Supplementary material

Thermodynamic stability of mercury(II) complexes formed with environmentally relevant low-molecular-mass thiols studied by competing ligand exchange and density functional theory

Van Liem-Nguyen ${ }^{\text {A }}$, Ulf Skyllberg ${ }^{\mathrm{B}}$, Kwangho Nam ${ }^{\text {A }}$ and Erik Björn ${ }^{\mathrm{A}, \mathrm{C}}$
${ }^{\text {A }}$ Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
${ }^{\mathrm{B}}$ Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
${ }^{\text {C }}$ Corresponding author. Email: erik.bjorn@umu.se

S1. Calculation of stability constants for $\mathbf{H g}(M A C)_{2}$ and $\mathbf{H g I M A C}$ using \mathbf{I}^{-}as competing ligand. Components, reactions and a calculation scheme for determination of the stability constant for the $\mathrm{Hg}(\mathrm{MAC})_{2}$ and HgIMAC complexes with I^{-}as the competing ligand, using WinSGW software. The $p K a$ of the RSH and COOH groups for MAC are 10.2 and 3.5 , respectively. A similar set of corresponding equations were set-up when calculating constants for $\mathrm{Hg}(2-\mathrm{MPA})_{2}$.
$\left[\mathrm{I}^{-}\right]_{\text {total }}=\left[\mathrm{I}^{-}\right]_{\text {free }}+\left[\mathrm{HgI}^{+}\right]+2\left[\mathrm{HgI}_{2}\right]+3\left[\mathrm{HgI}_{3}-\right]+4\left[\mathrm{HgI}_{4}^{-}\right]+[\mathrm{HgIMAC}]$
$[\mathrm{MAC}]_{\text {total }}=[\mathrm{MAC}]_{\text {free }}+2\left[\mathrm{Hg}(\mathrm{MAC})_{2}\right]+[\mathrm{HgIMAC}]+[\mathrm{HgMAC}]$
$\left[\mathrm{Hg}^{2+}\right]_{\text {otoal }}=\left[\mathrm{Hg}^{2+}\right]_{\text {free }}+\left[\mathrm{HgI}^{+}\right]+\left[\mathrm{HgI}_{2}\right]+\left[\mathrm{HgI}_{3}{ }^{-}\right]+\left[\mathrm{HgI}_{4}^{-}\right]+[\mathrm{HgIMAC}]+\left[\mathrm{Hg}(\mathrm{MAC})_{2}\right]+[\mathrm{HgMAC}]+\left[\mathrm{Hg}(\mathrm{OH})_{\mathrm{n}}\right](\mathrm{Sc})$
$\mathrm{Hg}^{2+}+\mathrm{I}^{-} \rightleftharpoons \mathrm{HgI}^{+} \quad$ Log $K_{1}=13.42$
$\mathrm{Hg}^{2+}+2 \mathrm{I}^{-} \rightleftharpoons \mathrm{HgI}_{2} \quad$ Log $K_{2}=24.60$
$\mathrm{Hg}^{2+}+3 \mathrm{I}^{-} \rightleftharpoons \mathrm{HgI}_{3}{ }^{-} \quad$ Log $K_{3}=28.32$
$\mathrm{Hg}^{\mathrm{II}}+4 \mathrm{I}^{-} \rightleftharpoons \mathrm{HgI}_{4}{ }^{2-} \quad$ Log $K_{4}=30.07$
$\mathrm{Hg}^{2+}+\mathrm{MAC} \rightleftharpoons \mathrm{HgMAC} \quad \log K=32.5$
$\mathrm{Hg}^{2+}+2 \mathrm{MAC} \rightleftharpoons \mathrm{Hg}(\mathrm{MAC})_{2} \quad \log \beta_{2}=$?
$\mathrm{Hg}^{2+}+\mathrm{I}^{-}+\mathrm{MAC} \rightleftharpoons \mathrm{HgIMAC} \quad \log K=$?

