Possible contribution of triboelectricity to snow–air interactions
Ekaterina Y. Tkachenko A C and Sergey G. Kozachkov BA Department of Antarctic Geoecology, Institute of Geological Science, NAS of Ukraine, 55b Gonchara Street, Kyiv, 01054, Ukraine.
B Donau Lab, 73 Laureatska Street, Kyiv, 03026, Ukraine.
C Corresponding author. Email: ktkachenko@igs-nas.org.ua
Environmental Chemistry 9(2) 109-115 https://doi.org/10.1071/EN10074
Submitted: 10 July 2010 Accepted: 29 June 2011 Published: 13 September 2011
Journal Compilation © CSIRO Publishing 2012 Open Access CC BY-NC-ND
Environmental context. Polar near-surface snow can act as a chemical reactor that alters the composition and chemistry of snow and the overlying air. Although the mechanisms and driving forces of these reactions have long been debated, triboelectrification (production of electrostatic charges by friction) of snow by wind has not yet been considered as a factor. It is proposed that in polar regions, triboelectrification could significantly influence the composition and chemistry of snow.
Abstract. Reactions that proceed in polar snow cover may significantly affect the chemistry of the overlying atmosphere, but mechanisms and driving forces of these reactions are still under discussion. The proposed hypothesis attempts to explain some experimental data that cannot be fully understood (e.g. the effect of wind on OH radicals, ozone and persistent organic pollutants levels) by taking into account the influence of electrical phenomena on the snow surface. We assumed that a combination of such factors as low humidity, high wind speed and low temperatures makes the influence of triboelectrification of snow significant for polar areas, where purity and the depth of snow cover prevent fast charge dissipation. The major points of the hypothesis are: (1) when the electric field reaches a value sufficient for the onset of corona discharge, various free radical processes are initiated resulting in changes in the concentrations of ozone, OH radical, nitrate, etc., and the decomposition of pollutant molecules; (2) the high electric field can stimulate transport of ions (such as bromide and nitrate) from the condensed phase to the gas phase; and (3) the ageing of charged snow can increase its electrical potential.
References
[1] R. W. Risebrough, W. Walker, T. T. Schmidt, B. W. DeLappe, C. W. Connors, Transfer of chlorinated biphenyls to Antarctica. Nature 1976, 264, 738.| Transfer of chlorinated biphenyls to Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkt1Kgtbs%3D&md5=6383ab130811394d1f2875f0bfd6ebc2CAS |
[2] F. Wania, D. Mackay, A global distribution model for persistent organic chemicals. Sci. Total Environ. 1995, 160–161, 211.
| A global distribution model for persistent organic chemicals.Crossref | GoogleScholarGoogle Scholar |
[3] F. Wania, D. Mackay, Global fractionation and cold condensation of low volatile organochlorine compounds in polar regions. Ambio 1993, 22, 10.
[4] R. L. Mauldin, F. L. Eisele, D. J. Tanner, E. Kosciuch, R. Shetter, B. Lefer, S. R. Hall, J. B. Nowak, M. Buhr, G. Chen, P. Wang, D. David, Measurements of OH, H2SO4 and MSA at the South Pole during ISCAT. Geophys. Res. Lett. 2001, 28, 3629.
| Measurements of OH, H2SO4 and MSA at the South Pole during ISCAT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1ykt7o%3D&md5=682b9af05d1bf063bcd469b8abce29a4CAS |
[5] A. M. Grannas, A. E. Jones, J. Dibb, M. Ammann, C. Anastasio, H. J. Beine, M. Bergin, J. Bottenheim, C. S. Boxe, G. Carver, G. Chen, J. H. Crawford, F. Dominé, M. M. Frey, M. I. Guzmán, D. E. Heard, D. Helmig, M. R. Hoffmann, R. E. Honrath, L. G. Huey, M. Hutterli, H. W. Jacobi, P. Klán, B. Lefer, J. McConnell, J. Plane, R. Sander, J. Savarino, P. B. Shepson, W. R. Simpson, J. R. Sodeau, R. von Glasow, R. Weller, E. W. Wolff, T. Zhu, An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos. Chem. Phys. 2007, 7, 4329.
