Supplementary material

Thermodynamic stability of mercury(II) complexes formed with environmentally relevant low-molecular-mass thiols studied by competing ligand exchange and density functional theory

Van Liem-Nguyen^A, Ulf Skyllberg^B, Kwangho Nam^A and Erik Björn^{A,C}

^ADepartment of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.

^BDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901

83 Umeå, Sweden.

^CCorresponding author. Email: erik.bjorn@umu.se

S1. Calculation of stability constants for Hg(MAC)₂ and HgIMAC using I⁻ as competing ligand. Components, reactions and a calculation scheme for determination of the stability constant for the Hg(MAC)₂ and HgIMAC complexes with I⁻ as the competing ligand, using WinSGW software. The *pKa* of the RSH and COOH groups for MAC are 10.2 and 3.5, respectively. A similar set of corresponding equations were set-up when calculating constants for Hg(2-MPA)₂.

$[I^{-}]_{total} = [I^{-}]_{free} + [HgI^{+}] + 2[HgI_{2}] + 3[HgI_{3}-] + 4[HgI_{4}^{-}] + [HgIMAC]$					
$[MAC]_{total} = [MAC]_{free} + 2[Hg(MAC)_2] + [HgIMAC] + [HgMAC]$					
$[Hg^{2+}]_{total} = [Hg^{2+}]_{free} + [HgI^+] + [HgI_2] + [HgI_3^-] + [HgI_4^-] + [HgIMAC] + [Hg(MAC)_2] + [HgMAC] + [Hg(OH)_n](Sc) + [Hg(MAC)_2] + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] + [HgMAC] + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] + [HgMAC] + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] + [HgMAC] + [HgMAC] + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] + [HgMAC] + [HgMAC] + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] + [HgMAC] + [HgMAC] + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] + [HgMAC] + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] + [HgMAC] + [HgMAC] + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] + [HgMAC] + [HgMAC] + [HgMAC] + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] + [HgMAC] + [HgMAC] + [HgMAC] + [Hg(OH)_n](Sc) + [HgMAC] $					
$Hg^{2+} + I^- \rightleftharpoons HgI^+$	$\log K_{l} = 13.42$	(S3a)			
$Hg^{2_+} + 2I^- \rightleftharpoons HgI_2$	$Log K_2 = 24.60$	(S3b)			
$\mathrm{Hg}^{2_{+}} + 3\mathrm{I}^{-} \rightleftharpoons \mathrm{Hg}\mathrm{I}_{3}^{-}$	$Log K_3 = 28.32$	(S3c)			
$Hg^{II} + 4I^- \rightleftharpoons HgI_4^{2-}$	Log <i>K</i> ₄ = 30.07	(S3d)			
$\mathrm{Hg}^{2+} + \mathrm{MAC} \rightleftharpoons \mathrm{HgMAC}$	Log K = 32.5	(S4a')			
$Hg^{2+} + 2MAC \rightleftharpoons Hg(MAC)_2$	$\operatorname{Log} \beta_2 = ?$	(S1b')			
$Hg^{2+} + I^{-} + MAC \rightleftharpoons HgIMAC$	Log K = ?	(S6)			

Example of calculation $[I']_{total} = 20 \ \mu M^{a}$ $[MAC]_{total} = 16 \ \mu M^{a}$ $[Hg^{2+}]_{total} = 4 \ \mu M^{a}$ $[Hg(MAC)_{2}] = 3.2 \ \mu M^{b}$ $[HgIMAC] = (Peak \ Area \ (HgIMAC) / Peak \ Area \ (Hg(MAC)_{2})) \times [Hg(MAC)_{2}] = 0.45 \ \mu M^{b}$ $[HgI_{n}^{x}] = [Hg^{II}]_{total} - [Hg(MAC)_{2}] - [HgIMAC] = 0.29 \ \mu M^{b}$ ^a Concentration of ligand used for complexation

^b Concentration of complexes determined by LC-ICPMS.

In the experiment, the concentration of Γ was varied, and in the calculation scheme above it is exemplified for 20 μ M Γ . Constants were recalculated to an ionic strength of 0 M and experimental pH was 2.9. Based on the equations (Sa-Sc); reaction S3(a-d), (S4a'), (S1b'), (S6), and total concentration of Hg^{II} and ligands, and measured concentration of Hg(MAC)₂ and HgIMAC complexes, the log *K* of Hg(MAC)₂ and HgIMAC was determined to be 40.9 and 32.2, respectively.

