Supplementary material

Ion exchange technique (IET) to characterise Ag⁺ exposure in soil extracts contaminated with engineered silver nanoparticles

Dina Schwertfeger, ^A Jessica Velicogna, ^A Alexander Jesmer, ^A Heather McShane, ^B Richard Scroggins ^A and Juliska Princz ^{A,C}

^ABiological Assessment and Standardisation Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1A 0H3, Canada.

^BDepartment of Natural Resource Sciences, McGill University, 21 111 Lakeshore Road, Sainte Anne de Bellevue, Québec, H9X 3V9, Canada.

^CCorresponding author. Email: juliska.princz@canada.ca

Ion exchange technique (IET) theory

The principles of IET have been previously outlined 28,30 . Briefly, a sample is passed through a column containing a known mass of a negatively-charged resin ($m_{\rm r}$) saturated with a readily exchangeable cation, usually Na⁺. Exchange occurs between the free metal ions in the sample, and the exchange cation on the resin until steady-state equilibrium conditions are achieved (i.e., the concentration of resin-bound metal is constant). The resin-bound metals are then extracted by passing an exact volume of eluate (e.g., 1.5 M HNO₃) through the column from which the metal concentration can be determined. The concentration of resin-bound metal, [R-M] (mol g⁻¹), is thus determined as:

$$[R - M] = \frac{v_{el} \times [M_{el}]}{m_r} \tag{1}$$

where v_{el} is the known volume of eluate (L), $[M_{el}]$ is the concentration of metal measured in the eluate (mol L⁻¹), and m_r is the mass of resin (g). A calibration procedure, whereby solutions of known free metal ion activity (M^{z+}) are equilibrated with the resin, is then used to determine the conditional binding constant of the resin-metal complex (λ_{R-M}) given the relationship:

$$\lambda_{R-M} = \frac{\{R-M\}}{(M^{Z+})} \tag{2}$$

Conditions for which the binding constant is valid are: (i) calibration solutions and samples must have a consistent temperature, pH and dominant ionic composition in the matrices; and (ii) the concentration of resin sites occupied by the exchange cation at equilibrium must greatly exceed the number of sites occupied by the metal ion (i.e., [R-M] << [R-Na]) such that [R-Na] is not affected by (M^{z+})). The latter condition is considered satisfied if the percentage of resin sites occupied by the metal is < 1% 28 . Free metal activity in the samples can thus be determined by:

$$[M^{Z+}] = \frac{[M_{el}] \times v_{el}}{(\lambda_{R-M} \times m_r)} \tag{3}$$

Details of the SP-ICP-MS analysis

As quantification of both the dissolved and nano-particulate forms of Ag are of interest, capturing both dissolved and particle signals is necessary; however, it is doubtful that one dilution/analysis can optimally capture both signals. We have previously developed an approach for the analysis of samples containing high levels of dissolved analyte^[36], whereby a sample dilution series is used as follows:

1. The first dilution allows for the capture of the dissolved analyte signal within the dissolved calibration range and above the LoQ.

- 2. The second, or "optimal" dilution is used to optimize the particle signal by (i) reducing the dissolved signal to near background levels, (ii) reducing particle counts (i.e., ≤ 1.2 x 10⁵ mL⁻¹) to minimize coincidence, and (iii) ensuring that the number of particles detected during the sampling time is sufficient for statistical power (generally ≥ 1000 particles), increasing analysis time if necessary.
- 3. The final dilution is generally 2x the optimal dilution and is used as a quality control check: particle intensity should remain constant, but particle counts should be approximately half of that observed for the optimal dilution.

Each dilution was prepared from the original sample (i.e., not from a dilution) and analyzed immediately.

Ag⁺ ISE Calibration

Fig. S1. Calibration for Ag⁺ ISE. Measured potential (mV) of the Ag ISE as a function of the log [Ag⁺] activity (mol L⁻¹) measured in samples with a 0.1 M NaNO₃ matrix. Data plotted are from two separate calibration procedures performed two months apart. Note: readings corresponding to Ag⁺ activities below 10⁻⁷ M were achieved using buffered solutions (i.e., Cl⁻, Br⁻, I⁻).

Supporting data for Ag nanomaterial characterization

Fig. S2. TEM images of Nanocomposix Ag 40 nm nanomaterial prepared in a 15 g L⁻¹ suspension.

Fig. S3. Particle size distribution by DLS (based on intensity) of the 40 nm AgNP (Nanocomposix) determined on three replicate samples of a 15 mg L⁻¹ suspension.

Fig. S4. Particle size histogram of the 40 nm AgNP material (Nanocomposix) determined by SP-ICP-MS. Analysis performed on a 15 ng L⁻¹ suspension. The total particulate Ag mass detected represents 35% of the total Ag mass detected.

Table S1. Nominal and measured total Ag concentrations in test samples

Measured values were obtained by ICP-MS (standard mode) on acidified samples

	Nominal	Meas. water matrix	Meas. soil matrix
#	$(\mu g L^{-1})$	$(\mu g L^{-1})$	(µg L ⁻¹)
1	2	1.9	1.7
2	12.5	14.0	13.2
3	200	209	188
4	2	2.7	2.3
5	20	23.7	23.6
6	200	224	217
7	20	19.3	18.3
8	20	19.3	20.4
9	12.5	12.6	13.9
10	200	248	243

Fig. S5. Portions of time-resolved intensity scans of a sample containing both dissolved and nanoparticulate Ag. The first scan (a) shows the elevated baseline of the SP-dissolved fraction, and the second scan (b) shows the same sample after dilution to obtain the optimal particle signal.

Fig. S6. Example of SP-ICP-MS particle size frequency distribution data, fitted to log normal curve. This graph shows data for samples #6 (water matrix) and #6 (soil extract matrix). Samples have been diluted to achieve optimal particle signals. Note: the particles detected in the water sample were slightly smaller than particles detected in the soil extract matrix, possibly due to greater AgNP dissolution.