| An overview of snow photochemistry: evidence, mechanisms and impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWiurbJ&md5=e6223eb83c019413ce3c8bce528a5512CAS |
[6] S. J. Sjostedt, L. G. Huey, D. J. Tanner, J. Peischl, G. Chen, J. E. Dibb, B. Lefer, M. A. Hutterli, A. J. Beyersdorf, N. J. Blake, D. R. Blake, D. Sueper, T. Ryerson, J. Burkhart, A. Stohl, Observations of hydroxyl and the sum of peroxy radicals at Summit, Greenland during summer 2003. Atmos. Environ. 2007, 41, 5122.
| Observations of hydroxyl and the sum of peroxy radicals at Summit, Greenland during summer 2003.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Kru7c%3D&md5=aef639c3cafb7d7cf33504e11e7bdaa2CAS |
[7] W. J. Bloss, J. D. Lee, D. E. Heard, R. A. Salmon, S. J.-B. Bauguitte, H. K. Roscoe, A. E. Jones, Observations of OH and HO2 radicals in coastal Antarctica. Atmos. Chem. Phys. 2007, 7, 4171.
| Observations of OH and HO2 radicals in coastal Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWiurnP&md5=3896db0b3e6c52afe9cdd56b835bcf5eCAS |
[8] A. Jefferson, D. J. Tanner, F. L. Eisele, D. D. Davis, G. Chen, J. Crawford, J. W. Huey, A. L. Torres, H. Berresheim, OH Photochemistry and methane sulphonic acid formation in the coastal Antarctic boundary layer. J. Geophys. Res. 1998, 103, 1647.
| OH Photochemistry and methane sulphonic acid formation in the coastal Antarctic boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXpsleksw%3D%3D&md5=8712aa286376ef998383cfcf53c0030aCAS |
[9] P. C. Pearce, B. W. Currie, Some qualitative results on the electrification of snow. Can. J. Res. A 1949, 27, 1.
[10] P. Pluvinage, Some results of atmospheric electricity measurements on the Greenland ice cap. Geophys. Res. Papers 1955, 42, 109.
[11] C. Magono, N. Sakurai, Elektrische Ladungen während Schneefegen im Hochgebirge. Pure Appl. Geophys. 1970, 83, 142.
[12] J. R. Herman, On the electrical properties of blowing snow. Ann. Geophys. 1964, 20, 235.
[13] R. Wishart, Electrification of Antarctic drifting snow, in Proceedings International Symposium on Antarctic Glaciological Exploration (ISAGE Symposium), Hanover, NH, USA, 3–7 September 1968 (Eds A. J. Gow, C. Keeler, C. C. Langway, W. F. Weeks) 1970, IASH Publication Number 86, pp. 316–324. Available at http://iahs.info/redbooks/a086/086036.pdf [Verified 19 July 2011].
[14] D. S. Schmidt, R. A. Schmidt, J. D. Dent, Electrostatic force in blowing snow. Boundary-Layer Meteorol. 1999, 93, 29.
| Electrostatic force in blowing snow.Crossref | GoogleScholarGoogle Scholar |
[15] B. M. J. Herbert, C. J. Halsall, S. Villa, K. C. Jones, R. Kallenborn, Rapid changes in PCB and OC pesticide concentrations in Arctic snow. Environ. Sci. Technol. 2005, 39, 2998.
| Rapid changes in PCB and OC pesticide concentrations in Arctic snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFOgu7k%3D&md5=322cf29b2f0425194cda7cd04375e372CAS |
[16] F. Wania, Modeling the fate of non-polar organic chemicals in an ageing snow pack Chemosphere 1997, 35, 2345.
| Modeling the fate of non-polar organic chemicals in an ageing snow packCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1artrw%3D&md5=ad3a35c2bf1dad7383e10e5f3ad5bd64CAS |
[17] C. J. Halsall, Investigation and occurrence of persistent organic pollutants (POPs) in the arctic: their atmospheric behaviour and interaction with the seasonal snow pack. Environ. Pollut. 2004, 128, 163.
