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Abstract. Integration of 3D and time-lapse 4D seismic data into reservoir modelling and history matching processes poses
a significant challenge due to the frequent mismatch between the initial reservoir model, the true reservoir geology, and the
pre-production (baseline) seismic data. A fundamental step of a reservoir characterisation and performance study is the
preconditioning of the initial reservoir model to equally honour both the geological knowledge and seismic data. In this paper
we analyse the issues that have a significant impact on the (mis)match of the initial reservoirmodelwithwell logs and inverted
3Dseismicdata.These issues include the constrainingmethods for reservoir lithofaciesmodelling, the sensitivity of the results
to the presence of realistic resolution and noise in the seismic data, the geostatistical modelling parameters, and the
uncertainties associated with quantitative incorporation of inverted seismic data in reservoir lithofacies modelling.
We demonstrate that in a geostatistical lithofacies simulation process, seismic constraining methods based on seismic
litho-probability curves and seismic litho-probability cubes yield the best match to the reference model, even when realistic
resolution and noise is included in the dataset. In addition, our analyses show that quantitative incorporation of inverted
3D seismic data in static reservoir modelling carries a range of uncertainties and should be cautiously applied in order to
minimise the risk of misinterpretation. These uncertainties are due to the limited vertical resolution of the seismic data
compared to the scale of the geological heterogeneities, the fundamental instability of the inverse problem, and the non-unique
elastic properties of different lithofacies types.
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Introduction

A depositional facies (herein simply referred to as ‘facies’) is a
distinctive body of rock that forms under specific conditions
of sedimentation and hence has particular characteristics
(Reading, 2009). This conceptual definition highlights that it is
important to include facies modelling as a key part of static and
dynamic reservoir studies. Porosity, permeability, clay content,
degree of heterogeneity and connectivity are often simulated
on the basis of facies distribution, and the distribution of facies
mainly depends on the geological processes (Saussus and Sams,
2012; Pyrcz and Deutsch, 2014). Geological knowledge about
a given reservoir is always incomplete, because of limited well
coverage and complex subsurface heterogeneity (Dutton et al.,
2003; Eaton, 2006). In this context, 3D seismic data, due to its
high spatial density, plays a critical role — not only by defining
the reservoir structure and geometry, but also in constraining
the reservoir property variations (Doyen, 2007). To produce
realistic models of the reservoir facies and corresponding
petrophysical properties, and to avoid biased or non-physical
results, seismic-related information should be simultaneously
incorporated with all other available static and dynamic data in
the model-building process. This can be achieved, for example,
by using geostatistical simulation techniques (e.g. Deutsch and
Journel, 1992;Araktingi andBashore, 1992;Behrens et al., 1998;
Caers et al., 2001; Mukerji et al., 2001; Dubrule, 2003).

Geostatistical reservoir modelling has become standard
practice in the energy industry, and is widely used for
hydrocarbon reserve estimation, targeting new producer/
injector locations, and production profile forecasting with flow
simulators (Caers, 2005; Zakrevsky, 2011). Static reservoir
models are typically built using time-independent static
reservoir data that has been measured once in time, including
well logs, core measurements and pre-production 3D seismic
surveys. These models are then updated in a history matching
process to be consistent with dynamic reservoir data during
the production phase (e.g. historical production data and/or
time-lapse 4D seismic data). Reservoir history matching is a
highly underdetermined and nonlinear inverse problem, and is
therefore very sensitive to the initial starting model. In particular,
when including 4D seismic data in the reservoir history matching
process, it is essential that the synthetic 3D seismic datamodelled
from the initial static reservoir model closely matches the real
baseline 3D seismic data. Without this initial match, the use of
subsequent 4D seismic datasets to update reservoir simulation
models introduces considerable uncertainty and risk (Lumley
and Behrens, 1998; Da Veiga and Le Ravalec-Dupin, 2010; Le
Ravalec-Dupin et al., 2011).

