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Ion exchange technique (IET) theory 

The principles of IET have been previously outlined 28,30. Briefly, a sample is passed through a 

column containing a known mass of a negatively-charged resin (mr) saturated with a readily 

exchangeable cation, usually Na+. Exchange occurs between the free metal ions in the sample, 

and the exchange cation on the resin until steady-state equilibrium conditions are achieved (i.e., 

the concentration of resin-bound metal is constant). The resin-bound metals are then extracted by 

passing an exact volume of eluate (e.g., 1.5 M HNO3) through the column from which the metal 

concentration can be determined. The concentration of resin-bound metal, [R-M] (mol g-1), is thus 

determined as: 

[𝑅𝑅 −𝑀𝑀] = 𝑣𝑣𝑒𝑒𝑒𝑒 ×[𝑀𝑀𝑒𝑒𝑒𝑒]
𝑚𝑚𝑟𝑟

 (1) 

where vel  is the known volume of eluate (L), [Mel] is the concentration of metal measured in 

the eluate (mol L-1), and mr is the mass of resin (g). A calibration procedure, whereby solutions of 

known free metal ion activity (Mz+) are equilibrated with the resin, is then used to determine the 

conditional binding constant of the resin-metal complex (λR-M) given the relationship: 

𝜆𝜆𝑅𝑅-𝑀𝑀 = {𝑅𝑅-𝑀𝑀}
(𝑀𝑀𝑧𝑧+) (2) 

Conditions for which the binding constant is valid are: (i) calibration solutions and samples 

must have a consistent temperature, pH and dominant ionic composition in the matrices; and (ii) 

the concentration of resin sites occupied by the exchange cation at equilibrium must greatly 

exceed the number of sites occupied by the metal ion (i.e., [R-M] << [R-Na]) such that [R-Na] is 

not affected by (Mz+)). The latter condition is considered satisfied if the percentage of resin sites 

occupied by the metal is < 1% 28. Free metal activity in the samples can thus be determined by: 

[𝑀𝑀𝑧𝑧+] = [𝑀𝑀𝑒𝑒𝑒𝑒] × 𝑣𝑣𝑒𝑒𝑒𝑒
(𝜆𝜆𝑅𝑅-𝑀𝑀 × 𝑚𝑚𝑟𝑟) (3) 

Details of the SP-ICP-MS analysis 
As quantification of both the dissolved and nano-particulate forms of Ag are of interest, 

capturing both dissolved and particle signals is necessary; however, it is doubtful that one 

dilution/analysis can optimally capture both signals. We have previously developed an approach 

for the analysis of samples containing high levels of dissolved analyte[36], whereby a sample 

dilution series is used as follows: 

1. The first dilution allows for the capture of the dissolved analyte signal within the dissolved

calibration range and above the LoQ.
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2. The second, or “optimal” dilution is used to optimize the particle signal by (i) reducing the

dissolved signal to near background levels, (ii) reducing particle counts (i.e., ≤ 1.2 x 105 mL-

1) to minimize coincidence, and (iii) ensuring that the number of particles detected during the

sampling time is sufficient for statistical power (generally ≥ 1000 particles), increasing

analysis time if necessary.

3. The final dilution is generally 2x the optimal dilution and is used as a quality control check:

particle intensity should remain constant, but particle counts should be approximately half of

that observed for the optimal dilution.  

Each dilution was prepared from the original sample (i.e., not from a dilution) and analyzed 

immediately. 

Ag+ ISE Calibration 

Fig. S1. Calibration for Ag+ ISE. Measured potential (mV) of the Ag ISE as a function of the log [Ag+] 

activity (mol L-1) measured in samples with a 0.1 M NaNO3 matrix. Data plotted are from two separate 

calibration procedures performed two months apart. Note: readings corresponding to Ag+ activities below 

10-7 M were achieved using buffered solutions (i.e., Cl-, Br-, I-).
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Supporting data for Ag nanomaterial characterization 

Fig. S2. TEM images of Nanocomposix Ag 40 nm nanomaterial prepared in a 15 g L-1 suspension. 
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Fig. S3. Particle size distribution by DLS (based on intensity) of the 40 nm AgNP (Nanocomposix) 

determined on three replicate samples of a 15 mg L-1 suspension.  

Fig. S4. Particle size histogram of the 40 nm AgNP material (Nanocomposix) determined by SP-ICP-MS. 

Analysis performed on a 15 ng L-1 suspension. The total particulate Ag mass detected represents 35% of the 

total Ag mass detected.   
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Table S1. Nominal and measured total Ag concentrations in test samples 

Measured values were obtained by ICP-MS (standard mode) on acidified samples  

Nominal 
Meas.  

water matrix 
Meas.  

soil matrix 
# (µg L-1) (µg L-1) (µg L-1) 
1 2 1.9 1.7 
2 12.5 14.0 13.2 
3 200 209 188 
4 2 2.7 2.3 
5 20 23.7 23.6 
6 200 224 217 
7 20 19.3 18.3 
8 20 19.3 20.4 
9 12.5 12.6 13.9 

10 200 248 243 
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 (a) 

(b) 
Fig. S5. Portions of time-resolved intensity scans of a sample containing both dissolved and nano-

particulate Ag. The first scan (a) shows the elevated baseline of the SP-dissolved fraction, and the second 

scan (b) shows the same sample after dilution to obtain the optimal particle signal. 

Fig. S6. Example of SP-ICP-MS particle size frequency distribution data, fitted to log normal curve. This 

graph shows data for samples #6 (water matrix) and #6 (soil extract matrix). Samples have been diluted to 

achieve optimal particle signals. Note: the particles detected in the water sample were slightly smaller than 

particles detected in the soil extract matrix, possibly due to greater AgNP dissolution.  

0

10

20

30

40

50

60

0 20 40 60 80 100

Fr
eq

ue
nc

y

Diameter (nm)

#6 water
#6 soil


	Ion exchange technique (IET) to characterise Ag+ exposure in soil extracts contaminated with engineered silver nanoparticles
	Ion exchange technique (IET) theory
	Details of the SP-ICP-MS analysis
	Ag+ ISE Calibration
	Supporting data for Ag nanomaterial characterization