Example of calculation
$\left[\mathrm{I}^{-}\right]_{\text {total }}=20 \mu \mathrm{M}^{\mathrm{a}}$
[MAC] $]_{\text {total }}=16 \mu \mathrm{M}^{\mathrm{a}}$
$\left[\mathrm{Hg}^{2+}\right]_{\text {total }}=4 \mu \mathrm{M}^{\mathrm{a}}$
$\left[\mathrm{Hg}(\mathrm{MAC})_{2}\right]=3.2 \mu \mathrm{M}^{\mathrm{b}}$
$[\operatorname{HgIMAC}]=\left(\right.$ Peak Area $(H g I M A C) /$ Peak Area $\left.\left(H g(M A C)_{2}\right)\right) \times\left[H g(M A C)_{2}\right]=0.45 \mu \mathrm{M}^{\mathrm{b}}$
$\left[\mathrm{HgI}_{n}{ }^{ }\right]=\left[\mathrm{Hg}^{\mathrm{II}}\right]_{\text {total }}-\left[\mathrm{Hg}(\mathrm{MAC})_{2}\right]-[\mathrm{HgIMAC}]=0.29 \mu \mathrm{M}^{\mathrm{b}}$
${ }^{a}$ Concentration of ligand used for complexation
${ }^{\mathrm{b}}$ Concentration of complexes determined by LC-ICPMS.

In the experiment, the concentration of I^{-}was varied, and in the calculation scheme above it is exemplified for $20 \mu \mathrm{M} \mathrm{I}^{-}$. Constants were recalculated to an ionic strength of 0 M and experimental pH was 2.9. Based on the equations (Sa-Sc); reaction S3(a-d), (S4a’), (S1b’), (S6), and total concentration of $\mathrm{Hg}^{\text {II }}$ and ligands, and measured concentration of $\mathrm{Hg}(\mathrm{MAC})_{2}$ and HgIMAC complexes, the $\log \mathrm{K}$ of $\mathrm{Hg}(\mathrm{MAC})_{2}$ and HgIMAC was determined to be 40.9 and 32.2, respectively.

S2. Calculation of the stability constant for the $\mathbf{H g}(\mathbf{C y s})_{2}$ complex using MAC as competing ligand. Calculation scheme for determination of the stability constant for $\mathrm{Hg}(\mathrm{Cys})_{2}$ with MAC as the competing ligand using WinSGW software. The $p K a$ of the RSH group for MAC and Cys are 10.2 and 8.6 , respectively and $p K a$ of the COOH group for MAC and Cys are 3.4 and 2.0, respectively. The same corresponding calculation scheme was used for the other $\operatorname{Hg}(\mathrm{SR})_{2}$ complexes using MAC or 2-MPA as the competing ligand.

$$
\begin{array}{ll}
{[\mathrm{MAC}]_{\text {total }}=[\mathrm{MAC}]_{\text {free }}+2\left[\mathrm{Hg}(\mathrm{MAC})_{2}\right]+[\mathrm{HgMAC}]} & \\
{[\mathrm{Cys}]_{\text {toala }}=[\mathrm{Cys}]_{\text {free }}+2\left[\mathrm{Hg}(\mathrm{Cys})_{2}\right]+[\mathrm{HgCys}]} & \\
{\left[\mathrm{Hg}^{2+}\right]_{\text {fotal }}=\left[\mathrm{Hg}^{2+}\right]_{\text {free }}+[\mathrm{HgMAC}]+\left[\mathrm{Hg}(\mathrm{MAC})_{2}\right]+[\mathrm{HgCys}]+\left[\mathrm{Hg}(\mathrm{Cys})_{2}\right]+\left[\mathrm{Hg}(\mathrm{OH})_{n}\right]} \\
\mathrm{Hg}^{2+}+\mathrm{MAC} \rightleftharpoons \mathrm{HgMAC} & \log K=32.5 \\
\mathrm{Hg}^{2+}+\mathrm{Cys} \rightleftharpoons \mathrm{HgCys} & \text { Log } K=29.0 \\
\mathrm{Hg}^{2+}+2 \mathrm{MAC} \rightleftharpoons \mathrm{Hg}(\mathrm{MAC})_{2} & \log \beta_{2}=40.9 \\
\mathrm{Hg}^{2+}+2 \mathrm{Cys} \rightleftharpoons \mathrm{Hg}(\mathrm{Cys})_{2} & \log \beta_{2}=? \tag{S1b’’}
\end{array}
$$