Despite the fact that seismic data is an excellent source of
information beyond the wells, seismic reflection amplitudes do
not often give a direct interpretation of reservoir lithofacies and
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petrophysical properties (e.g. Bornard et al., 2005). In this
context, seismic inversion is conventionally used to transform
seismic reflection amplitudes into subsurface elastic properties
(e.g. velocities and impedances). The scope of seismic reservoir
characterisation, however, goes beyond simply inverting the
seismic data to obtain the elastic parameters of the rock, and
attempts to obtain the reservoir properties such as lithofacies
and porosity from the seismic data; This may be performed (1)
by using a sequential or multistep scheme (seismic inversion
followed by estimation of reservoir properties from the seismic-
inverted data), or (2) based on a unified inversion scheme (direct
petrophysical inversionof seismic reflection amplitudes) (Kemper,
2010; Bosch et al., 2010; Grana et al., 2012). A common approach
in reservoir lithofacies and petrophysical property modelling is
the quantitative incorporation of various seismic elastic properties
(e.g. inverted P- and S-impedances) as sources of additional
information to guide/constrain geostatistical interpolation of
reservoir properties away from the wells, thus producing
multiple equi-probable realisations of reservoir properties to
account for uncertainties and spatial variations. Many successful
applications of this approach have been reported in the literature
(Doyen, 1988; Rossini et al., 1994; Nivlet et al., 2005; Delfiner and
Haas, 2005); however, the associated technical obstacles, such as
the difference in scale at which measurements are made and the
low-frequency content of the seismic data, can lead to biased or
non-physical results (Francis, 2010; Saussus and Sams, 2012).

In this paper we investigate issues that have impact on the
match of the initial reservoirmodelwithwell logs and inverted 3D
seismic data. Specifically, we address the following questions:

* Which of the common constraining methods in variogram-
based lithofaciesmodellingproduces reservoirmodels that best
match the inverted 3D seismic data?

* How are the results affected by the presence of noise in the
observeddata, andby the lowvertical resolution of seismic data
compared to scale of the geological heterogeneities?

* What is the effect of uncertain geostatistical variogram
parameters on the results?

* What are the uncertainties and limitations in quantitatively
incorporating deterministic seismic inversion results in
reservoir lithofacies modelling?

The remainder of this paper is organised in threemain sections.The
secondsectionprovidesanoverviewof the testmodel construction.
In the third section, we describe our constraining methods applied
in the reservoir lithofacies modelling process, followed by a
discussion of the modelling results and the sensitivities to noise
and variogram parameters. Finally, in the last section, we analyse
the uncertainties in the quantitative incorporation of inverted
3D seismic data in reservoir lithofacies modelling, followed by
a discussion of these uncertainties in which we address seismic
resolution limitations and overlapping elastic properties of
different lithofacies types.

Test model

We construct a synthetic dataset (for simplicity, two lithology
types and one elastic property) to act as a basis for analysing
seismic constraining methods in geostatistical lithofacies
modelling, and also for investigating the sensitivity of the
results to (1) noise in the seismic data, and (2) differences in
the parameters of the geostatistical variogram.

We first construct a base reservoir lithofacies model,
consisting of clean sand and shaly sand. The model covers
an area of 6 km2 and the reservoir gross thickness is 100m.
Pure shale units, also 100m thick, form the upper and lower

boundaries. This 3Dmodel contains 212� 184� 140grid blocks
with dimensions 12.5� 12.5� 1m3. The clean sand and shaly
sand distributionswithin the reservoir interval aremodelled using
the sequential indicator simulation (SIS) technique (Journel and
Gomez-Hernandez, 1993), with an exponential variogram range
of 20m in thevertical direction and1000min themajor andminor
horizontal directions for both the clean sand and the shaly sand.
The thickness of the clean sand bodies range fromvalues less than
seismic resolution to greater than seismic resolution. The
lithofacies model generated in this way (Figure 1a) is assumed
to be the true (reference) model. The small net-to-gross value
(~20%) addresses the prediction uncertainties in zones of small
net sand thickness. Seven well trajectories are then constructed at
predefined positions within the reservoir framework, and the
blocked litho-logs are obtained by identifying the grid blocks
intersecting the well trajectories. Within each facies, the porosity
distribution is found using the sequential Gaussian simulation
(SGS) technique (Deutsch and Journel, 1992) from an
exponential variogram with a vertical range of 10m and
horizontal range of 500m in the principal directions.

