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Abstract. New drilling, measurement-while-drilling and top-of-hole sensing technologies are being developed to
overcome the challenges of exploration for new mineral deposits under deep cover. These methods will provide
continuous, near-real time data collection from every drillhole in the future. Consequently, there will be a need for
efficient methods of analysing and interpreting this data stream to complement the exploration strategy. We demonstrate the
usefulness of cluster analysis for rapid, automated rockmass classification, and the impact of selecting different subsets of the
available data on the classification results. Our study shows that only a few measurements are needed to broadly domain the
intersected rock mass and highlights the importance of selecting correct input data depending on the purpose of the
classification. Our analysis also indicates the potential of identifying textural and rock mechanical properties from
petrophysical measurements via cluster analysis.
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Introduction

A variety of data is collected in today’s minerals exploration and
evaluation campaigns. The type of data collected depends on the
deposit or commodity plus the current practice of the exploration
company. Inmostcases, samples arefirst loggedvisuallyby trained
geologists and then sent to a laboratory for chemical analysis.
Currently, there is a lot of variation in what type of analytical
and logging data is collected after visual inspection because of
associated costs of acquiring such data.What elements are assayed
may vary even for different sections of a drillhole depending
on the recommendations of the logging geologist. In addition,
geophysical downhole logs are still not commonplace and often
available only for a few drillholes throughout a target, despite their
potential to considerably aid geological interpretation. Looking
towards the future of targeting new deposits deep under cover, this
current practice will become increasingly impractical due to long
turnaround times and the opportunity cost of making uninformed
or poor decisions. Fortunately, new logging-while-drilling and
top-of-hole sensing technologies are being developed and will
become commercially available over the next few years (Hillis
et al., 2014). When implemented, these technologies will provide
near-real time data, and more importantly, continuous and
consistent measurements from every drillhole. This new wealth
of readily available data will both enable and require an automated
and timelymethod of interpretation to aid a quick decisionmaking
process.

In this study, we present the outcome of an experiment to
automatically domain the intersected rock mass from drillhole
RD01 at theDETCRCBrukungaDrilling Research and Training
Facility. The drill site is located at the historic Brukunga sulphide

mine in the Adelaide Hills in South Australia. Our research
objectives were:

(a) testing of a distance-based, unsupervised clustering method
for classification of geological data;

(b) determining what and how many of the available datasets
are necessary to broadly domain the geological units; and

(c) studying the influence of prior data manipulation on the
accuracy of the classification.

We used the fuzzy c-means (FCM) clustering algorithm mainly
because of its ability to dealwith imprecise ormixed data (Bezdek
et al., 1984). As opposed to ‘hard clustering’ where a sample
either belongs to a specific cluster or does not, fuzzy clustering
allows a sample to be amember or part of several ‘fuzzy’ clusters
simultaneously. The degree to which a sample belongs to a
particular cluster is defined by its membership degree, a real
number between 0 and 1, summing to unity over all clusters.
The usefulness and successful application of fuzzy clustering to
geoscientific data has been demonstrated in several studies, e.g.
Bosch et al. (2013), Dekkers et al. (2014), Hanesch et al. (2001)
and Templ et al. (2008).

Methodology

The first objective was to test a distance-based, unsupervised
clustering method for rock mass classification. The FCM
clustering method groups a dataset into subsets based on their
similarities by minimising the following least-squares objective
function:
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wheren is the total number of sample points z= {z1, z2,. . ., zn}, c is
the number of clusters,m is the weighting exponent (m� 1), and
V = {v1, v2,. . ., vC} are the centre values. U= {ujk 2 [0, 1]} is the
membershipmatrixwhose elementsujk represent themembership
degree of the jth data point to the kth cluster. k k2 is the Euclidian
norm. We solve for ujk to determine the membership degree and
use a cut-off value (a) above which a sample is uniquely assigned
to one particular cluster.