Example of calculation
$[\mathrm{MAC}]_{\text {total }}=8 \mu \mathrm{M}^{\mathrm{a}}$
$[\mathrm{Cys}]_{\text {total }}=8 \mu \mathrm{M}^{\mathrm{a}}$
$\left[\mathrm{Hg}^{2+}\right]_{\text {total }}=4 \mu \mathrm{M}^{\mathrm{a}}$
$\left[\mathrm{Hg}(\mathrm{MAC})_{2}\right]=2.27 \mu \mathrm{M}^{\mathrm{b}}$
$\left[\mathrm{Hg}(\mathrm{Cys})_{2}\right]=1.72 \mu \mathrm{M}^{\mathrm{b}}$
${ }^{\text {a }}$ Concentration of ligand used for complexation
${ }^{\mathrm{b}}$ Concentration of complexes determined by HPLC-ICPMS

Constants were recalculated to an ionic strength of 0 M and experimental pH was 2.9. Based on the equations (Sd-Sf); reactions (S4'), (S4''), (S1b'), (S1b'') and total concentration of the Hg ${ }^{I I}$ and ligands and measured complexes concentration, the $\log \beta_{2}$ of $\mathrm{Hg}(\mathrm{Cys})_{2}$ was determined to 37.5.
2. Carboxyl

Fig. S1. The structure and abbreviation of investigated thiol ligands. The thiols are grouped according to the presence of functional groups in addition to the thiol group.

Fig. S2. The integrated peak area of $\mathrm{Hg}(\mathrm{SR})_{2}$ complexes to Thalium $\left({ }^{204} \mathrm{Tl}^{+}\right)$signal ratios with different reaction time for the $\mathrm{Hg}(\mathrm{SR})_{2}$ complex synthesis. (a) mixture of $1 \mu \mathrm{M}$ of $\mathrm{Hg}^{\mathrm{II}}$ and $2 \mu \mathrm{M}$ of each HCys and NACCys. (b) mixture of $1 \mu \mathrm{M}$ of $\mathrm{Hg}^{I I}$ and $2 \mu \mathrm{M}$ of each Cys and NACPen. The experiments were conducted at pH 3.0 , and an ion strength of 0 M . A post column flow of a 10 ng $\mathrm{ml}^{-1} \mathrm{Tl}$ solution (flow rate of $100 \mu \mathrm{~min}{ }^{-1}$) was used to monitor and correct for signal drift of the LC-ICPMS system over time.

Fig. S3. Peak area of $\mathrm{Hg}(\mathrm{SR})_{2}$ complexes to Thalium $\left({ }^{204} \mathrm{Tl}^{+}\right)$signal ratios at different storage time of $\mathrm{Hg}(\mathrm{SR})_{2}$ complex solutions. Samples contain $1 \mu \mathrm{M}$ of $\mathrm{Hg}^{\mathrm{II}}$ and $4 \mu \mathrm{M}$ of individual LMM thiols i.e. Cys, HCys, GSH and Glyc. A post column flow of a $10 \mathrm{ng} \mathrm{ml}^{-1} \mathrm{Tl}$ solution (flow rate of $100 \mu \mathrm{l} \mathrm{min}$-1) was used to monitor and correct for signal drift of the LC-ICPMS system over time.

