACES
and CLIVAR. The proposed research will focus primarily on the

OMZ in the Eastern Tropical South Pacific, and examine issues
relating to reactivity and climate feedbacks. Although EBUSs
represent a source of CO2,N2O andmethane to the atmosphere it

is unclear how these emissions are coupled,[41] and as such what
is the magnitude of their net radiative forcing and associated
climate effect. EBUSs also influence tropospheric and strato-

spheric ozone by production of halogen compounds and N2O,
and atmospheric albedo by intensified DMS production or
consumption,[42] with further indirect feedbacks to the climate
system. Factors such as the degree of physical mixing and

connection with equatorial circulation, and organic matter
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Fig. 1. The new SOLAS research strategies (top row) mapped against the Foci and Activities of the SOLAS Science Plan and

Implementation Strategy (SP&IS).[5]
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supply will determine the respiratory status of an OMZ. This
will then influence the relative magnitude of heterotrophic

processes along a gradient from aerobic remineralisation
through denitrification and sulfate reduction to suboxicmechan-
isms using other electron acceptors (e.g. IO3

�, MnO2 and Fe3þ)
and methanogenesis. The relative spatial extent and temporality
of these respiration processes and the factors that determine
their distribution and magnitude need to be established, to

determine the net effect on CO2 and trace gas production and
emission from EBUSs, and hence the magnitude of feedbacks
to climate change.

Initial research missions will focus on acquiring short- and
long-term data from a variety of platforms (research cruises,
laboratory experiments, moorings and glider networks, ARGO
floats, ASIP and aircraft) to contribute to historical and new

databases (SOCAT, MEMENTO and potentially a H2S data-
base), remote sensing and analysis. In parallel there will be
development of parameterisations, coupled biogeochemical–

physical–atmospheric models, new numerical tools and large-
scale validations. This will also involve regional comparisons
between the Atlantic and Pacific EBUSs, which exhibit some

differences. For example, Mauritanian EBUSs tend to have
weaker N2O emissions, lower denitrification and negligible
hydrogen sulfide emissions.[43] There are also other critical
regional differences including aeolian dust deposition, which is

high off North-west Africa but low in the Tropical East Pacific,
and the additional influence of benthic–pelagic coupling in
the Mauritanian EBUS as a result of the overlap of the OMZ

with the continental shelf. Field activities have already been
initiated, with science flights (TORERO) coupled with research
cruises (EqPOS, SFB754, AMOP), and synoptic remotely

sensed data collection (ESA OceanFlux). Complementary
autonomous platforms, including fixed position moorings for
time-series datasets, gliders and AUVs for submesoscale

coverage, and Lagrangian profiler floats, will provide localised
data collection. Regional high resolution coupled biogeochem-

ical–physical and ocean–atmosphere models will achieve cou-
pling between differing spatial scales and complement data
collection and interpretation.

Sea-ice biogeochemistry and interactions
with the atmosphere

Sea ice plays an important role in the cycling and exchange of
climate relevant gases, and consequently the observed and

predicted decline in sea-ice cover has implications for regional
biogeochemistry and climate change (Fig. 3). Climate related
feedbacks may occur in response to changes in the surface area
of both ice sheets and open water. However our understanding

of these processes is still in its infancy and so associated
models currently contain a high degree of uncertainty. Due to
inherently different properties of the polar regions, climate

change affects the Arctic and Southern Ocean in different ways.
In the Arctic, both sea-ice extent and thickness are reducing
rapidly, with a new record low summer ice extent in 2012 (http://

nsidc.org/news/press/20121002_MinimumPR.html, accessed
26 February 2013) and dramatic shifts from multi-year ice to
first-year ice. Conversely a modest increase of total sea-ice
extent has been observed in the Antarctic but with significant

regional variability, with major reductions in sea-ice extent
along the west coast of the Antarctic Peninsula[44] associated
with dramatic shifts in plankton biomass and diversity.[45] With

the ongoing rapid changes, it is important to realise that although
sea icemay not completely disappear, it will undergo a profound
change in seasonality with feedbacks to regional biogeochem-

ical and physical properties.
Current global models include the seasonal wax and wane of

sea ice but representation of associated properties is limited to a
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few physical features, and biogeochemical effects are poorly
represented. In suchmodels, themajor climatic effects of sea ice

are associated with albedo, deep water formation and air–sea
heat exchange, with sea ice generally represented as a ‘lid’ that
suppresses gas exchange across the ocean surface.[46] Although

simulations have been developed that resolve biogeochemical
cycles within sea ice,[47] many of these models are one-
dimensional and trace gases are yet to be included. In many

respects, Earth System models contain significant uncertainties
in polar regions. For example, observed reductions in Arctic sea
ice appear to be accelerated with respect to current model

forecasts.[48] In addition, simulations of primary production
are systematically less realistic in polar regions compared with
the rest of the ocean,[49,50] with disagreement in the sign of the
change predicted for primary production in end-of-century

scenarios for the Arctic Ocean.[50] Although sea ice reduces
the surface area available for air–sea fluxes, processes such as
turbulent ice–ocean and ice–air interfacial stresses, buoyant

convection and wind waves potentially increase gas transfer in
leads and cracks above that expected over a continuous, quies-
cent ice cover.[51] The effect on the air–sea exchange of CO2 of a

reduction in ice cover is therefore uncertain, as illustrated by
contrasting estimates of an increase[52] and decrease,[53] in
associated ocean CO2 uptake. Clearly these model studies are
limited by insufficient representation of gas fluxes in ice-

covered regions.
The IPY initiated several large-scale projects that focussed

on the interaction of biotic and abiotic processes at the sea–ice

and air–ice interfaces. One of the primary findings of the initial

research was that physical, chemical and biological processes
interact in distinct and complex ways, and cannot be studied

independently.[54] For instance, the sea-ice microbial comm-
unity alters the microstructure and albedo of sea ice, produces
organic aerosols that function as cloud condensation nuclei

(CCN)[55] (see next section) and climatically active trace gases,
such as DMS and halocarbons, that alter the oxidising capacity
of the atmosphere and remove ozone in the lower troposphere in

spring.[56–58] In addition, physical forcing and changes in UV
light influence the chemical and biological processes involved
in the production of DMS and CO2.