S2. Calculation of the stability constant for the Hg(Cys)₂ complex using MAC as competing ligand. Calculation scheme for determination of the stability constant for Hg(Cys)₂ with MAC as the competing ligand using WinSGW software. The *pKa* of the RSH group for MAC and Cys are 10.2 and 8.6, respectively and *pKa* of the COOH group for MAC and Cys are 3.4 and 2.0, respectively. The same corresponding calculation scheme was used for the other Hg(SR)₂ complexes using MAC or 2-MPA as the competing ligand.

 $[MAC]_{total} = [MAC]_{free} + 2[Hg(MAC)_2] + [HgMAC]$ (Sd) $[Cys]_{total} = [Cys]_{free} + 2[Hg(Cys)_2] + [HgCys]$ (Se) $[Hg^{2+}]_{total} = [Hg^{2+}]_{free} + [HgMAC] + [Hg(MAC)_2] + [HgCys] + [Hg(Cys)_2] + [Hg(OH)_n]$ (Sf) $Hg^{2+} + MAC \rightleftharpoons HgMAC$ Log K = 32.5(S4') $Hg^{2+} + Cys \rightleftharpoons HgCys$ Log K = 29.0(S4'') $Hg^{2+} + 2MAC \rightleftharpoons Hg(MAC)_2$ $\text{Log }\beta_2 = 40.9$ (S1b') $Hg^{2+} + 2Cys \rightleftharpoons Hg(Cys)_2$ $\log \beta_2 = ?$ (S1b'')

Example of calculation $[MAC]_{total} = 8 \ \mu M^{a}$ $[Cys]_{total} = 8 \ \mu M^{a}$ $[Hg^{2+}]_{total} = 4 \ \mu M^{a}$ $[Hg(MAC)_{2}] = 2.27 \ \mu M^{b}$ $[Hg(Cys)_{2}] = 1.72 \ \mu M^{b}$ ^a Concentration of ligand used for complexation

^b Concentration of complexes determined by HPLC-ICPMS

Constants were recalculated to an ionic strength of 0 M and experimental pH was 2.9. Based on the equations (Sd-Sf); reactions (S4'), (S4''), (S1b'), (S1b'') and total concentration of the Hg^{II} and ligands and measured complexes concentration, the log β_2 of Hg(Cys)₂ was determined to 37.5.

Fig. S1. The structure and abbreviation of investigated thiol ligands. The thiols are grouped according to the presence of functional groups in addition to the thiol group.

Fig. S2. The integrated peak area of Hg(SR)₂ complexes to Thalium (²⁰⁴Tl⁺) signal ratios with different reaction time for the Hg(SR)₂ complex synthesis. (a) mixture of 1 μ M of Hg^{II} and 2 μ M of each HCys and NACCys. (b) mixture of 1 μ M of Hg^{II} and 2 μ M of each Cys and NACPen. The experiments were conducted at pH 3.0, and an ion strength of 0 M. A post column flow of a 10 ng ml⁻¹ Tl solution (flow rate of 100 μ l min⁻¹) was used to monitor and correct for signal drift of the LC-ICPMS system over time.

Fig. S3. Peak area of Hg(SR)₂ complexes to Thalium (²⁰⁴Tl⁺) signal ratios at different storage time of Hg(SR)₂ complex solutions. Samples contain 1 μ M of Hg^{II} and 4 μ M of individual LMM thiols i.e. Cys, HCys, GSH and Glyc. A post column flow of a 10 ng ml⁻¹ Tl solution (flow rate of 100 μ l min⁻¹) was used to monitor and correct for signal drift of the LC-ICPMS system over time.