Fig. S4. LC-ICPMS chromatograms showing ${ }^{202} \mathrm{Hg}^{+}$and ${ }^{127} \mathrm{I}^{+}$signals (counts per second, cps) for (a) $4 \mu \mathrm{M}$ of $\mathrm{Hg}^{\mathrm{II}}$ and $50 \mu \mathrm{M}$ of I^{-}. A gradient elution was used with initially 3.5% of 1-propanol during 12 min , then increased to 25% in a step gradient and kept for 4 min and then back to the initial 3.5% concentration. (b) $4 \mu \mathrm{M}$ of $\mathrm{Hg}^{\mathrm{II}}$ and $50 \mu \mathrm{M}$ of I^{-}. A gradient elution was used with initially 8.5% 1-propanol during 14 min , then increased to 25% in a step gradient and kept for 4 min and then back to the initial 8.5% concentration. (c) $4 \mu \mathrm{M}$ of $\mathrm{Hg}^{\text {II }}, 16 \mu \mathrm{M}$ of MAC and $100 \mu \mathrm{M}$ of I^{-}. The elution gradient was the same as in (a). (d) $4 \mu \mathrm{M}$ of $\mathrm{Hg}^{\mathrm{II}}, 16 \mu \mathrm{M}$ of 2MPA and $100 \mu \mathrm{M}$ of I^{-}. The elution gradient was the same as in (b). The complexes of $\mathrm{Hg}(\mathrm{MAC})_{2}, \mathrm{HgIMAC}$, $\mathrm{Hg}(2 \mathrm{MPA})_{2}$, and $\mathrm{HgI}(2-\mathrm{MPA})$ eluted at $600 \mathrm{~s}, 670 \mathrm{~s}, 780 \mathrm{~s}$, and 1010 s, respestively. The HgI_{2} complex eluted at 790 s with the gradient of (a) and at 1070 s with the gradient of (b). The peaks 1, 2 correspond to the complexes of $\mathrm{HgI}_{\mathrm{n}}{ }^{\mathrm{n}-2}(\mathrm{n}=1,3,4)$ and the peak 3 to a system background signal.

Fig. S5. The mass spectra of 15 investigated $\mathrm{Hg}(\mathrm{SR})_{2}$ complexes achieved by direct infusion to ESIMS, showing molecular mass and Hg isotope pattern of the $\mathrm{Hg}(\mathrm{SR})_{2}$ complexes. All $\mathrm{Hg}(\mathrm{SR})_{2}$ complex analyses were conducted in the negative ionization mode with the exception of $\mathrm{Hg}(\mathrm{Cyst})_{2}$, which was analysed in positive mode. The concentration of $\mathrm{Hg}^{\text {II }}$ was 0.1 mM , the molar ratio of RSH to $\mathrm{Hg}^{\mathrm{II}}$ was 4 and pH was 3.0.

Fig. S6. Measured concentration of the $\mathrm{Hg}(\mathrm{MAC})_{2}$ complex ($2 \mu \mathrm{M}$ of $\mathrm{Hg}^{\mathrm{II}}$ and $8 \mu \mathrm{M}$ of MAC) at different added concentrations of the competing ligands EDTA, Cl^{-}, and Br^{-}. The experiments were carried out at constant ionic strength of $0.5 \mathrm{M}\left(\mathrm{NaClO}_{4}\right)$ and pH of 3.0 .

Fig. S7. LC-ICPMS chromatograms of ${ }^{202} \mathrm{Hg}^{+}$signals Illustrating of retention time of the 15 investigated $\mathrm{Hg}(\mathrm{SR})_{2}$ complexes on the Kinetic Biphenyl LC column used in the LC-ICPMS measurements. The retention time increased as, $1 . \mathrm{Hg}(\mathrm{Cyst})_{2}, 2 . \mathrm{Hg}(\mathrm{CysGly})_{2}, 3 . \mathrm{Hg}(\mathrm{Cys})_{2}, 4$. $\mathrm{Hg}(\mathrm{HCys})_{2}, 5 . \mathrm{Hg}(\mathrm{GSH})_{2}, 6 . \mathrm{Hg}(\mathrm{GluCys})_{2}, 7 . \mathrm{Hg}(\mathrm{Pen})_{2}, 8 . \mathrm{Hg}_{(\mathrm{Glyc})_{2}, ~ 9 .}^{\mathrm{Hg}(\mathrm{NACCys})_{2},} 10$. $\mathrm{Hg}(\mathrm{ETH})_{2}, 1_{1} . \mathrm{Hg}(\mathrm{MAC})_{2}, 12 . \mathrm{Hg}(\mathrm{SUC})_{2}, 13 . \mathrm{Hg}(3 \mathrm{MPA})_{2} .14 . \mathrm{Hg}(\mathrm{NACPen})_{2}, 15 . \mathrm{Hg}(2 \mathrm{MPA})_{2}$.

