Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy
Xiaodong Gao A B and Jon Chorover A CA Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721, USA.
B Present address: Department of Earth Science, Rice University, Houston, TX 77251, USA. Email: xdgao@rice.edu
C Corresponding author. Email: chorover@cals.arizona.edu
Environmental Chemistry 9(2) 148-157 https://doi.org/10.1071/EN11119
Submitted: 29 September 2011 Accepted: 15 February 2012 Published:
Environmental context. Perfluoroalkyl compounds are organic contaminants that exhibit strong resistance to chemical- and microbial-degradation. As partitioning between solid and aqueous phases is expected to control the transport of perfluoroalkyl compounds, we studied the molecular mechanisms of their adsorption–desorption at a representative Fe oxide surface using in situ molecular spectroscopy. The results provide valuable information on the types of bonds formed, and enable a better understanding of the transport and fate of these organic contaminants in natural environments.
Abstract. The kinetics and mechanisms of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) adsorption to nanoparticulate hematite (α-Fe2O3) from aqueous solutions were examined using in situ, flow-through attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Results indicate that both PFOA and PFOS molecules are retained at the hydrophilic hematite surface and the adsorption shows strong pH dependence. However, ATR-FTIR data reveal that PFOA and PFOS are bound to the iron oxide by different mechanisms. Specifically, in addition to electrostatic interactions, PFOA forms inner-sphere Fe–carboxylate complexes by ligand exchange, whereas the PFOS sulfonate group forms outer-sphere complexes and possibly hydrogen-bonds at the mineral surface. Both solution pH and surface loading affect adsorption kinetics. Faster adsorption was observed at low pH and high initial PFC concentrations. Sorption kinetics for both compounds can be described by a pseudo-second-order rate law at low pH (pH 3.0 and 4.5) and a pseudo-first-order rate law at high pH (pH 6.0). Sorption isotherm data for PFOA derived from spectroscopic results exhibit features characteristic of ionic surfactant adsorption to hydrophilic charged solid surfaces.
References
Prevedouros K., Cousins L. T., Buck R. C., Korzeniowski S. H. (2006). Sources, fate and transport of perfluorocarboxylates.. Environ. Sci. Technol. 40, 32| Sources, fate and transport of perfluorocarboxylates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gru7zK&md5=1e94f39eee912a131accc642e304dd43CAS |
Vecitis C. D., Wang Y. J., Cheng J., Park H., Mader B. T., Hoffmann M. R. (2010). Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams.. Environ. Sci. Technol. 44, 432
| Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSrtrjM&md5=d13e50fc9aa5779e18e4818cab255542CAS |
Moody C. A., Field J. A. (1999). Determination of perfluorocarboxylates in groundwater impacted by fire-fighting activity.. Environ. Sci. Technol. 33, 2800
| Determination of perfluorocarboxylates in groundwater impacted by fire-fighting activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFektrw%3D&md5=e50be4a5cac181e4c620b4dffeb02f84CAS |
Arp H. P. H., Niederer C., Goss K. U. (2006). Predicting the partitioning behavior of various highly fluorinated compounds.. Environ. Sci. Technol. 40, 7298
| Predicting the partitioning behavior of various highly fluorinated compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWnsrnO&md5=5b614e40e563b938000e3dd7d319d46aCAS |
E. Kissa, Fluorinated surfactants: Synthesis, properties, and applications 1994 (Marcel Dekker: New York).
USEPA 2002. Revised draft hazard assessment of perfluorooctanoic acid and its salts. Available at www.ewg.org/files/EPA_PFOA_110402.pdf [Verified 4 April 2012].