[59,60]

As Arctic sea ice retreat continues, anthropogenic pressure
on polar systems will increase. An increase in ship traffic (see
Ship plumes section below) and resource development will
elevate pollutant loading from sulfur, nitrogen oxides and

black carbon emissions, influencing atmospheric and sea-ice
albedo, and tropospheric chemistry. A robust scientific under-
standing of feedback processes between anthropogenic activi-

ties and the polar environment from local to global scales
is necessary to assist policymakers in the development of
effective management strategies for polar environments. The

rate at which the Arctic is currently changing requires both
rapid advances in understanding and the development of robust
models by international collaboration. A SCOR working
group, BEPSII, has been recently initiated in which SOLAS

and a second phase of the OASIS project will collaborate
to address these issues. The aim of BEPSII is to promote
collaboration between experimentalists and modellers from

biological, chemical and physical disciplines, with emphasis
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on those working at the ice–ocean–atmosphere interfaces. Two

important goals are the standardisation of sea-ice measurement
methodologies to improve future data intercomparisons and
summaries of existing knowledge for prioritising processes
and model parameterisations. A major issue is the lack of

databases on relevant time and space scales, and standardisa-
tion of databases of priority parameters is urgently needed.
In this respect, a first inventory of sea-ice chlorophyll-a has

been produced by ASPeCT, which may serve as a template
for other databases. The ultimate goal of BEPSII is to upscale
priority processes from one-dimensional to Earth System

models to enable analysis of the role of sea-ice biogeo-
chemistry in climate simulations.

Ocean-derived aerosols: production, evolution
and impacts

Ocean-derived aerosols play an important role in controlling

aerosol optical depth, cloud formation and properties, radiation
balance and chemistry of the marine atmosphere[61,62] (Fig. 4).
Wind-driven breaking waves and bubble-bursting at the sea

surface inject inorganic ions (Naþ, Mg2þ, Cl� and SO4
2�)

associatedwith seawater into the overlying atmosphere.[62–64] In
addition, ocean-derived aerosols also contain inorganic and

organic species produced through secondary (gas to particle
conversion) processes.[65,66] Numerous studies in coastal and
productive waters[67] and oligotrophic seawater[68] have iden-
tified that marine aerosol is highly enriched in organic matter

(OM) relative to bulk seawater, with OM accounting for.50%
of non-water mass of particles of #500-nm radius.[66,68,69]

However, production mechanisms, composition, chemical

properties including solubility and hygroscopicity, and the
contribution of ocean-derived OM to aerosol mass and number
concentration are not well understood.[64]

Primary production of sea spray aerosol is the main source of

aerosol mass to the atmosphere.[70] The mass concentration
of ocean-derived aerosols is dominated by particles of radius
.1mm (super-micrometre), composed primarily of sea salt,

with lifetimes of hours to several days, whereas the ocean-
derived aerosol number production flux is dominated by parti-
cles smaller than 200-nm radius (r80, i.e. at relative humidity of

80%),[63] with lifetimes ranging from hours to weeks.[71]

Ocean-derived aerosols influence the Earth’s radiation balance
by scattering and absorption of solar radiation (direct effects),
and also by cloud formation and microphysical, macrophysical

and optical properties (indirect effects). However observations
and model estimates of the contribution of sea salt aerosol to the
total (natural and anthropogenic) global short-wave direct

radiative effect and the global aerosol optical depth have large
uncertainties, with values ranging from 18 to 50%.[72] Further-
more sea salt source functions used in different global models

and model estimations of sea salt dry mass vary by a factor
of five.[62,63,73,74]

Recent advances in understanding and quantification of

emission and production mechanisms include the extension of
the sea spray source function to particles with r80 of ,10 nm,
which is important for the assessment of aerosol effects on
clouds. Large-number production fluxes of particles with r80 of

,100 nm, and decreasing fluxes below 100 nm, have also been
identified.[63] Nevertheless, large uncertainties in the number
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Processes are indicated in italic. (CCN, cloud condensation nuclei; DMS, dimethyl sulfide; NSS sulfate, non-sea-salt sulfate.)
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production flux remain,[63] although recent results converge

within a factor of 2–3.[75] Advances have also been made in
our understanding of the effect of ocean-derived aerosols on
climate, particularly with respect to the effects of OM on CCN

production,[76–78] and on boundary layer chemistry.[79–81] There
has also been recent recognition that particles of,1mmmay be
a significant source of CCN in marine regions,[70] that is
potentially more important than the contribution from the

oxidation of DMS.[61,82,83] Emissions and chemical processing
of primary ocean-derived particulate OM are now being inte-
grated into ocean-derived aerosol source functions,[84,85] and the

effects of sea surface temperature[86] and wind-speed dependent
size-resolved OM production[87,88] incorporated into global
models.[88,89]