The FCM algorithm requires the user to specify the number
of clusters before analysis. For most applications, where
information is available about the local, deposit scale geology,
this prior knowledge does not pose a significant problem. In our
case, the number of litho-groups that should be identified
was based on the visual core log and a quick grouping based
on certain elemental ratios that are useful indicators for different
rock classes. The lithologies at Brukunga are mainly psammitic
to pelitic metasedimentary units that host variable amounts of
sulphide mineralisation (Skinner, 1958). These units are
intersected by dolerite dykes up to a few metres thick, which
can be significantly altered. The dykes are characterised by
elevated Ti, Ca and Mg contents as well as low natural gamma
counts. The mineralised units are readily separable from the host
rock due to elevated Fe and S contents, higher density and lower
resistivity. These units can be further subdivided based on their
‘grade’ (i.e. sulphide mineral content). High grade units are
characterised by a higher S/S+Fe+Al ratio and an increase in
P-wave velocity due to the abundance of pyrite. The manually
defined rock classes are:

Class1 – psammite (host rock), S/S+Fe+Al� 0.13, Ca/Fe+
Si < 0.08, Si > 60%;
Class2 – lower grade mineralised, S/S+Fe+Al < 0.20, Ca/Fe+
Si < 0.08, Si < 60%;
Class3 – higher grade mineralised, S/S+Fe+Al > 0.20, Ca/Fe+
Si < 0.08, Si > 60%; and
Class4 – dolerite, Ca/Fe+Si�0.08, Ca�6%.

Since the subdivision into unmineralised host rock, high and low
grade mineralised rock and dolerite dykes, separates the rock
mass at Brukunga into major geologically and economically
useful groups, the number of clusters for FCM analysis was
set to four. The weighting exponent m (see Equation 1) controls
the ‘hardness’of the cluster boundaries and canbevaried between
1 (hard) and 30 (very soft, blurred). For most datasets, a value
between 1.5 and 3 gives good results (empirical advice from
Bezdek et al., 1984).We tested values of 2, 1.8 and 1.6 and found

little difference in performance. When implementing the FCM
algorithm inMATLAB, a third input parameter, the cut-off value
a, can be specified. Since a data point can belong to more than
one cluster simultaneously, a is the degree of membership above
which a point is assigned to a particular cluster. If a data point
belongs to more than one cluster with a membership value below
a, it will not be assigned to any one particular cluster, but is then
defined as belonging to more than one cluster to a certain degree.
This might be useful in detecting intervals that are a mix of
different rock types, or intervals that are somewhat different
from the main lithologies, such as highly altered rock. For the
purpose of broadly classifying the rocks into major groups, this
can add noise or small-scale variations, which are undesirable in
this context. We tested values of 0.6 and 0.4, where 0.4 forced
most data to belong to one particular cluster, whichwas preferred.

The second objective was to test different subsets of the
available log, and assay data to determine the combinations
that are best suited to classify the rock types at Brukunga.
Subsets of petrophysical (GP) and geochemical (GC) assay
data were first analysed separately and then combined to
compare their respective performances. The individual subsets
are summarised in Table 1. To show the effect of data
preconditioning on the cluster outcome, the FCM algorithm
was first run on the raw datasets and repeated on standardised
data. The individual datasets were standardised with the Z-score,
calculated by subtracting the mean from each data point
and dividing each mean result by the standard deviation. This
works well with normally distributed data; however, some data
has a natural log-normal distribution. In this case, we used a log-
transformation first.

To compare the results of the cluster analysis with the manual
classification, three different indicators of successwere calculated:
classification complexity, uncertainty in classification and the
match with the manual interpretation. A simple measure of
complexity is the number of class changes along the drillhole.
However, the manual classification has 40 class changes over an
interval of 274 samples (metres), so a value considerably below
40 changes would provide a poor representation of the geology,
which is undesirable. In practice, simple models are less of a
problem than overly complex solutions with many changes due
to flipping back-and-forth between cluster values. The second
value is the number of non-uniquely classified samples, or more
specifically, those intervals with membership degrees below the
cut-off value.Thedegreeofmatchwith themanual interpretation is
calculated by counting the number of correctly identified intervals
divided by the total number of intervals (or samples). There is no
consideration to the degree ofmatching, whether picking one class
overanother isabettermismatch; either it is thesameclass (1)ornot
(0).Thus, the resultingmatching (correlation) coefficient isa robust
measure of a successful classification.