Yuan Q., Ravikrishna R., Valsaraj K. T. (2001). Reusable adsorbents for dilute solutionseparation.5: photodegradation of organic compounds on surfactant-modified titania.. Separ. Purif. Technol. 24, 309
| Reusable adsorbents for dilute solutionseparation.5: photodegradation of organic compounds on surfactant-modified titania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFaqt78%3D&md5=9df5efc7e3d135d0965c8eaef03a6409CAS |
Moody C. A., Hebert G. N., Strauss S. H., Field J. A. (2003). Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA.. J. Environ. Monit. 5, 341
| Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitleqtrk%3D&md5=b855015c616983e0349938cddbdbfacfCAS |
Kennedy G. L., Butenhoff J. L., Olsen G. W., O’Connor J. C., Seacat A. M., Perkins R. G., Biegel L. B., Murphy S. R., Farrar D. G. (2004). The toxicology of perfluorooctanoate.. Crit. Rev. Toxicol. 34, 351
| The toxicology of perfluorooctanoate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslSgsbo%3D&md5=d1be2e00f168ac104565160b18760c31CAS |
Lau C., Anitole K., Hodes C., Lai D., Pfahles-Hutchens A., Seed J. (2007). Perfluoroalkyl acids: a review of monitoring and toxicological findings.. Toxicol. Sci. 99, 366
| Perfluoroalkyl acids: a review of monitoring and toxicological findings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKru7%2FI&md5=260c2d6db51cda4c148c9ec95259b151CAS |
Murakami M., Morita C., Morimoto T., Takada H. (2011). Source analysis of perfluorocarboxylates in Tokyo Bay during dry weather and wet weather using sewage marker.. Environ. Chem. 8, 355
Skutlarek D., Exner M., Farber H. (2006). Perfluorinated surfactants in surface and drinking water.. Environ. Sci. Pollut. Res. 13, 299
| Perfluorinated surfactants in surface and drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCrtb%2FN&md5=15b996b4ccb38a15f54ff2cf226560d3CAS |
Murakami M., Kuroda K., Sato N., Fukushi T., Takizawa S., Takada H. (2009). Groundwater Pollution by Perfluorinated Surfactants in Tokyo.. Environ. Sci. Technol. 43, 3480
| Groundwater Pollution by Perfluorinated Surfactants in Tokyo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFertLs%3D&md5=a089e57509c17b6eececdfccb5ed0619CAS |
Post G. B., Louis J. B., Cooper K. R., Boros-Russo B. J., Lippincott R. L. (2009). Occurrence and potential significance of perfluorooctanoic acid (PFOA) detected in New Jersey public drinking water systems.. Environ. Sci. Technol. 43, 4547
| Occurrence and potential significance of perfluorooctanoic acid (PFOA) detected in New Jersey public drinking water systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsF2htbY%3D&md5=ee6e13de28dcb1e3012749bf1bc7ccd5CAS |
Quiñones O., Snyder S. A. (2009). Occurrence of perfluoroalkyl carboxylates and sulfonates in drinking water utilities and related waters from the United States.. Environ. Sci. Technol. 43, 9089
| Occurrence of perfluoroalkyl carboxylates and sulfonates in drinking water utilities and related waters from the United States.Crossref | GoogleScholarGoogle Scholar |
Yamashita N., Kannan K., Taniyasu S., Horii Y., Okazawa T., Petrick G., Gamo T. (2004). Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry.. Environ. Sci. Technol. 38, 5522
| Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVKltLg%3D&md5=cd9bfdc121a837216b13bf9ab6f84508CAS |
Sáez M., de Voogt P., Parsons J. R. (2008). Persistence of perfluoroalkylated substances in closed bottle tests with municipal sewage sludge.. Environ. Sci. Pollut. Res. 15, 472
| Persistence of perfluoroalkylated substances in closed bottle tests with municipal sewage sludge.Crossref | GoogleScholarGoogle Scholar |
Plumlee M. H., Larabee J., Reinhard M. (2008). Perfluorochemicals in water reuse.. Chemosphere 72, 1541
| Perfluorochemicals in water reuse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslGmtrw%3D&md5=7d682dbf6de360f39a55354bb14961c5CAS |
Rayne S., Forest K. (2009). Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods.. J. Environ. Sci. Health Part A 44, 1145
| Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SqurjJ&md5=b39fc49258635fa3b1d8cd6189a5c774CAS |
Zhang R., Somasundaran P. (2006). Advances in adsorption of surfactants and their mixtures at solid/solution interfaces.. Adv. Colloid Interface Sci. 123–126, 213
| Advances in adsorption of surfactants and their mixtures at solid/solution interfaces.Crossref | GoogleScholarGoogle Scholar |
Higgins C. P., Luthy R. G. (2006). Sorption of perfluorinated surfactants on sediments.. Environ. Sci. Technol. 40, 7251
| Sorption of perfluorinated surfactants on sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVChtrjJ&md5=15b1fd8585b449862d5189209ee3154fCAS |