However, several fundamental questions remain. Character-
isation of the magnitude of size-resolved aerosol fluxes is
required, particularly in terms of temporal and spatial variation
such as between coastal and open ocean regions. Both physical

and biological controls on aerosol production require resolu-
tion, particularly in relation to aerosols derived from the large
pool of OM in surface seawater. Satellite derived chlorophyll-a

and particulate organic carbon offer some potential as proxies
for parameterising ocean OM emissions,[84,85] but investigation
of alternatives is warranted given the uncertainties associated

with the present proxies. Measurements in different ocean
regimes are required to formulate an accurate parameterisation
for the incorporation of OM into ocean-derived aerosols. The

relationship between ocean-derived aerosols and CCN also
requires attention to establish how the chemical composition
of aerosols influences both cloud-drop activation and size-
resolved fluxes of ocean-derived CCN on global and regional

scales. Furthermore, there is uncertainty in the relative influ-
ence of ocean and continental-derived CCN in coastal regions.
To fully understand the effect of ocean-derived aerosol on

climate and tropospheric chemistry, it will be important to
determine how ocean-derived aerosols evolve physically and
chemically, especially with respect to OM, once injected into

the troposphere.
To address these questions, multi-disciplinary field cam-

paigns are proposed in diverse oceanic (productive v. oligotro-
phic) regions to develop parameterisations for the production,

composition and evolution of primary ocean-derived aerosols.
Characterisation of surface ocean and aerosol OM will deter-
mine sources and processes of incorporation of OM into ocean-

derived aerosols. Ideally these campaigns will be coordinated
with satellite observations of whitecap coverage, sea surface
temperature, salinity, ocean colour, waves and aerosol proper-

ties to extend local field observations to global scales. Particular
focus areas include: parameterisation of sea-spray aerosol
production as a function of wave breaking, seawater tempera-

ture, salinity and surfactant concentration; inter-comparison of
aerosols generated in situ and in vitro in laboratory experiments
to evaluate ocean-derived aerosol source function parameter-
isations; and characterisation of OM composition in newly

formed sea-spray aerosol particles and ambient aerosols.
Coupling of satellite observations with integrated multi-
disciplinary field studies will further constrain the size-resolved

sea-spray source functions, both with respect to physics and
chemical composition. These new parameterisations will
improve the accuracy in estimates of the direct and indirect

effects of ocean-derived aerosols on climate, and so optimise
regional and global climate models. The ultimate aim of
the proposed research is to establish both direct and indirect

effects of ocean-derived aerosols on the Earth’s radiation

balance and tropospheric chemistry, particularly in the marine
boundary layer.

Atmospheric nutrient supply to the surface ocean

Material transported in the atmosphere originates from a variety
of natural and anthropogenic sources and contains both macro-
andmicronutrients (N, P, C, Si and tracemetals including Fe and
Cu), and potentially toxic elements (e.g. Cu and Pb).[90–92]

Consequently deposition represents an important source of new
nutrients and particles for large regions of the open ocean.[90,91]

This deposition is being perturbed directly and indirectly by

anthropogenic activities; for example, atmospheric pollution
has greatly increased the deposition of nitrogen,[7] and the
magnitude of dust deposition to the oceans has been shown to be

climate dependent.[93] There is variability in the relative ratios of
the major nutrients and their speciation when delivered by
atmospheric deposition at both temporal and spatial scales.

Furthermore, as deposited nutrients differ in both concentration
and stoichiometry to that delivered by vertical supply from sub-
surface waters,[94] this may modify nutrient inventories and
plankton nutrient stoichiometry and biodiversity with resulting

feedbacks to atmospheric CO2 (Fig. 5). Yet, despite significant
experimental, field and modelling studies over the past
decade,[72] the links between atmospheric deposition of nutri-

ents, ocean productivity and feedbacks to climate are still poorly
understood. Consequently, the role of atmospheric inputs
remains under-represented in budgets and marine biogeo-

chemical models (C. Guieu, O. Aumont, L. Bopp, C. Law,
N. Mahowald, E. P. Achterberg, et al., unpubl. data).

New observational, experimental and modelling approaches
are required to characterise interactions between natural and

anthropogenic atmospheric deposition, and surface ocean eco-
system community structure and biogeochemical cycling. Criti-
cal uncertainties include how the nutrient and trace metal

content of natural and anthropogenic aerosols vary from initial
uplift to oceanic deposition, and how processing in the atmo-
sphere, includingmixingwith anthropogenic species, influences

subsequent nutrient supply and availability. Emission sources,
such as volcanoes, biomass burning and anthropogenic sources
including ship plumes (see section below), differ in composition

and spatial and temporal distribution, and so establishing how
each affects ocean biogeochemistry will be key to determining
variability in regional response. The effect of atmospheric
deposition in the surface ocean may vary with the biogeochemi-

cal state of the receiving waters,[95] and result in fundamental
differences in the response of themicrobial community structure
(e.g. stimulation of heterotrophy v. autotrophy[96]), and so

vertical carbon export and nutrient cycling. Particle deposition
to the ocean can also provide ballast for sinking particles,[97]

which may augment the export flux resulting from increased

nutrient supply by atmospheric deposition.[98] In addition it is
currently unclear how future ocean conditions (e.g. ocean
acidification, temperature and stratification) will influence
the availability and reactivity of deposited material. For exam-

ple, the interaction of climate forcing with changes in nutrient
deposition may result in changes in both biodiversity and
microorganism adaptive strategies for competing for nutrients.