Table 1. Different subsets used for cluster analysis.

Geophysical data – GP Assay data – GC

GPGC
combined

natural gamma (total count), density, P-wave velocity, S-wave velocity,
acoustic impedance (Z), Poisson’s ratio (n), shear modulus (G), bulkmodulus
(K),Young’smodulus (E),magnetic susceptibility, 16’’ resistivity, resistivity,
apparent chargeability

SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, TiO2, Cr2O3,
LOI, TOT/S, Ti/Al, Al/Si, Hf, Zr, Cu and Tl.

GP1 GC1
GPGC1
combined

natural gamma (total count), density, P-wave velocity, magnetic
susceptibility, 16’’ resistivity

SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, TiO2

GP2 GC2
GPGC2
combined

natural gamma (total count), density, magnetic susceptibility Fe2O3, CaO, Ti/Al
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Fig. 1. Results of clustering subset GPGC2 with different FCM parameters. (a, c, d) Results for clustering the
standardised data: (a) a= 0.4, m= 1.6 – nearly all data points are uniquely and correctly classified (see Table 2a);
(c) a= 0.4, m= 2.0 – a higher value for m leads to a larger number of non-uniquely classified samples and more class
changes due to ‘fuzzier’ cluster boundaries (seeTable 2b); (d)a= 0.6,m = 2.0– clusteringwith a higher value for a reveals
samples with membership degrees between 0.4 and 0.6 (smaller multi-coloured circles), predominantly along cluster
boundaries where the membership of a sample to one or the other cluster becomesmore ambiguous. Those points belong
to several clusters with membership degrees indicated by the size and colour of the circle. (b, e) Results for clustering the
raw data. The trends for changing a and m are apparent for the raw data as well (see Table 3a versus Table 3b). By
decreasing a and m, all data points could be uniquely classified, but some misclassification is evident when clustering
the rawdata compared to the standardiseddata (seeTables 2 and3).Thecluster boundaries seem to followcertain rangesof
the natural gamma count (x-axis) leading to elongated (banded) cluster shapes.
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Results

Initially, we tested a few different parameters of the FCM
algorithm to determine the values that are best suited to
classify this type of data. A combination of a = 0.4 and m= 1.6
appears to provide themost robust result (Figure 1a). By lowering
the cut-off value a, the number of non-uniquely classified
intervals was decreased considerably (Figure 1c versus
Figure 1d and Figure 1b versus Figure 1e). Decreasing the
weighting exponent m affects the ‘hardness’ of the cluster
boundaries, and using m= 1.6 resulted in a general decrease in
the number of unnecessary class changes (Table 2). Figure 1
shows an example of how the different FCM algorithm
parameters affect the clustering results.

After determining the best parameters, the algorithm was run
bothon the standardised and rawdata of all subsets. Theoutcomes
are summarised in Tables 2 and 3 respectively. A comparison
between the clustering results of the standardised and the raw
data of subset GPGC2 with the same parameters is shown

in Figure 1a versus Figure 1b, Figure 1d versus Figure 1e and
Figure 2a versus Figure 2b. Our results demonstrate the
importance of standardising data before FCM analysis
especially when the variables have different units or scales.
The clusters of the raw data (Figure 1b, e) have elongated
shapes, following certain ranges of the natural gamma data.
This is due to higher absolute values of the natural gamma
compared to the other measurements included in subset
GPGC2. The effect is eliminated after standardising, which
represent the individual data variables in terms of their mean
and standard deviation. Standardising reduced the number of
class changes considerably, except for subsetGPGC1.An overall
good-to-excellent correlation between the standardised data and
the manual classification is achieved for all subsets, where the
combined subset GPGC2 yielded the highest matching
coefficient of 0.94.