Fig. S4. LC-ICPMS chromatograms showing ²⁰²Hg⁺ and ¹²⁷I⁺ signals (counts per second, cps) for (**a**) 4 μ M of Hg^{II} and 50 μ M of Γ . A gradient elution was used with initially 3.5% of 1-propanol during 12 min, then increased to 25% in a step gradient and kept for 4 min and then back to the initial 3.5% concentration. (**b**) 4 μ M of Hg^{II} and 50 μ M of Γ . A gradient elution was used with initially 8.5% 1-propanol during 14 min, then increased to 25% in a step gradient and kept for 4 min and then back to the initial 8.5% concentration. (**c**) 4 μ M of Hg^{II}, 16 μ M of MAC and 100 μ M of Γ . The elution gradient was the same as in (**a**). (**d**) 4 μ M of Hg^{II}, 16 μ M of 2MPA and 100 μ M of Γ . The elution gradient was the same as in (**b**). The complexes of Hg(MAC)₂, HgIMAC, Hg(2MPA)₂, and HgI(2-MPA) eluted at 600 s, 670 s, 780 s, and 1010 s, respestively. The HgI₂ complex eluted at 790 s with the gradient of (**a**) and at 1070 s with the gradient of (**b**). The peaks 1, 2 correspond to the complexes of HgI_nⁿ⁻² (n=1, 3, 4) and the peak 3 to a system background signal.

Fig. S5. The mass spectra of 15 investigated $Hg(SR)_2$ complexes achieved by direct infusion to ESIMS, showing molecular mass and Hg isotope pattern of the $Hg(SR)_2$ complexes. All $Hg(SR)_2$ complex analyses were conducted in the negative ionization mode with the exception of $Hg(Cyst)_2$, which was analysed in positive mode. The concentration of Hg^{II} was 0.1 mM, the molar ratio of RSH to Hg^{II} was 4 and pH was 3.0.

Fig. S6. Measured concentration of the Hg(MAC)₂ complex (2 μ M of Hg^{II} and 8 μ M of MAC) at different added concentrations of the competing ligands EDTA, Cl⁻, and Br⁻. The experiments were carried out at constant ionic strength of 0.5 M (NaClO₄) and pH of 3.0.

Fig. S7. LC-ICPMS chromatograms of ²⁰²Hg⁺ signals Illustrating of retention time of the 15 investigated Hg(SR)₂ complexes on the Kinetic Biphenyl LC column used in the LC-ICPMS measurements. The retention time increased as, 1. Hg(Cyst)₂, 2. Hg(CysGly)₂, 3. Hg(Cys)₂, 4. Hg(HCys)₂, 5. Hg(GSH)₂, 6. Hg(GluCys)₂, 7. Hg(Pen)₂, 8. Hg(Glyc)₂, 9. Hg(NACCys)₂, 10. Hg(ETH)₂, 11. Hg(MAC)₂, 12. Hg(SUC)₂, 13. Hg(3MPA)₂. 14. Hg(NACPen)₂, 15. Hg(2MPA)₂.

Fig. S8. LC-ICPMS chromatogram of 202 Hg⁺ signals for a mixture of 4 μ M of Hg^{II} and 4 μ M of MAC with isocratic elution using 3.5% 1-propanol indicating the presence of the one-coordinated HgMAC complex with a retention time of 700 s.

Fig. S9. LC-ESIMS chromatograms with selected ion monitoring (SIM) mode targeting m/z of Hg(MAC)₂, Hg(Cys)₂, and CysHgMAC and their corresponding Hg isotope pattern 378-385 m/z, 436-443 m/z and 407-414 m/z, respectively. An elution gradient was used with initially 8% of MeOH, 0.1% FA and 92% H₂O, 0.1% FA from 3 to 10 min followed by a linear gradient to 90% of MeOH, 0.1% FA which was kept for 3 min. From 13 to 16 min the concentration of MeOH, 0.1% FA was reduced from 90% to 8% in a linear gradient and was kept for 9 min. The increased background after 6 min is caused by the increase of MeOH in the mobile phase.

Fig. S10. LC-ICPMS chromatograms showing 202 Hg⁺ signals of (a) a mixture containing 4 μ M of Hg^{II} and 8 μ M of each Cys and MAC, (b) a mixture containing 4 μ M of Hg^{II} and 16 μ M of MAC, (c) a mixture containing 4 μ M of Hg^{II} and 16 μ M of Cys. The retention time of Hg(Cys)₂ and Hg(MAC)₂ is 85 s and 540 s, respectively with a mobile phase gradient of initially 3.5% of 1-propanol for 12 min then a step gradient increase to 25% of 1-propanol. The appearance of a small peak at 850 s is caused by the changed concentration of 1-propanol in the mobile phase.