Systematic measurements are required of atmospheric depo-
sition and nutrients in the surface mixed layer in regions where
atmospheric supply plays an important role,[99] as in LNLC

(low-nutrient low-chlorophyll) regions (C. Guieu et al., unpubl.
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data) such as the South-west and North-east Pacific and Medi-
terranean Sea. Anthropogenic nitrogen forcing is primarily a

northern hemisphere phenomenon but, as climate and ocean
acidification are global drivers, there is a requirement for time-
series sampling sites in both hemispheres. Although reliable
measurement of dry deposition still represents a technical

challenge, it will be beneficial to extend wet and dry deposition
measurements and particle characterisation to repeat sampling
lines across regional deposition gradients and surface water

biogeochemical gradients, using research vessels and voluntary
observing ships. These transects should ideally accommodate
rate measurements and nutrient manipulation experiments to

gain insight into the proximal controls of plankton community
composition and process rates. Existing time series stations that
monitor both the atmosphere and ocean (e.g. HOT, BATS,
CVOO and DYFAMED) could become focal points for more

detailed experiments and process studies, possibly employing
Lagrangian studies using tracers or drifting buoys. Trace-
element clean mesocosms and tracer-labelled in situ manipula-

tions could also be used to address whole-ecosystem effects of
atmospheric nutrient input, including particulate organic carbon
export (C. Guieu et al., unpubl. data). The challenge is to

assimilate this information into more realistic models of depo-
sition and associated mechanisms, taking into account the
variable stoichiometry of atmospheric nutrients and surface

ocean biota, with better representation of competitive interac-
tions between plankton groups (C. Guieu et al., unpubl. data).

Transport, deposition and biogeochemical models require thor-
ough testing and validation against in-situ time series datasets

and remote-sensing observations. In addition, methodological
intercalibration, sample sharing, common reference materials
and standardisation of techniques are required to ensure global
coherence and quality control. Linking time-series studies

of aerosol composition with oceanic time-series data[99] is
valuable for constraining the response of the marine ecosystem
to deposition events. In addressing these goals, there is consid-

erable mutual interest and benefit of collaborative research
with the ocean-derived aerosol strategy (see section above),
GESAMP[90] and the GEOTRACES project.[100]

Ship plumes: impacts on atmospheric chemistry, climate
and nutrient supply to the oceans

Emissions of trace gases, primarily NOx and SO2, and particles
from ocean-going ships havemajor effects on photochemistry in
the marine boundary layer, cloud properties and aerosol direct

and indirect radiative effects, and are also potentially important
for the deposition of nutrients to the ocean (Fig. 6). Ship traffic
has increased significantly in recent years and is projected to

continue increasing.[101] In addition, new shipping routes are
becoming available in the Arctic Ocean due to decreasing sea-
ice cover in summer.[102] Yet, regulation of ship emissions is

only just being initiated and shipping currently often relies on
the use of ‘dirty’ fuels that are not used for land-based transport.
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Fig. 5. Conceptual diagram illustrating the main issues, processes and species relating to the SOLAS Atmospheric nutrients

strategy. Processes are indicated in italic. (DMS, dimethyl sulfide.)
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The primary aim of this research strategy is to determine the

regional and global effects of ship emissions on photochemistry,
climate forcing and ocean biogeochemical cycling and pro-
ductivity, and establish whether sub-grid scale ship plumes can

be parameterised in numerical models. Ship plumes have been
successfully mapped and investigated using satellite data and
detailed characterisation of chemical signatures[103,104] in field
campaigns such as MAST[105] and CalNEX 2010. Investigation

of individual plumes and characterisation of individual ship
turbines have led to important advances,[106,107] and a number of
modelling studies of the effects of ship plumes on climate

and atmospheric chemistry have been carried out or are
ongoing.[101,108–110] These have been complemented by emis-
sions inventories[101,111,112] and large scale assessments on

climate,[113,114] health and mortality.[115] However, as yet no
assessment has been carried out on the effects of deposition from
ship plumes on ocean biogeochemistry.

For most numerical models, ship plumes are sub-grid scale
(i.e. smaller than the size of grid boxes). However as many
related processes, such as photochemistry, are non-linear it can-
not be assumed that emissions are homogeneously distributed

within a grid box as this leads to overestimation of the effects on
photochemistry.[109] Alternative attempts to address this have
included a box model approach,[110] a large eddy model

approach[116] and a ship plume parameterisation in a regional
model.[117] A promising approach is the ‘plume-in-grid’ formu-
lation byVinken et al.,[118] which, when incorporated in a global

model, showed that ignoring these effects leads to overestima-
tion of NOx and O3 concentrations in the North Atlantic by 50

and 10–25% respectively. Further work is clearly required to

determine how grid-scale ship plumes can be parameterised in
numerical models.

Some progress has been made on quantifying regional and

global effects of ship emissions on atmospheric photochemistry
over the last decade. The most critical effects include ozone
production in ship-plume affected regions that were formally
ozone sinks,[108–110] and increases in OH concentrations leading

to increased oxidation capacity and a corresponding reduction in
the atmospheric lifetime of methane. Furthermore, ship emis-
sions may induce release of reactive chlorine from sea salt,[80]

which has a lifetime of several days due to multi-phase
cycling.[119] As the increase in chlorine atoms is maintained
for a longer period than the lifetime of the ship plume this will

further reduce the atmospheric lifetime of methane. Elevated
levels of formaldehyde (HCHO) in ship plumes detected by
satellite[104] are probably attributable to enhanced oxidation of

methane caused by elevated OH concentrations.[120] A robust
assessment of these effects requires global models that include
multispecies chemistry with realistic reaction rates.