Subset GPGC2 includes only a small subset of all available
data, and its FCM analysis result can be seen as a ‘more
supervised’ form of clustering for the following reasons.

(a) (b) (c)

Fig. 2. Histogram plots comparing the results of clustering raw data (a) versus standardised data (b) in terms of number of class changes and non-uniquely
classified intervals. Although there are a few more non-uniquely classified intervals for the standardised data (right hand side y-axis in all plots), the number of
class changes (left y-axis) is reduced considerably for most subsets, leading to a less complex result that better matches the manual classification (dotted line and
see Tables 2 and 3). (b) and (c) show the effect of decreasing theweighting exponentm on the number of non-uniquely classified samples (note the different scales
of the right hand side y-axes; 0–7 in (b) and 0–30 in (c)).

Table 3. Cluster correlation results of the raw data.

(a) Raw data – c= 4, m= 1.6, a= 0.4

Dataset GPGC GP GC GPGC1 GP1 GC1 GPGC2 GP2 GC2
Class matching 0.39 0.45 0.36 0.70 0.70 0.72 0.74 0.64 0.92
Number of class changes 86 86 86 43 43 91 96 119 60
Non-uniquely classified intervals 0 4 2 0 0 0 0 0 0

(b) Raw data – c= 4, m= 2.0, a= 0.6
Class matching 0.43 0.27 0.22 0.66 0.66 0.68 0.66 0.59 0.73
Number of class changes 97 97 90 60 60 95 118 141 87
Non-uniquely classified intervals 36 36 32 29 29 37 54 28 35

Table 2. Cluster correlation result of the standardised data.

Standardised data – c= 4, m= 1.6, a= 0.4

Dataset GPGC GP GC GPGC1 GP1 GC1 GPGC2 GP2 GC2
Class matching 0.93 0.74 0.91 0.88 0.89 0.86 0.94 0.88 0.92
Number of class changes 35 45 60 53 41 73 44 50 54
Non-uniquely classified intervals 1 4 1 2 5 4 2 6 1

Standardised data – c= 4, m= 2.0, a= 0.4
Class matching 0.92 0.73 0.68 0.86 0.86 0.66 0.90 0.81 0.92
Number of class changes 41 50 76 60 45 86 55 65 55
Non-uniquely classified intervals 6 11 25 7 16 29 12 14 7
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Fig. 3. A log plot (fromWellCAD) of the FCM classification results and selected data inputs: geophysical log and chemical assay data (left
part), cluster results of the respective subsets of the standardised data andmanual logs further to the right. Themanual classification log is based
on elemental ratios calculated from assay results. ‘Lithology’, plotted as a percentage log, represents the visual core log of the geologist.
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sulphides present per interval.Black arrows indicate quarzitic, coarse grained intervals identifiedby clustering theGPdataset (Cluster 4).These
intervals coincidewith spikes in P-wavevelocity, higher resistivity andhigher SiO2 content.Green arrows indicate pelitic intervals identified in
subsets dominated by geochemical data (GC, GC1 and GPGC1). These intervals are characterised by lower SiO2 and higher Al, Mg and K
contents. The smallest combined subset GPGC2 best matches the manual classification.
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The individual petrophysical measurements and elements
for analysis were chosen based on their expected ability to
correctly aid classifying the rocks at Brukunga. From the
available petrophysical measurements, the natural gamma and
magnetic susceptibility logs were also chosen because they are

routinely gathered during most exploration and mining logging
campaigns. The density log is expected to be useful to separate
mineralised units from the host rock and to identify the dolerite
dykes to some degree. From the available elemental analysis, Fe
was also chosen to separate mineralised units from host rock as
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well as separate high and lower grade. The Ca analysis and Ti/Al
ratio are indicative of dolerite dykes.