We use a petro-elastic model to compute the P-wave
impedance volume for the reference lithofacies model, based
on theoretical and experimental relationships (Appendix A). The
elastic properties of the clean sand and shaly sand in the reservoir
at initial conditions are given in Table 1. In addition, we assume a
two-phase fluid (oil and water) to be present in the pore system;
thefluid properties are given inTable 2. For the sake of simplicity,
the oil–water contact is assumed tobeflat (constant) indepth,with
a constant distribution of the fluids within each of the fluid layers.
Water saturation below the oil–water contact is assumed to be
equal to 1. Above the contact it is equal to the irreducible water
saturation value (0.2 for clean sand; 0.7 for shaly sand); however,
it is possible to simulate the irreducible water saturation using a
geostatistical technique (e.g. SGS) or by flow simulation to
improve the realism of the model. For testing purposes, we
assume the computed P-wave impedance volume (Figure 1b)
to be the reference (true) impedance volume that would result
from a perfect inversion of the baseline seismic survey. It is worth
noting that due to the bandlimited nature of seismic data, inverting
the data accurately to the resolution of model (1m vertical cells

(a)

(b)

Fig. 1. (a) Base lithofacies model; (b) corresponding P-wave impedance
volume.
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in this case) is unrealistic and would not be possible in real world
applications.

The petro-elastic model gives a reasonable approximation of
the elastic properties of rocks, but it cannot perfectly represent
the real heterogeneities of the subsurface rocks. To increase the
realism of the test model, and also to examine the robustness of
the constraining methods in the presence of noise and limited
resolution in the inverted seismic data, following noise-variation
options are considered:

Noise0: Noise-free P-impedance volume.
Noise1: Up to 20% bandlimited (10–60Hz) random noise
added to the P-impedance values along all three directions.
Noise2: To simulate the limited frequency range of the
deterministic seismic inversion results and the low vertical
resolution of seismic data compared to the scale of the reservoir
model, we apply a moving-average smoothing filter to the
impedance volumes, replacing the data in each cell of the 3D
grid with the average of the data in neighbouring cells (2 cells
in lateral directions and 5 cells in vertical direction). This
means that the resolution of the P-impedance volume for
Noise2 conditions decreases from 12.5� 12.5� 1m3 to
25� 25� 5m3. This is equivalent to low-pass frequency-
wavenumber filtering of the 3D impedance volume with an
assumption that low frequencies have been reasonably
recovered in the inversion process by constraining towell data.
Noise3: To approximate a more realistic scenario, a
combination of Noise1 and Noise2 conditions are added to
the high resolution P-impedance volume (i.e. Noise3 ~
Noise1 +Noise2).

To analyse howseismic amplitudes change for different noise and
resolution conditionswe have computed synthetic seismic traces;
for each noise scenario the corresponding P-impedance model is
used to compute P-wave reflection coefficients, which are then
convolved with a 30Hz Ricker wavelet to generate zero-offset
seismic traces. Figure 2a–d shows the seismic amplitude maps
at the top of the reservoir for all four noise scenarios (Noise0,
Noise1, Noise 2 and Noise3). The effects of each noise scenario
are clearly visible on the seismic amplitude maps.

It is possible to invert the synthetic seismic data using a common
post-stack seismic inversion scheme such as recursive inversion
(Lindseth, 1979), sparse-spike inversion (e.g. Oldenburg et al.,
1983), model-based inversion (Russell and Hampson, 1991) or
coloured inversion (Lancaster and Whitcombe, 2000) to produce
inverted P-impedance models for each of the noise scenarios.
However, each of these seismic inversion algorithms has its own
limitations and shortcomings (e.g. Sen, 2006). Inour test case study,
given the objectives of this paper, and to avoid the specific
limitations and errors caused by the chosen seismic inversion
algorithm, we assume that the introduced noise conditions to the

high resolution P-impedance volume reasonably represent the
inverted P-impedance models. However, in real data case
studies, issues such as wavelet estimation, construction of low
frequency background model, etc. are of great importance to
achieve reliable seismic inversion results.

Constraining methods in geostatistical
lithofacies modelling

To construct reservoir lithofacies models using a geostatistical
simulation technique, we employ four constraining methods in
addition to the estimated variogram parameters from litho-logs.
In method 1, we define an additional constraint from well log
information. In methods 2, 3 and 4, we include P-impedance
volume as an extra dimension to generate seismically-constrained
lithofacies models.