Non-linearities in ship plumes are less critical for the

assessment of the climate impact of ship emissions, but robust
emission inventories are crucial to producing reliable studies of
the climate effect of ship plumes in conjunction with state-of-

the-art aerosol models. Overall, direct and indirect aerosol
effects of ship emissions lead to a net negative radiative forcing
(cooling), partly due to the reduced atmospheric lifetime of

methane.[113,114] Current attempts to reduce the sulfur content in
fuels and NOx emissions from ships may reduce pollution
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effects, but may also cause a shift from net cooling to net

warming due to the continued release of CO2 which remains
unaffected by these measures.[113] Black carbon has a positive
radiative effect, which is thought to be minor,[114] although

deposition of black carbon on snow could influence snow albedo
and increase snow melt during the Arctic summer.

A further aspect of ship emissions is their elevated nutrient
and heavy metal content, which may affect ocean biogeochem-

istry. Duce et al.[7] estimated that anthropogenic emissions are
responsible for approximately a third of nitrogen input to the
open ocean, although this estimate did not include deposition

from ship emissions and so may be an underestimate. Dalsøren
et al.[112] used a global transport model to calculate the
contribution of ship emissions to global wet deposition and

identified a respective contribution of 11 and 4.5% to deposi-
tions of NO3

� and SO4
2�, which increased to 25–50 and 15–25%

in coastal regions. Nitrate is an important nutrient for phyto-
plankton growth, but the deposition of NO3

� and SO4
2� also

increases acidification of surface waters,[121] although it has
been argued that the effects of this are minor.[122] Conversely,
ship fuels contain high levels of heavy metals, many of which

are toxic, which may influence biodiversity and productivity
of marine ecosystems.[92] A full assessment of the effect of
ship emissions on ocean biogeochemistry, including the

effect of nutrient v. toxin input, has yet to be undertaken
but coordination with the Atmospheric Nutrient and Ocean-
derived Aerosols research strategies (see previous two

sections) will assist in the development of this emerging SOLAS
research theme.

Summary

1. EBUSs and their associated OMZs are critical sites for

greenhouse and trace gas, aerosol and nutrient cycling. These
regions influence climate, cloud properties and marine
productivity, yet feedbacks are complex and poorly quanti-

fied. The proposed research will determine the net radiative
forcing and overall climate effect of these regions, by
considering CO2 and trace gas production and emission,

with a primary focus in the East Tropical South Pacific, using
multiple sampling platforms to develop new databases,
remote sensing, parameterisations, models, numerical tools

and validation for OMZs.
2. Sea ice plays an important role in the cycling and air–sea

exchange of climate relevant gases, and so the observed and
predicted decline in sea-ice cover has implications for

regional biogeochemistry and climate change. The goals of
future research will be to examine the biological, chemical
and physical controls of greenhouse and reactive trace gas

cycling at the sea-ice interfaces, by coordination of interna-
tional studies, to improve the representation of sea-ice
biogeochemistry in models. An important aspect will be

the evaluation and standardisation of currently used sea-ice
methodology to improve future data intercomparison.

3. Marine aerosol particles influence atmospheric chemistry,
aerosol optical depth, cloud properties and radiation balance.

The aim of this strategy is to further constrain sources,
particle composition and the spatio-temporal variability of
ocean-derived aerosols, their effect on processes in both

open ocean and coastal regions, and their contribution to
aerosol radiative effects (both direct and indirect, by their
effects on cloud properties). This will be achieved by

campaigns and experiments in contrasting oceanic regions

that will examine physical and biological influences on

sea spray aerosol properties, characterise their cloud-
nucleating properties and develop aerosol production
parameterisations.

4. The role of atmospheric input is poorly represented inmarine
biogeochemical models and there is a need to determine the
linkages between atmospheric deposition, nutrient availabil-
ity, the response of the biota, carbon cycling and feedbacks

to climate. The proposed research strategy will develop
coordinated approaches to assessing the sensitivity of
ocean biota to atmospheric deposition in different regions,

by simultaneous observation of aerosol, flux and sea-water
composition.

5. Ship emissions are a poorly characterised source of NOx,

sulfate aerosols and nitrogen and influence photochemistry,
reactive gas chemistry and aerosol production in the marine
boundary layer, and nutrient and toxin supply to surface
waters. The aims of this emerging research theme are to

determine the regional and global effects of ship emissions
on atmospheric chemistry, climate forcing and ocean bio-
geochemical cycling and productivity, and establish whether

sub-grid scale ship plumes can be parameterised in numeri-
cal models.

Acronyms and abbreviations

All websites in this list were accessible as of 14 February 2013.