Discussion

Our results above demonstrate that standardising data comprised
of variables with different units and scales assist the FCM
algorithm greatly. When running the clustering algorithm with
identical parameters on the raw and standardised data, the results
for the latter achieved better correlation and less class changes
in almost all instances (Figures 1 and 2, Tables 2 and 3).
Furthermore, our results indicate that a similar, and usually
better, classification result was obtained by merging the separate
subsets (e.g. GP, GC) into a larger combined dataset (GPGC
combined). Less harm and greater good is done for classification
by combining petrophysics with elemental analysis than just
including more elements from the geochemistry. The overall best
matching classification result was obtained from the smallest
combined subset (GPGC2) comprised of only six independent
measurements. As mentioned above, these measurements were
chosen to reflect a selection that a geologist/geophysicist,
with prior knowledge of the local geological setting, might
choose. This also highlights the fact that not all measurements
and analysis that can be obtained are needed to successfully
classify the intersected rock mass. However, the ‘right’
combination of datasets will vary from deposit to deposit and
will differ depending on the purpose of the classification (e.g.
broad versus fine, lithology versus mineralisation, alteration,
etc.). Figure 3 illustrates the results in the form of well logs.
The manual classification, the visual core logs (‘Lithology’,
‘Alteration’, ‘Sulphides’), as well as selected petrophysical
measurements and elemental analysis are included for
comparison. Only the results from clustering the standardised
data are shown. Figure 3 shows that the cluster results correlate
well with the manual classification in terms of identifying
major boundaries and rock classes. In most cases, the results
of clustering the datasets that include elemental analysis only
(GC, GC1), are more complex with more variation (class
changes), especially in the unmineralised host rock (upper part
of the drillhole (15–134m)). The GP data of the first subset did
not identify the dolerites (non-uniquely classified intervals),
but added a subdivision within the unmineralised host rock,
apparently based on variations of P-wave velocity.

The ‘Lithology’, ‘Alteration’ and ‘Sulphides’ logs are
based on visual core logging (Figure 3). The main features
logged by the geologist were: percentage of psammite, pelite
and psammopelite (metasedimentary host rock), a laminated,
porphyroblast rich variant of psammitic host rock associated
with sulphide mineralisation (lower grade), a porphyroblast
rich variety of psammitic host rock, also associated with
sulphide mineralisation (higher grade) and the dolerite dykes.
These respective litho-types were logged in terms of percent of
their relative occurrence per metre interval. The ‘Alteration’ log
records the thickness of alteration zones in cm per meter interval.
The total amount of visually identified sulphides logged (in %)
per interval is shown in the ‘Sulphides’ log. As described above,
the ‘Lithology’ log is mainly based on rock texture, a feature that
is not directly reflected in any of the available measurements.
Thus, there are some differences between the ‘Lithology’ log and
the manual classification, as well as the cluster results. The visual
logging of the abundance of sulphide minerals on the other hand
tends to better match the manual classification and our cluster
outcome.

When examining the individual logs in Figure 3 further, some
interesting links between the cluster outcome and the influences