Fig. S11. Full scan mass spectrum of a solution containing 0.1 mM of Hg^{II} and 0.2 mM of each Cys and MAC by direct infusion to ESI-MS with a flow rate of 50 μ l min⁻¹. Observed signals indicate the presence of Hg(MAC)₂, Hg(Cys)₂ and CysHgMAC complexes, matching their molecular mass and Hg isotope pattern.

Table S1. Thermodynamic stability constants for HgIn²⁻ⁿ complexes at different ionic strengths

Reaction	Stability constant ($\log K_1, \log \beta_2 - \beta_4$)				
	I=0.5*	I=0	I=0.1	I=1	
$Hg^{2+} + I^- = HgI^+$	12.87	13.42	13.02	12.90	
$Hg^{2+} + 2I^{-} = HgI_2$	23.82	24.60	24.00	23.92	
$Hg^{2+} + 3I^{-} = HgI_{3}^{-}$	27.6	28.32	27.74	27.74	
$Hg^{2+} + 4I^{-} = HgI_4^{2-}$	29.83	30.07	29.73	30.15	

The stability constants were corrected to different ion strength using free software Ionic Strength Corrections for Stability Constants from IUPAC with Specific Interaction Theory (SIT) method^[1]

* Reference Martell et al. (2004)^[2]

Table S2. Computed complex formation free energies, bond lengths and angles of the Hg(SR)₂ complexes determined at the B3LYP level of theory

	$\Delta G_2{}^a$	Bond (Å)		Angle (°)		
Complexes	(kcal/mol)	Hg-S ^b	Hg-O ^c	S-Hg-S	Hg-S-C ^b	O-Hg-O ^c
Hg(2-MPA) ₂	53.1	2.381	3.042	179.7	101.4	158.4
Hg(NACPen) ₂	56.4	2.364		175.6	105.0	
Hg(NACCys) ₂	51.1	2.383	3.087	175.1	99.3	65.4
Hg(SUC) ₂	54.0	2.376	3.146	176.7	102.8	96.4
$Hg(3-MPA)_2$	58.0	2.361		177.6	103.0	
Hg(MAC) ₂	56.6	2.373	3.176	177.6	102.9	173.4
Hg(Glyc) ₂	55.2	2.361		177.7	103.0	
Hg(GluCys) ₂	77.4	2.365		177.0	103.5	
Hg(ETH) ₂	56.9	2.360		177.7	102.7	
Hg(Pen) ₂	86.6	2.383	2.876	176.8	108.4	
Hg(GSH) ₂	54.7	2.380	3.062	170.7	104.6	63.6
Hg(Cys) ₂	92.1	2.373		177.4	105.7	
Hg(CysGly) ₂	91.7	2.375		176.6	106.0	
Hg(HCys) ₂	87.3	2.372		176.7	106.1	
Hg(Cyst) ₂	90.7	2.374		175.6	106.1	

All geometries were optimized at the gas phase with a mixed basis set containing Def2-TZVPP for Hg and 6-31++G(d,p) for all other atoms, respectively, and an initial geometry with all ligands fully extended

^a The ΔG values are for the reaction 1a, i.e., $Hg^{2+} + 2RSH = Hg(SR)_2 + 2H^+$, in the gas phase at 298.15 K.

^b The Hg-S distances and Hg-S-C angles are the averages over the two Hg-S distances and Hg-S-C angles, respectively.

^c In the geometry optimisations, several complexes form an additional coordination between Hg and the ligand's carbonyl or carboxyl oxygen (bidentate coordination). The Hg-O distances and O-Hg-O angles are the averages over the two Hg-O distances and O-Hg-O angles, respectively, except Hg(Pen)₂, which only forms a single Hg-O interaction.

References

[1] IUPAC, Ionic Strength Corrections for Stability Constants using Specific Interaction Theory (SIT), version 1. 2004.

[2] A. Martell, R. Smith, R. Motekaitis, National Institute of Standard and Technology, NIST. *Critically selected stability constants of metal complexes* **2004** (PC-based Database: Gaithersburg, MD).