Fig. S8. LC-ICPMS chromatogram of ${ }^{202} \mathrm{Hg}^{+}$signals for a mixture of $4 \mu \mathrm{M}$ of $\mathrm{Hg}^{\mathrm{II}}$ and $4 \mu \mathrm{M}$ of MAC with isocratic elution using 3.5\% 1-propanol indicating the presence of the one-coordinated HgMAC complex with a retention time of 700 s .

Fig. S9. LC-ESIMS chromatograms with selected ion monitoring (SIM) mode targeting m / z of $\mathrm{Hg}(\mathrm{MAC})_{2}, \mathrm{Hg}(\mathrm{Cys})_{2}$, and CysHgMAC and their corresponding Hg isotope pattern $378-385 \mathrm{~m} / \mathrm{z}$, 436-443 m/z and 407-414 m/z, respectively. An elution gradient was used with initially 8% of $\mathrm{MeOH}, 0.1 \% \mathrm{FA}$ and $92 \% \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{FA}$ from 3 to 10 min followed by a linear gradient to 90% of $\mathrm{MeOH}, 0.1 \% \mathrm{FA}$ which was kept for 3 min . From 13 to 16 min the concentration of $\mathrm{MeOH}, 0.1 \% \mathrm{FA}$ was reduced from 90% to 8% in a linear gradient and was kept for 9 min. The increased background after 6 min is caused by the increase of MeOH in the mobile phase.

Fig. S10. LC-ICPMS chromatograms showing ${ }^{202} \mathrm{Hg}^{+}$signals of (a) a mixture containing $4 \mu \mathrm{M}$ of $\mathrm{Hg}^{\text {II }}$ and $8 \mu \mathrm{M}$ of each Cys and MAC, (b) a mixture containing $4 \mu \mathrm{M}$ of $\mathrm{Hg}^{\text {II }}$ and $16 \mu \mathrm{M}$ of MAC, (c) a mixture containing $4 \mu \mathrm{M}$ of $\mathrm{Hg}^{\text {II }}$ and $16 \mu \mathrm{M}$ of Cys. The retention time of $\mathrm{Hg}(\mathrm{Cys})_{2}$ and $\mathrm{Hg}(\mathrm{MAC})_{2}$ is 85 s and 540 s , respectively with a mobile phase gradient of initially 3.5% of 1propanol for 12 min then a step gradient increase to 25% of 1-propanol. The appearance of a small peak at 850 s is caused by the changed concentration of 1-propanol in the mobile phase.

Fig. S11. Full scan mass spectrum of a solution containing 0.1 mM of $\mathrm{Hg}^{\mathrm{II}}$ and 0.2 mM of each Cys and MAC by direct infusion to ESI-MS with a flow rate of $50 \mu \mathrm{l} \mathrm{min}{ }^{-1}$. Observed signals indicate the presence of $\mathrm{Hg}(\mathrm{MAC})_{2}, \mathrm{Hg}(\mathrm{Cys})_{2}$ and CysHgMAC complexes, matching their molecular mass and Hg isotope pattern.

Table S1. Thermodynamic stability constants for $\mathbf{H g I}_{\mathrm{n}}{ }^{\mathbf{2}}$ n complexes at different ionic strengths
The stability constants were corrected to different ion strength using free software Ionic Strength Corrections for Stability Constants from IUPAC with Specific Interaction Theory (SIT) method ${ }^{[1]}$

Reaction	Stability constant ($\left.\log K_{1}, \log \beta_{2}-\beta_{4}\right)$			
	$\mathrm{I}=0.5^{*}$	$\mathrm{I}=0$	$\mathrm{I}=0.1$	$\mathrm{I}=1$
$\mathrm{Hg}^{2+}+\mathrm{I}^{-}=\mathrm{HgI}^{+}$	12.87	13.42	13.02	12.90
$\mathrm{Hg}^{2+}+2 \mathrm{I}^{-}=\mathrm{HgI}_{2}$	23.82	24.60	24.00	23.92
$\mathrm{Hg}^{2+}+3 \mathrm{I}^{-}=\mathrm{HgI}_{3}{ }^{-}$	27.6	28.32	27.74	27.74
$\mathrm{Hg}^{2+}+4 \mathrm{I}^{-}=\mathrm{HgI}_{4}{ }^{2-}$	29.83	30.07	29.73	30.15