� AIMES – Analysis, Integration and Modelling of the Earth

System; IGBP project; http://www.aimes.ucar.edu/
� AMOP – Activit�es de recherch�e d�edi�ees au Minimum d’Oxy-

gène dans le Pacifique est; French research project on
development of instrumentation and sensors for understand-

ing Oxygen Minimum Zones and deoxygenation
� ARGO – International integrated observation program utilis-

ing free-floating profilers, http://www.argo.ucsd.edu/

� ASPeCT (Antarctic Sea Ice Processes and Climate) – SCAR
Physical Sciences program expert group on multi-
disciplinary Antarctic sea ice zone research, http://aspect.

antarctica.gov.au/
� ASIP – air–sea interaction profiler
� AUV – autonomous underwater vehicle

� BATS – Bermuda Atlantic Time-Series Study, http://bats.
bios.edu/

� BEPSII – Biogeochemical Exchange Processes at the Sea–Ice
Interfaces, SCOR Working Group, http://www.scor-int.org/

Working_Groups/wg140.htm
� CalNEX 2010 – California Nexus US multi-agency study of

Air Quality and Climate Change, http://www.esrl.noaa.gov/

csd/calnex/
� CLIVAR – Climate Variability and Predictability, WCRP

project, http://www.clivar.org/

� CCN – cloud condensation nuclei
� CVOO – Cape Verde Ocean Observatory
� DMS – dimethyl sulfide
� DYFAMED – Dynamics of Atmospheric Fluxes in the

Mediterranean Sea Time Series Station, http://www.
eurosites.info/dyfamed.php

� ESA OceanFlux – European Space Agency Greenhouse gas

project, http://www.oceanflux-ghg.org/
� GEOTRACES – International Study of Marine Biogeochem-

ical Cycles and their Isotopes, a SCOR project, http://www.

geotraces.org/
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� GESAMP – United Nations Working Joint Group of Experts

on the Scientific Aspects of Marine Environmental Protec-
tion, http://www.gesamp.org/

� GSS – Global Surface Seawater DMS database, http://saga.

pmel.noaa.gov/dms/
� HOT – Hawaii Ocean Time-series, http://hahana.soest.

hawaii.edu/hot/
� iCACGP – international Commission on Atmospheric Chem-

istry and Global Pollution
� IGAC – International Global Atmospheric Chemistry, IGBP

project, http://www.igacproject.org/

� IGBP – International Geosphere–Biosphere Programme,
http://www.igbp.net/

� IMBER– IntegratedMarine Biogeochemistry andEcosystem

Research, a SCOR & IGBP project, http://www.imber.info/
� IPY – International Polar Year, http://www.ipy.org/
� EqPOS – Equatorial Pacific Ocean and Stratospheric–

Tropospheric Atmospheric Study, Japanese SOLAS project

� MAST –MontereyArea Ship Track (MAST) Experiment[105]

� MEMENTO –marine nitrous oxide and methane database[11]

� OASIS – Ocean–Atmosphere–Sea-Ice–Snowpack, http://

www.acd.ucar.edu/oasis/
� OM – organic matter
� PAGES – Past Global Changes, IGBP project, http://www.

pages-igbp.org/
� SP&IS – SOLAS Science Plan & Implementation Strategy

(2004)[5]

� SCOR – Scientific Committee on Oceanic Research, http://
www.scor-int.org/

� SOCAT – Surface Ocean CO2 Atlas, http://www.socat.info/
� SOLAS – Surface Ocean–Lower Atmosphere Study, http://

solas-int.org/; Mid-Term Strategy White Papers, http://solas-
int.org/about/mid-term-strategy.html

� SFB754 – German Research project on climate–

biogeochemical interactions in the tropical oceans, http://
oceanrep.geomar.de

� TORERO – Tropical Ocean Troposphere Exchange of

Reactive halogen species and Oxygenated VOC project,
http://www.eol.ucar.edu/deployment/field-deployments/field-
projects/torero

� WCRP – World Climate Research Programme, http://www.

wcrp-climate.org/
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R. Steininger, H. Kennedy, D. Wolf-Gladrow, D. N. Thomas,

Calcium carbonate as ikaite crystals in Antarctic sea ice. Geophys.

Res. Lett. 2008, 35, L08501. doi:10.1029/2008GL033540

[61] P. K. Quinn, T. S. Bates, The case against climate regulation via

oceanic phytoplankton sulfur emissions. Nature 2011, 480, 51.

doi:10.1038/NATURE10580

[62] E. R. Lewis, S. E. Schwartz, Sea salt aerosol production: mechan-

isms, methods, measurements and models – a critical review.

Geophys. Monogr. 2004, 152, GM152. doi:10.1029/GM152

[63] G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall,

E. R. Lewis, C. O’Dowd, M. Schulz, S. E. Schwartz, Production

flux of sea spray aerosol. Rev. Geophys. 2011, 49, RG2001.

doi:10.1029/2010RG000349

[64] B. Gantt, N.Meskhidze, The physical and chemical characteristics of

marine organic aerosols: a review. Atmos. Chem. Phys. Discuss.

2012, 12, 21779. doi:10.5194/ACPD-12-21779-2012

[65] C. D. O’Dowd, G. de Leeuw,Marine aerosol production: a review of

the current knowledge. Phil. Trans. R. Soc. A. 2007, 365, 1753.

doi:10.1098/RSTA.2007.2043

[66] M. C. Facchini, M. Rinaldi, S. Decesari, C. Carbone, E. Finessi,

M. Mircea, S. Fuzzi, D. Ceburnis, R. Flanagan, E. D. Nilsson,

G. de Leeuw, M. Martino, J. Woeltjen, C. D. O’Dowd, Primary

submicron marine aerosol dominated by insoluble organic colloids

and aggregates. Geophys. Res. Lett. 2008, 35, L17814. doi:10.1029/

2008GL034210

[67] C. D. O’Dowd, M. C. Facchini, F. Cavalli, D. Cebrunis, M. Mircea,

S. Decesari, S. Fuzzi, Y. J. Yoon, J.-P. Putaud, Biogenically driven

organic contribution to marine aerosol. Nature 2004, 431, 676.

doi:10.1038/NATURE02959

[68] W. C. Keene, H. Maring, D. J. Kieber, J. R. Maben, A. A. P. Pszenny,

E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. Zhou,

L.Smoydzin,R.Sander,Chemical andphysical characteristicsofnascent

aerosols produced by bursting bubbles at a model air–sea interface.