Johnson R. L., Anschutz A. J., Smolen J. M., Simcik M. F., Penn R. L. (2007). The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces.. J. Chem. Eng. Data 52, 1165
| The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFKmsbc%3D&md5=eec4bbade98b9c8bfd1afb1371608bb8CAS |
Ochoa-Herrera V., Sierra-Alvarez R. (2008). Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge.. Chemosphere 72, 1588
| Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslGmtrc%3D&md5=3421fd813912873996570b56bde14300CAS |
You C., Jia C., Pan G. (2010). Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface.. Environ. Pollut. 158, 1343
| Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Knur4%3D&md5=26f4e4abeec88e207be3bf896c9ec066CAS |
Tang C. Y., Fu Q. S., Gao D., Criddle C. S., Leckie J. O. (2010). Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces.. Water Res. 44, 2654
| Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1yisb4%3D&md5=7a9de460e248e040031a37629a44302eCAS |
Xing R., Rankin S. E. (2006). Three-stage multilayer formation kinetics during adsorption of an anionic fluorinated surfactant onto germanium. 1. Concentration effect.. J. Phys. Chem. B 110, 295
| Three-stage multilayer formation kinetics during adsorption of an anionic fluorinated surfactant onto germanium. 1. Concentration effect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlShtb3O&md5=4debfb7adc49fbaa81c29009df8b9a23CAS |
Parikh S. J., Lafferty B. J., Sparks D. L. (2008). An ATR-FTIR spectroscopic approach for measuring rapid kinetics at the mineral/water interface.. J. Colloid Interface Sci. 320, 177
| An ATR-FTIR spectroscopic approach for measuring rapid kinetics at the mineral/water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlagtbw%3D&md5=2e382da7bd26b0b279c128eee0f36841CAS |
Gao X. D., Metge D. W., Ray C., Harvey R. W., Chorover J. (2009). Surface complexation of carboxylate adheres Cryptosporidium parvum öocysts to the hematite-water interface.. Environ. Sci. Technol. 43, 7423
| Surface complexation of carboxylate adheres Cryptosporidium parvum öocysts to the hematite-water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKksL%2FM&md5=4d45ef81ed0fa0050028f3b8b0b97d54CAS |
Gao X. D., Chorover J. (2010). Infrared spectroscopic study of sodium dodecylsulfate (SDS) adsorption to hematite nano-particles in aqueous systems.. J. Colloid Interface Sci. 348, 167
| Infrared spectroscopic study of sodium dodecylsulfate (SDS) adsorption to hematite nano-particles in aqueous systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFOjtbs%3D&md5=6631abe81553cef9bed90ba2af031071CAS |
Hug S. J. (1997). In situ Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions.. J. Colloid Interface Sci. 188, 415
| In situ Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVKqtrg%3D&md5=61b1c206988ff615974eeb261fc39f68CAS |
Goldberg S., Johnston C. T. (2001). Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling.. J. Colloid Interface Sci. 234, 204
| Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Omuw%3D%3D&md5=c66a3461cea8ad497bee9cbe6ff991c5CAS |
Hwang Y. S., Liu J., Lenhart J. J., Hadad C. M. (2007). Surface complexes of phthalic acid at the hematite/water interface.. J. Colloid Interface Sci. 307, 124
| Surface complexes of phthalic acid at the hematite/water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWjsb8%3D&md5=52ed9a3fced3807471e0f69e728b0791CAS |
Omoike A., Chorover J. (2006). Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis.. Geochim. Cosmochim. Acta 70, 827
| Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVamu7c%3D&md5=e41e222b03db42b158d1f5289f2214f9CAS |
Dobson K. D., Roddick-Lanzilotta A. D., McQuillan A. J. (2000). An in situ infrared spectroscopic investigation of adsorption of sodium dodecylsulfate and of cetyltrimethylammonium bromide surfactants to TiO2, ZrO2, Al2O3, and Ta2O5 particle films from aqueous solutions.. Vib. Spectrosc. 24, 287
| An in situ infrared spectroscopic investigation of adsorption of sodium dodecylsulfate and of cetyltrimethylammonium bromide surfactants to TiO2, ZrO2, Al2O3, and Ta2O5 particle films from aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntF2jtb8%3D&md5=0cf5146aa5d02400f0385183de55779fCAS |
Li H. Y., Tripp C. P. (2004). Use of infrared bands of the surfactant headgroup to identify mixed surfactant structures adsorbed on Titania.. J. Phys. Chem. B 108, 18318
| Use of infrared bands of the surfactant headgroup to identify mixed surfactant structures adsorbed on Titania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptF2ks7s%3D&md5=8b72c1cd89ebd809a2728bb1e33f26e6CAS |