Method 1: vertical probability curves of litho-logs

In this method, well data without knowledge of the seismic
attributes is considered. Based on the litho-logs from seven
wells (in our test model application), we generate the vertical
probability curves (e.g. blue curve in Figure 3) that determine
the proportions of clean sand and shaly sand in each layer of the
reservoir interval. For example, in layer 1 one of the wells
encountered clean sand and the other six wells encountered
shaly sand. This implies that in layer 1 the probability of
occurrence of clean sand and shaly sand are 15% and 85%,
respectively. We repeat this process for all layers in the
reservoir interval to generate the vertical probability curves of
clean sandandshaly sand.We thenuse theseproportionsas anextra
constraint, alongwith variogram parameters, to populate the facies
indicators in theentire3Dframeworkof thereservoir.Sinceseismic
data is not incorporated in this process, the probability curve is
identical for all noise varying options (Noise0, Noise1, Noise2 and
Noise3). It is worth noting that this method works under the
assumption that the available well data represents a good
approximation of the true facies proportions for each layer.
Naturally, more wells would provide more accuracy in the
estimation of correct vertical litho-probability curves. In
addition, the presence of geologic structure in the subsurface
can add more uncertainty in the estimated curves; therefore, it is
recommended to use this method along with other data such as
seismic amplitudemaps to help constrain the process of lithofacies
modelling.

Method 2: seismic attribute litho-probability curves

In thismethod, the probability of facies distribution is obtained as
a function of a seismic attribute property. We first analyse the
relationship between lithofacies indicators and values of various
seismic attribute properties atwell locations to determine themost
suitable link between seismic and geological properties. We then
plot the probability density distributions, relating the selected
seismic elastic property (P-wave impedance, in our test case) to
the probability of each lithofacies type. The plot gives the
probability of finding a particular lithofacies given a specific
range of P-wave impedance values. This analysis produces a
probability curve for each of the lithofacies types (e.g. blue curve

Table 1. Petrophysical and elastic properties of clean sand and shaly sand.

Facies F (porosity)
(%)

Km (rock matrix
bulk modulus) (GPa)

Gm (rock matrix
shear modulus) (GPa)

rm (rock matrix
density) (g/cm3)

Kc (critical
porosity) (%)

Clean sand 27–32 36 45 2.6 40
Shaly sand 13–19 30 20 2.4 50

Table 2. Elastic properties of reservoir fluids.

Fluid r (density) (g/cm3) K (bulk modulus) (GPa)

Oil 0.84 1.5
Water 1.018 2.15
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in Figure 4 for clean sand) that gives the constraint values. We
then use the generated seismic litho-probability curves, along
with variogram parameters, to guide the process of lithofacies
modelling in a geostatistical simulation technique. It may be
readily understood that noise in the seismic data attributes
(P-wave impedance, in our test case) will affect this process
and that the extracted litho-probability curves, and therefore
the constraint values will be different for the Noise0, Noise1,
Noise2 and Noise3 conditions.

Method 3: seismic attribute litho-probability cubes

To generate seismic litho-probability cubes, we extract probability
density functions, relating seismic elastic attributes to the

probability of each lithofacies type. We then apply the derived
functions in a Bayesian framework to the P-wave impedance
volume to model 3D probability cubes for each particular
lithofacies type. In general, Bayes decision theory is a well
known approach for probabilistic classification problems
(Duda et al., 2001). In the energy industry it has become a
widely used approach for describing the particular reservoir
static or dynamic class or state that is of interest, such as
lithofacies, saturation, pressure and so on (e.g. Mukerji et al.,
2001; Coléou et al., 2006; Nivlet et al., 2007). Bayesian
formulation is adapted to the present problem for calculating
the posterior probability of each particular lithofacies, given a set
of seismic attributes (Avseth et al., 2005):
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Fig. 2. Seismic amplitude map at the top of the reservoir for the P-impedance model with (a) Noise0, (b) Noise1, (c)
Noise2 and (d) Noise3 conditions.
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Fig. 3. Vertical probability curve of litho-logs (blue curve for clean sand)
used in constrainingmethod 1: probability of lithofacies distribution given by
vertical probability curve of litho-logs.
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Fig. 4. P-wave impedance sand-probability curve (blue curve) in Noise0
option used in constraining method 2: probability of lithofacies distribution
given by seismic litho-probability curve.
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pðf jAÞ ¼ pðf Þ:pðAjf Þ
pðAÞ ; ð1Þ

where f is a lithofacies type; A is a vector of the seismic attribute;
pðf Þ is a prior probability of lithofacies f; pðAÞ is the probability
of seismic attribute A; pðAjf Þ is the probability of attribute A
given the lithofacies f; and pðf jAÞ is the probability of lithofacies
f given the seismic attribute vector A.