J. Geophys. Res. 2007, 112, D21202. doi:10.1029/2007JD008464

[69] E. J. Hoffman, R. A. Duce, Organic carbon in marine atmospheric

particulate matter: concentration and particle size distribution.

Geophys. Res. Lett. 1977, 4, 449. doi:10.1029/GL004I010P00449

[70] M. O. Andreae, D. Rosenfeld, Aerosol–cloud–precipitation inter-

actions. Part 1. The nature and sources of cloud-active aerosols. Earth

Sci. Rev. 2008, 89, 13. doi:10.1016/J.EARSCIREV.2008.03.001

[71] W. A. Hoppel, G. M. Frick, J. W. Fitzgerald, Surface source function

for sea-salt aerosol and aerosol dry deposition to the ocean surface.

J. Geophys. Res. 2002, 107, 4382. doi:10.1029/2001JD002014

[72] G. de Leeuw,C. Guieu, A. Arneth, N. Bellouin, L. Bopp, P.W. Boyd,

H. A. C. Denier van der Gon, K. V. Desboeufs, F. Dulac, M. C.

Facchini, B. Gantt, B. Langmann, N. M. Mahowald, E. Marañón,
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I. Isaksen, T. Iversen, A. Kirkevåg, S. Kloster, D. Koch, J. E. Kristjans-

son,M. Krol, A. Lauer, J. F. Lamarque, G. Lesins, X. Liu, U. Lohmann,

V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, O. Seland,

P. Stier, T. Takemura, X. Tie, An AeroCom initial assessment – optical

properties in aerosol component modules of global models. Atmos.

Chem. Phys. 2006, 6, 1815. doi:10.5194/ACP-6-1815-2006

[75] A. D. Clarke, S. R. Owens, J. Zhou, An ultrafine sea salt flux from

breaking waves: implications for cloud condensation nuclei in the

remote marine atmosphere. J. Geophys. Res. 2006, 111, D06202.

doi:10.1029/2005JD006565

[76] E. Fuentes, H. Coe, D. Green, G. de Leeuw, G. McFiggans, On the

impacts of phytoplankton-derived organicmatter on the properties of

primary marine aerosol – Part 1: source fluxes. Atmos. Chem. Phys.

2010, 10, 9295. doi:10.5194/ACP-10-9295-2010

[77] J. Ovadnevaite, D. Ceburnis, J. Bialek, C. Monahan, G. Martucci,

M. Rinaldi, M. C. Facchini, H. Berresheim, D. R. Worsnop,

C. O’Dowd, Primary marine organic aerosol: a dichotomy of low

hygroscopicity and high CCN activity.Geophys. Res. Lett. 2011, 38,

L21806. doi:10.1029/2011GL048869

[78] S. M. King, A. C. Butcher, T. Rosenoern, E. Coz, K. I. Lieke, G. de

Leeuw, E. D. Nilsson, M. Bilde, Investigating primary marine

aerosol properties: CCN activity of sea salt and mixed inorganic-

organic particles. Environ. Sci. Technol. 2012, 46, 10405.

doi:10.1021/ES300574U

C. S. Law et al.

14

http://dx.doi.org/10.1016/J.DSR2.2006.01.028
http://dx.doi.org/10.5194/BG-7-979-2010
http://dx.doi.org/10.1029/2010JC006760
http://dx.doi.org/10.1029/2006GL027028
http://dx.doi.org/10.1126/SCIENCE.1189338
http://dx.doi.org/10.1073/PNAS.1102457108
http://dx.doi.org/10.1029/2009GL040868
http://dx.doi.org/10.5194/ACP-7-4375-2007
http://dx.doi.org/10.1039/C2CS35208G
http://dx.doi.org/10.1029/2008GL033540
http://dx.doi.org/10.1038/NATURE10580
http://dx.doi.org/10.1029/GM152
http://dx.doi.org/10.1029/2010RG000349
http://dx.doi.org/10.5194/ACPD-12-21779-2012
http://dx.doi.org/10.1098/RSTA.2007.2043
http://dx.doi.org/10.1029/2008GL034210
http://dx.doi.org/10.1029/2008GL034210
http://dx.doi.org/10.1038/NATURE02959
http://dx.doi.org/10.1029/2007JD008464
http://dx.doi.org/10.1029/GL004I010P00449
http://dx.doi.org/10.1016/J.EARSCIREV.2008.03.001
http://dx.doi.org/10.1029/2001JD002014
http://dx.doi.org/10.5194/ACP-6-1777-2006
http://dx.doi.org/10.5194/ACP-6-1815-2006
http://dx.doi.org/10.1029/2005JD006565
http://dx.doi.org/10.5194/ACP-10-9295-2010
http://dx.doi.org/10.1029/2011GL048869
http://dx.doi.org/10.1021/ES300574U