| Investigation and occurrence of persistent organic pollutants (POPs) in the arctic: their atmospheric behaviour and interaction with the seasonal snow pack.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1Cjt7k%3D&md5=4340dea92cf3039773834632d6ea243aCAS |
[18] M. R. Albert, E. F. Shulz, Snow and firn properties and air-snow transport processes at Summit, Greenland. Atmos. Environ. 2002, 36, 2789.
| Snow and firn properties and air-snow transport processes at Summit, Greenland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKmt78%3D&md5=f30b7f8a662c127c34d91b3c4d0455bcCAS |
[19] A. Cabanes, L. Legagneux, F. Dominé, Evolution of the specific surface area and morphology of Arctic fresh snow during the ALERT 2000 campaign. Atmos. Environ. 2002, 36, 2767.
| Evolution of the specific surface area and morphology of Arctic fresh snow during the ALERT 2000 campaign.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKmtrc%3D&md5=66ac05b815e0367d4ef53f271995bd28CAS |
[20] F. Dominé, P. B. Shepson, Air–snow interactions and atmospheric chemistry. Science 2002, 297, 1506.
| Air–snow interactions and atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar |
[21] R. L. Mauldin, D. J. Tanner, F. L. Eisele, Measurement of OH during PEM-Tropics A. J. Geophys. Res. 1999, 104, 5817.
| Measurement of OH during PEM-Tropics A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Cns7k%3D&md5=6f98f5fea73423dcc082abb65b0f1339CAS |
[22] A.-L. Sumner, P. B. Shepson, Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature 1999, 398, 230.
| Snowpack production of formaldehyde and its effect on the Arctic troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVGksro%3D&md5=28ef57bd58cd09abd28b92da29052dc3CAS |
[23] A. E. Jones, R. Weller, E. W. Wolf, H.-W. Jacobi, Speciation and rate of photochemical NO and NO2 production in Antarctic snow. Geophys. Res. Lett. 2000, 27, 345.
| Speciation and rate of photochemical NO and NO2 production in Antarctic snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtV2lurk%3D&md5=8e4122cf12df648873fa477bcf5090e9CAS |
[24] X. Zhou, H. Beine, R. E. Honrath, J. D. Fuentes, W. Simpson, P. B. Shepson, J. W. Bottenheim, Snowpack photochemical production of HONO: a major source of OH in the Arctic Boundary Layer in springtime. Geophys. Res. Lett. 2001, 28, 4087.
| Snowpack photochemical production of HONO: a major source of OH in the Arctic Boundary Layer in springtime.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotl2rs7w%3D&md5=21650450ae11ecab5ef1235df7ff25ceCAS |
[25] M. A. Hutterli, J. R. McConnell, R. W. Stewart, H.-W. Jacobi, R. C. Bales, Impact of temperature-driven cycling of hydrogen peroxide (H2O2) between air and snow on the planetary boundary layer. J. Geophys. Res. Atmos. 2001, 106, 15395.
| Impact of temperature-driven cycling of hydrogen peroxide (H2O2) between air and snow on the planetary boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVyrs7Y%3D&md5=313777bfaa70336fb4994fc5c23aa772CAS |
[26] A. M. Grannas, P. B. Shepson, C. Guimbaud, A. L. Sumner, M. Albert, W. Simpson, F. Dominé, H. Boudries, J. Bottenheim, H. J. Beine, R. E. Honrath, X. Zhou, A study of photochemical and physical processes affecting carbonyl compounds in the Arctic atmospheric boundary layer. Atmos. Environ. 2002, 36, 2733.
| A study of photochemical and physical processes affecting carbonyl compounds in the Arctic atmospheric boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKmtrg%3D&md5=d7b96059b684b9f22666a775785b0c8fCAS |
[27] G. Chen, D. Davis, J. Crawford, L. M. Hutterli, L. G. Huey, D. Slusher, L. Mauldin, F. Eisele, D. Tanner, J. Dibb, M. Buhr, J. McConnell, B. Lefer, R. Shetter, D. Blake, C. H. Song, K. Lombardo, J. Arnoldy A reassessment of HOx South Pole chemistry based on observations recorded during ISCAT 2000. Atmos. Environ. 2004, 38, 5451.