U. Schwertmann, R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization 1991 (Wiley-VCH: Weinheim, Germany).
Alves C. A., Porter M. D. (1993). Atomic force microscopic characterization of fluorinated alkanethiolate monolayer at gold and correlations electrochemical and infrared reflection spectroscopic structural descriptions.. Langmuir 9, 3507
| Atomic force microscopic characterization of fluorinated alkanethiolate monolayer at gold and correlations electrochemical and infrared reflection spectroscopic structural descriptions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsl2lsrc%3D&md5=bd17a752241dad5505500f485b38b92cCAS |
Lenk T. J., Hallmark V. M., Hoffmann C. L., Rabolt J. F., Castner D. G., Erdelen C., Ringsdorf H. (1994). Structural investigation of molecular organization in self-assembled monolayers of a semifluorinated amidethiol.. Langmuir 10, 4610
| Structural investigation of molecular organization in self-assembled monolayers of a semifluorinated amidethiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVOht7s%3D&md5=005b257c2576e7c457793d0c44c90ea0CAS |
López-Fontán J. L., Sarmiento F., Schulz P. C. (2005). The aggregation of sodium perfluorooctanoate in water.. Colloid Polym. Sci. 283, 862
| The aggregation of sodium perfluorooctanoate in water.Crossref | GoogleScholarGoogle Scholar |
Brace N. O. (1962). Long chain alkanoic and alkenoic acids with perfluoroalkyl terminal segments.. J. Org. Chem. 27, 4491
| Long chain alkanoic and alkenoic acids with perfluoroalkyl terminal segments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXis1OltQ%3D%3D&md5=badb98f5edd510aecb7cc76de1e19429CAS |
Ha J. Y., Yoon T. H., Wang Y. G., Musgrave C. B., Brown G. E. (2008). Adsorption of organic matter at mineral/water interfaces: 7. ATR-FTIR and quantum chemical study of lactate interactions with hematite nanoparticles.. Langmuir 24, 6683
| Adsorption of organic matter at mineral/water interfaces: 7. ATR-FTIR and quantum chemical study of lactate interactions with hematite nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1agsrk%3D&md5=ed018893192a8e23931b6f994be89b1bCAS |
Yoon T. H., Johnson S. B., Musgrave C. B., Brown G. E. (2004). Adsorption of organic matter at mineral/water interfaces: I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces.. Geochim. Cosmochim. Acta 68, 4505
| Adsorption of organic matter at mineral/water interfaces: I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlylsr4%3D&md5=f25bf80ab51741f8f8c8773562869994CAS |
D. L. Sparks, Sorption, in Encyclopedia of Soils in the Environment (Ed. D. Hillel) 2004, pp. 532 (Academic Press).
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds 1986 (Wiley: New York).
Atkin R., Craig V. S. J., Biggs S. (2000). Adsorption kinetics and structural arrangements of cationic surfactants on silica surfaces.. Langmuir 16, 9374
| Adsorption kinetics and structural arrangements of cationic surfactants on silica surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1Ogsrk%3D&md5=8feee433e8ef3a712ce9ca3bfe66d4b7CAS |
Neivandt D. J., Gee M. L., Tripp C. P., Hair M. L. (1997). Coadsorption of poly(styrenesulfonate) and cetyltrimethylammonium bromide on silica investigated by attenuated total reflection techniques.. Langmuir 13, 2519
| Coadsorption of poly(styrenesulfonate) and cetyltrimethylammonium bromide on silica investigated by attenuated total reflection techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVSmtbY%3D&md5=bb1dba16f9ec809854fe509acd300358CAS |
Wang Z., Ainsworth C. C., Friedrich D. M., Gassman P. L., Joly A. G. (2000). Kinetics and mechanism of surface reaction of salicylate on alumina in colloidal aqueous suspension.. Geochim. Cosmochim. Acta 64, 1159
| Kinetics and mechanism of surface reaction of salicylate on alumina in colloidal aqueous suspension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvF2ltr8%3D&md5=b6de9d3c88ae4c9fe6619a271af39317CAS |
Qu Y., Zhang C. J., Li F., Bo X. W., Liu G. F., Zhou Q. (2009). Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon.. J. Hazard. Mater. 169, 146
| Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlOqt7o%3D&md5=dac68cbb1b81653ba6ec97a660243660CAS |
Yu Q., Zhang R. Q., Deng S. B., Huang J., Yu G. (2009). Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study.. Water Res. 43, 1150
| Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVGjtLw%3D&md5=28366dae15e00fadcb927027ff093967CAS |
J. Chorover, M. L. Brusseau, Kinetics of sorption-desorption, in Kinetics of Water-Rock Interaction (Eds S. L. Brantley, J. D. Kubicki, A. F. White) 2008, pp. 109–149 (Springer: New York).
Bohmer M. R., Koopal L. K. (1992). Adsorption of ionic surfactants on variable-charge surfaces. 1. Charge effects and structure of the adsorbed layer.. Langmuir 8, 2649
| Adsorption of ionic surfactants on variable-charge surfaces. 1. Charge effects and structure of the adsorbed layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsVSgtLo%3D&md5=f00924972390b2fd6155231d0b9be788CAS |