* Reference Martell et al. (2004) ${ }^{[2]}$

Table S2. Computed complex formation free energies, bond lengths and angles of the $\mathbf{H g}(\mathbf{S R})_{2}$ complexes determined at the B3LYP level of theory

All geometries were optimized at the gas phase with a mixed basis set containing Def2-TZVPP for Hg and $6-31++G(d, p)$ for all other atoms, respectively, and an initial geometry with all ligands fully extended

Complexes	$\Delta \mathrm{G}_{2}{ }^{\mathrm{a}}$$(\mathrm{kcal} / \mathrm{mol})$	Bond (\AA)		Angle (${ }^{\circ}$)		
		Hg-S ${ }^{\text {b }}$	$\mathrm{Hg}-\mathrm{O}^{\text {c }}$	S-Hg-S	$\mathrm{Hg}-\mathrm{S}-\mathrm{C}^{\text {b }}$	$\mathrm{O}-\mathrm{Hg}-\mathrm{O}^{\text {c }}$
$\mathrm{Hg}(2-\mathrm{MPA})_{2}$	53.1	2.381	3.042	179.7	101.4	158.4
$\mathrm{Hg}(\mathrm{NACPen})_{2}$	56.4	2.364		175.6	105.0	
$\mathrm{Hg}(\mathrm{NACCys})_{2}$	51.1	2.383	3.087	175.1	99.3	65.4
$\mathrm{Hg}(\mathrm{SUC})_{2}$	54.0	2.376	3.146	176.7	102.8	96.4
$\mathrm{Hg}(3-\mathrm{MPA})_{2}$	58.0	2.361		177.6	103.0	
$\mathrm{Hg}(\mathrm{MAC})_{2}$	56.6	2.373	3.176	177.6	102.9	173.4
$\mathrm{Hg}(\mathrm{Glyc})_{2}$	55.2	2.361		177.7	103.0	
$\mathrm{Hg}(\mathrm{GluCys})_{2}$	77.4	2.365		177.0	103.5	
$\mathrm{Hg}(\mathrm{ETH})_{2}$	56.9	2.360		177.7	102.7	
$\mathrm{Hg}(\mathrm{Pen})_{2}$	86.6	2.383	2.876	176.8	108.4	
$\mathrm{Hg}(\mathrm{GSH})_{2}$	54.7	2.380	3.062	170.7	104.6	63.6
$\mathrm{Hg}(\mathrm{Cys})_{2}$	92.1	2.373		177.4	105.7	
$\mathrm{Hg}(\mathrm{CysGly})_{2}$	91.7	2.375		176.6	106.0	
$\mathrm{Hg}(\mathrm{HCys})_{2}$	87.3	2.372		176.7	106.1	
$\mathrm{Hg}(\mathrm{Cyst})_{2}$	90.7	2.374		175.6	106.1	

${ }^{\text {a }}$ The $\Delta \mathrm{G}$ values are for the reaction 1a, i.e., $\mathrm{Hg}^{2+}+2 \mathrm{RSH}=\mathrm{Hg}(\mathrm{SR})_{2}+2 \mathrm{H}^{+}$, in the gas phase at 298.15 K .
${ }^{\mathrm{b}}$ The Hg-S distances and Hg-S-C angles are the averages over the two Hg-S distances and Hg-SC angles, respectively.
${ }^{\text {c }}$ In the geometry optimisations, several complexes form an additional coordination between Hg and the ligand's carbonyl or carboxyl oxygen (bidentate coordination). The Hg-O distances and O-$\mathrm{Hg}-\mathrm{O}$ angles are the averages over the two $\mathrm{Hg}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{Hg}-\mathrm{O}$ angles, respectively, except $\mathrm{Hg}(\mathrm{Pen})_{2}$, which only forms a single Hg-O interaction.

References

[1] IUPAC, Ionic Strength Corrections for Stability Constants using Specific Interaction Theory (SIT), version 1. 2004.
[2] A. Martell, R. Smith, R. Motekaitis, National Institute of Standard and Technology, NIST. Critically selected stability constants of metal complexes 2004 (PC-based Database: Gaithersburg, MD).