from the individual petrophysical logs and elemental analysis
becomemore evident.The largest subset (GPGC),which includes
almost all available data, yielded the least complex result. The
number of class changes is 35, five less than for the manual
classification. All major units and boundaries were correctly
identified whilst omitting most small-scale variations. This
result is therefore most valuable when looking for a broad,
first pass interpretation of the intersected rock mass. Subset
GP, comprised of all petrophysical measurements and derived
parameters, shows more variation within the unmineralised host
unit. The dolerites (usually cluster number 4) were not identified
as a separate cluster. Instead, cluster number 4 was assigned to a
different identified ‘subclass’ of rock that was not separated
out in the other results. This class (Cluster 4, brown intervals
in the GP log in Figure 3, indicated by black arrows) seems to be
characterised by spikes in P-wave velocity and higher resistivity
and coincide with intervals of higher Si content (Figure 4). These
intervals are likely to represent quartz rich (quarzitic) beds in the
metasedimentary host rock unit. The textural features of these
intervals are described as medium to coarse grained and massive
with little to no fractures. There is no correlation between
increasing P-wave velocity (VP) and density for these intervals
but a correlation between VP and SiO2 content and VP and grain
size is evident (Figure 4). Coarser grained textures and higher
quartz content can be positively correlated with unconfined
compressive strength (UCS) of rocks, which in turn might be
correlated with P-wave velocity (Tandon and Gupta, 2013).
Subsets GC, GPGC1 and GC1 show quite similar results to
each other, displaying a comparatively high frequency of class
changes in the upper section. These changes occur at different
intervals than the coarse grained intervals described above and
seem to correlate with slightly higher Al, Mg and K contents and
lower Si content (green arrows in Figure 3). These regions
coincide with intervals of lower P-wave velocity and small-
scale dips in the resistivity log, and are likely to represent
pelite rich intervals of the host rock with opposing trends in
petrophysical and geochemical characteristics compared to the
quarzitic units. Since the number of clusters was set to equal 4,
these pelite rich intervals were grouped within class 2 (laminated
variety, low grade sulphides) during the clustering of those
subsets. The laminated variety is in fact a meta-pelitic rock
that is characterised by a fine grained texture and abundant
mica. These textural features and the varying abundance of
sulphide minerals throughout the rock facies at Brukunga are
believed to be of primary depositional origin (Skinner, 1958).
Grouping the smaller pelitic intervals with the laminated variety
is therefore geologically reasonable, since both represent a
very similar litho-type within the larger stratigraphic unit. The
clustering results from the separate analysis of the GP and GC/
GC1 subsets can be useful for separating the broader class of
psammitic host rock into quarzitic, pelitic and intermediate
subclasses.

Subsets GP2, GC2 and combined GPGC2 show less variation
within the psammitic unit and a reasonable (GP2) or very good
(GPGC2, GC2) correlation with the manual classification.
Note that the manual grouping isn’t necessarily the ‘correct’
classification. Correctness is a matter of definition and purpose.
However, for our purposes the manual grouping is considered
the best outcome for the cluster analysis.Asmentionedbefore, the
manual classes were largely based on elemental ratios that
reflect the differences in rock composition at the Brukunga
site. The same reasoning was applied to choose the input data
(measurements) for subset GPGC2. It is therefore not surprising
that the cluster results of this subset best match the manual
grouping. What our results best demonstrate is that it is not
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necessary to collect the largest amount of data to be able
to robustly classify the intersected rock mass. The most
extensive datasets performed well, but not as well as a
trimmed set of petrophysical and geochemical data (GPGC2).
For such an approach to succeed, it is important to understand
how the measurements and analysis will relate to the rock
characteristics. This does not pose a difficulty as there is much
information about these relationships. However, an appreciation
of both the physical and elemental data influences is needed
to make the correct input data selections for FCM analysis to
work well.

Conclusions

Our results confirm: (i) the usefulness of FCM clustering as a
tool for grouping geological data, and (ii) the importance of data
preconditioning. The most important factor to consider when
using unsupervised cluster methods is the selection of input data.
This selection should be based on the specific purpose of the
classification. If little prior knowledge about the rockmass exists,
a large input dataset comprised of both petrophysical logs and
geochemical assay data would appear to be the best choice to get
a first pass, broad grouping of the different domains. Including
petrophysical measurements reduces the complexity of the
classification, which is a desirable result in the early stages of
exploration work where the main objective is to broadly classify
and identify prospective intervals. However, if the main
characteristics of the rock mass to be found are more specific,
then a selection of input data that reflect those characteristics will
be sufficient to identify the desired rock classes.

There would appear to be a tendency to neglect petrophysical
data if an abundance of elemental data is provided, given the
paucity of studies integrating both types of data. Our study shows
that this approach excludes a veryvaluable input to understanding
the rock mass. For example, other rock characteristics, like
mechanical and textural properties, can be distinguished when
petrophysical data is included. A dataset dominated by variables
derived from velocity measurements, identified intervals with
higher grain sizes and different mineralogy in our study area,
due to the effect of these characteristics on rock mechanical
properties. Our findings not only highlight the variety of
applications of this methodology, but also the potential value
of obtaining continuous petrophysical measurements from
drillholes.
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