| J. Arnoldy A reassessment of HOx South Pole chemistry based on observations recorded during ISCAT 2000.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVGjsrw%3D&md5=5e902f6a36dede4c5f269fa50dc2b4dcCAS |
[28] J. Yang, R. E. Honrath, M. C. Peterson, J. E. Dibb, A. L. Sumner, P. B. Shepson, M. Frey, H.-W. Jacobi, A. Swanson, N. Blake, Impacts of snowpack emissions on deduced levels of OH and peroxy radicals at Summit, Greenland. Atmos. Environ. 2002, 36, 2523.
| Impacts of snowpack emissions on deduced levels of OH and peroxy radicals at Summit, Greenland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlKmsLk%3D&md5=1f6f9b2f3fea12abd07a46f583b673a2CAS |
[29] M. C. Peterson, R. E. Honrath, Observations of rapid photochemical destruction of ozone in snowpack interstitial air. Geophys. Res. Lett. 2001, 28, 511.
| Observations of rapid photochemical destruction of ozone in snowpack interstitial air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlahsLk%3D&md5=0ddaefac90516b439228e3bbe7adb666CAS |
[30] D. Helmig, F. Bocquet, L. Cohen, S. J. Oltmans, Ozone uptake to the polar snowpack at Summit, Greenland. Atmos. Environ. 2007, 41, 5061.
| Ozone uptake to the polar snowpack at Summit, Greenland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Kru7o%3D&md5=fce17964d92ba329f316d23982cfd7f6CAS |
[31] W. R. Simpson, R. von Glasow, K. Riedel, P. Anderson, P. Ariya, J. Bottenheim, J. Burrows, L. J. Carpenter, U. Frieß, M. E. Goodsite, D. Heard, M. Hutterli, H.-W. Jacobi, L. Kaleschke, B. Neff, J. Plane, U. Platt, A. Richter, H. Roscoe, R. Sander, P. Shepson, J. Sodeau, A. Steffen, T. Wagner, E. Wolff, Halogens and their role in polar boundary-layer ozone depletion Atmos. Chem. Phys. 2007, 7, 4375.
| Halogens and their role in polar boundary-layer ozone depletionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWiurbK&md5=310626f7a40ff7118e48eda58fb804deCAS |
[32] K. L. Foster, R. A. Plastridge, J. W. Bottenheim, P. B. Shepson, B. J. Finlayson-Pitts, C. W. Spicer, The role of Br2 and BrCl in surface ozone destruction at polar sunrise. Science 2001, 291, 471.
| The role of Br2 and BrCl in surface ozone destruction at polar sunrise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslegtg%3D%3D&md5=6e9bfd0c844663ad9078db35570ea5bcCAS |
[33] A. E. Jones, P. S. Anderson, M. Begoin, N. Brough, M. A. Hutterli, G. J. Marshall, A. Richter, H. K. Roscoe, E. W. Wolff, BrO, blizzards, and drivers of polar tropospheric ozone depletion events Atmos. Chem. Phys. 2009, 9, 4639.
| BrO, blizzards, and drivers of polar tropospheric ozone depletion eventsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGns7bJ&md5=915b68e50fbab0262b429310d8005380CAS |
[34] J. Latham, The electrification of snowstorms and sandstorms. Q. J. R. Meteorol. Soc. 1964, 90, 91.
| The electrification of snowstorms and sandstorms.Crossref | GoogleScholarGoogle Scholar |
[35] J. Latham, J. Montagne, The possible importance of electrical forces in the development of cornices. J. Glaciol. 1970, 9, 375.
[36] V. Y. Lipenkov, A. A. Ekaykin, N. I. Barkov, M. O. Purshe, On the relation between surface snow density in Antarctica and wind speed. Data Glaciol. Stud. 1998, 85, 148.[in Russian]
[37] V. F. Petrenko, S. C. Colbeck, Generation of electric fields by ice and snow friction. J. Appl. Phys. 1995, 77, 4518.
| Generation of electric fields by ice and snow friction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1Cmu7k%3D&md5=f6ff6f17b032844071cd65b3ff9b425aCAS |
[38] V. F. Petrenko, Electromechanical Phenomena in Ice. Special Report 96–2 1996 (Cold Regions Research & Engineering Laboratory, US Army Corps of Engineers).
[39] A. K. Dunin, In the Kingdom of Snow 1983 (Nauka: Novosibirsk) [in Russian].