[79] W. C. Keene, J. Stutz, A. A. P. Pszenny, J. R. Maben, E. V. Fischer,

A. M. Smith, R. von Glasow, S. Pechtl, B. C. Sive, R. K. Varner,

Inorganic chlorine and bromine in coastal New England air during

summer. J. Geophys. Res. 2007, 112, D10S12. doi:10.1029/

2006JD007689

[80] H. D. Osthoff, J. M. Roberts, A. R. Ravishankara, E. J. Williams,

B. M. Lerner, R. Sommariva, T. S. Bates, D. Coffman, P. K. Quinn,

J. E. Dibb, H. Stark, J. B. Burkholder, R. K. Talukdar, J. Meagher,

F. C. Fehsenfeld, S. S. Brown, High levels of nitryl chloride in the

polluted subtropical marine boundary layer. Nat. Geosci. 2008, 1,

324. doi:10.1038/NGEO177

[81] X. Zhou, A. J. Davis, D. J. Kieber, W. C. Keene, J. R. Maben,

H. Maring, E. E. Dahl, M. A. Izaguirre, R. Sander, L. Smoydzyn,

Photochemical production of hydroxyl radical and hydroperoxides in

water extracts of nascent marine aerosols produced by bursting

bubbles from Sargasso seawater. Geophys. Res. Lett. 2008, 35,

L20803. doi:10.1029/2008GL035418

[82] R. J. Charlson, J. E. Lovelock,M.O. Andreae, S. G.Warren, Oceanic

phytoplankton, atmospheric sulphur, cloud albedo and climate.

Nature 1987, 326, 655. doi:10.1038/326655A0

[83] M. H. Smith, Sea-salt particles and the CLAW hypothesis. Environ.

Chem. 2007, 4, 391. doi:10.1071/EN07071

[84] C. D. O’Dowd,B. Langmann, S. Varghese, C. Scannell, D. Ceburnis,

M. C. Facchini, A combined organic-inorganic sea-spray source

function. Geophys. Res. Lett. 2008, 35, L01801. doi:10.1029/

2007GL030331

[85] M. S. Long, W. C. Keene, D. J. Kieber, D. J. Erickson, H. Maring,

A sea-state based source function for size- and composition-resolved

marine aerosol production. Atmos. Chem. Phys. 2011, 10, 22279.

[86] L. Jaegl�e, P. K. Quinn, T. S. Bates, B. Alexander, J.-T. Lin, Global

distribution of sea salt aerosols: new constraints from in situ and

remote sensing observations. Atmos. Chem. Phys. 2011, 11, 3137.

doi:10.5194/ACP-11-3137-2011

[87] N. Meskhidze, J. Xu, B. Gantt, Y. Zhang, A. Nenes, S. J. Ghan,

X. Liu, R. Easter, R. Zaveri, Global distribution and climate forcing

of marine organic aerosol. 1. Model improvements and evaluation.

Atmos. Chem. Phys. 2011, 11, 11689. doi:10.5194/ACP-11-11689-

2011

[88] B. Gantt, M. S. Johnson, N. Meskhidze, J. Sciare, J. Ovadnevaite,

D. Ceburnis, C. D. O’Dowd, Model evaluation of marine primary

organic aerosol emission schemes. Atmos. Chem. Phys. Discuss.

2012, 12, 12853. doi:10.5194/ACPD-12-12853-2012

[89] D. M. Westervelt, R. H. Moore, A. Nenes, P. J. Adams, Effect of

primary organic sea spray emissions on cloud condensation nuclei

concentrations. Atmos. Chem. Phys. 2012, 12, 89. doi:10.5194/ACP-

12-89-2012

[90] The atmospheric input of trace species to the world ocean.

GESAMP Reports and Studies 38 1989 (World Meteorological

Organization). Available at http://www.gesamp.org/publications/

publicationdisplaypages/rs38 [Verified 14 February 2013].

[91] R. A. Duce, P. S. Liss, J. T.Merill, E. L. Atlas, P. Buat-Menard, B. B.

Hicks, J. M. Miller, J. M. Prospero, R. Arimoto, T. M. Church,

W. Ellis, J. N. Galloway, L. Hansen, T. D. Jickells, A. H. Knap, K. H.

Reinhardt, B. Schneider, A. Soudine, J. J. Tokos, S. Tsunogai,

R. Wollast, M. Zhou, The atmospheric input of trace species to the

world ocean.Global Biogeochem. Cycles 1991, 5, 193. doi:10.1029/

91GB01778

[92] A. Paytan, K. R. M. Mackey, Y. Chen, I. D. Lima, S. C. Doney, N.

Mahowald, R. Labiosa, A. F. Post, Toxicity of atmospheric aerosols

on marine phytoplankton. Proc. Natl. Acad. Sci. USA 2009, 106,

4601. doi:10.1073/PNAS.0811486106

[93] N. M. Mahowald, S. Kloster, S. Engelstaedter, J. K. Moore,

S. Mukhopadhyay, J. R. McConnell, S. Albani, S. C. Doney,

A. Bhattacharya, M. A. J. Curran, M. G. Flanner, F. M. Hoffman,

D. M. Lawrence, K. Lindsay, P. A. Mayewski, J. Neff, D. Rothen-

berg, E. Thomas, P. E. Thornton, C. S. Zender, Observed 20th

century desert dust variability: impact on climate and biogeochem-

istry. Atmos. Chem. Phys. 2010, 10, 10875. doi:10.5194/ACP-10-

10875-2010

[94] P. W. Boyd, D. S. Mackie, K. A. Hunter, Aerosol iron deposition to

the surface ocean – modes of iron supply and biological responses.

Mar. Chem. 2010, 120, 128. doi:10.1016/J.MARCHEM.2009.

01.008

[95] T. Wagener, E. Pulido-Villena, C. Guieu, Dust iron dissolution in

seawater: results from a one-year time-series in the Mediterranean

Sea. Geophys. Res. Lett. 2008, 35, L16601. doi:10.1029/

2008GL034581
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