[40] J. Latham, Electrification produced by the asymmetric rubbing of ice on ice. Br. J. Appl. Phys. 1963, 14, 488.
| Electrification produced by the asymmetric rubbing of ice on ice.Crossref | GoogleScholarGoogle Scholar |
[41] J. Latham, B. J. Mason, Electric charge transfer association with temperature gradients in ice. Proc. R. Soc. Lond. 1961, A260, 523.
[42] J. Latham, C. D. Stow, A laboratory investigation of the electrification of snowstorms. Q. J. R. Meteorol. Soc. 1967, 93, 55.
| A laboratory investigation of the electrification of snowstorms.Crossref | GoogleScholarGoogle Scholar |
[43] P. V. Hobbs, Ice Physics 1974, p. 179 (Clarendon Press: Oxford, UK).
[44] N. Bjerrum, Structure and properties of ice. Science 1952, 115, 385.
| Structure and properties of ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XksVaqsQ%3D%3D&md5=1d726b794e1b7b2942214d0b8c28ba17CAS |
[45] E. R. Wishart, U. Radok, Electrostatic charging of aerial wires during Antarctic blizzards Polar Meteorology, Technical Note 87, WMO-No. 211.TP.111 1967, pp. 492–529 (World Meteorological Organisation: Geneva).
[46] M. Gordon, S. Biswas, P. A. Taylor, J. Hanesiak, M. Albarran-Melzer, S. Fargey, Measurements of drifting and blowing snow at Iqaluit, Nunavut, Canada during the STAR project. Atmos.-ocean 2010, 48, 81.
| Measurements of drifting and blowing snow at Iqaluit, Nunavut, Canada during the STAR project.Crossref | GoogleScholarGoogle Scholar |
[47] M. Gordon, P. Taylor, The electric field during blowing snow events. Boundary-Layer Meteorol. 2009, 130, 97.
| The electric field during blowing snow events.Crossref | GoogleScholarGoogle Scholar |
[48] A. A. Ekaykin, Meteorological regime of Central Antarctic and his role in the formation of isotope composition of snow mass 2003 PhD Dissertation, Arctic and Antarctic Institute, Saint Petersburg [in Russian].
[49] M. G. Sobacchi, A. V. Saveliev, A. A. Fridman, A. F. Gutsol, L. A. Kennedy, Experimental assessment of pulsed corona discharge for treatment of VOC emissions. Plasma Chem. Plasma Process. 2003, 23, 347.
| Experimental assessment of pulsed corona discharge for treatment of VOC emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitl2jtb8%3D&md5=bf8267eb43949ba300398f0949a50294CAS |
[50] J. Latham, The electrification of frost deposits. Q. J. R. Met. Soc. 1963, 89, 265.
| The electrification of frost deposits.Crossref | GoogleScholarGoogle Scholar |
[51] V. J. Schaefer, R. J. Cheng, The production of ice crystals fragments by sublimation and electrification. J. Rech. Atmos. 1971, 5, 5.
[52] E. J. Workman, S. E. Reynolds, Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity. Phys. Rev. 1950, 78, 254.
| Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXjsFSqsw%3D%3D&md5=a16e7ca615cc6cfe390cfb3b4e71d441CAS |
[53] M. Yamashita, J. B. Fenn, Negative ion production with the electrospray ion source. J. Phys. Chem. 1984, 88, 4671.
| Negative ion production with the electrospray ion source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlsVahs7Y%3D&md5=32ee64546e875e98b894d437ec13e104CAS |
[54] V. A. Eroshenko, Influence of the specific interface in a lyophobic heterogeneous system upon observable thermal effects during the isothermal compression. J. Russ. Chem. Soc. 2002, 46, 31.[in Russian]
| 1:CAS:528:DC%2BD38XnslShtbc%3D&md5=61417f8bacc3ef14a6a9de51605f8691CAS |
[55] I. M. Dolgin, L. S. Petrov (Eds), Atmospheric temperature. Atmospheric Pressure, Wind, Atmospheric Humidity, Nebulosity, Precipitations, Meteors, Visibility. Vol. 2 1977 (Gidrometeoizdat: Leningrad) [in Russian].