In the test application there are two lithofacies types
ðf ¼ fclean sand; shaly sandgÞ and one seismic elastic
attributeðA ¼ fIpgÞ; therefore we generate two seismic litho-
probability cubes — one for clean sand (Figure 5) and one for
shaly sand.Thesecubes represent theprobabilityof each lithofacies
at the seismic scale. We then use the litho-probability volumes,
alongwithvariogramparameters, toguide theprocessof lithofacies
modelling in a geostatistical simulation technique. Clearly, the
modelled litho-probability cubes are different for each noise-
variation option.

Method 4: seismic attribute litho-probability surfaces

In this method, the areal probability of facies distribution is given
by the seismic attribute trend surfaces. We first analyse the
relationship between lithofacies indicators and values of the
selected seismic property (P-impedance in our test case) at
well locations to determine the link between seismic and facies
indicators. We then extract a surface map of the P-wave
impedance at the top of the reservoir; this map is similar (but
not identical) to the commonly-used seismic amplitudemap at the
top of the reservoir. We then normalise the P-wave impedance
surface to extract the litho-probability trend surface (Figure 6).
We use the seismic attribute litho-probability surfaces as 2D
areal constraints together with the vertical probability curves of
the litho-logs (introduced in method 1) as 1D vertical trends, in

addition to variogram parameters, to guide the 3D lithofacies
simulation process. As in constraining methods 2 and 3, the
extracted seismic attribute trend surface is different for each of the
noise-variation options.

Lithofacies modelling results

This section sets out a quantitative comparison of the lithofacies
modelling results in terms of the average misfit error between the
simulated models and the true reference model. When a true
model is available, the average misfit error is a useful tool for
quantifying the performance of the prediction in supervised
learning. After calculating the misfit error of each individual
model from the number of grid-blockswhose assigned lithofacies
indicators differ from the corresponding grid-blocks in the true
model,we calculate the averagemisfit error for twenty realisations.
We repeat this process for all the four constrainingmethods and the
four noise varying options. The bar graph in Figure 7 summarises
the results.

Figure 7 shows that method 1 gives the highest average misfit
error for all noise options; by contrast, methods 2 and 3 yield the
least misfit error with the best match to the reference model. The
average misfit error of the simulated models using constraining
method 4 is greater than for methods 2 and 3, but is less than
for method 1. The analyses also demonstrate that, although the
presence of noise in the observed data increases the averagemisfit
errors, incorporating P-impedance volume into the reservoir
model nevertheless improves the match, with methods 2 and 3
giving the best results. It is also evident that error caused by the
limited resolution of the P-impedance volume produces a more
adverse effect than added random noise. For instance, in method
2, the average misfit error increases from around 25.5% (Noise0)
tomore than 28.5% inNoise1 and 30% inNoise2. In addition, the
analyses show that presence of a combination of Noise1 and
Noise2 (= Noise3) in the P-impedance volume results in the
highest misfit error for all seismic constraining methods.

The question arises about why constraining methods 2 and 3
simulate models with the least misfit error to the true reference
model. This is because of the fact that methods 2 and 3 provide
a natural way of incorporating inverted seismic data for 3D
lithofacies simulation. Using these constraining methods we
can define 3D seismic constraints more accurately (not only
1D vertical constraint as in method 1 or 2D areal constraint as
in method 4) that can be easily incorporated in pixel-based
lithofacies simulation process. It is also notable that although
constraining method 2 gives similar misfit errors to method 3 in
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Fig. 5. 3D sand-probability cube in Noise0 option used in constraining
method 3: probability of lithofacies distribution given by seismic litho-
probability cube.
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Fig. 6. P-wave impedance sand-probability surface inNoise0 option used in
constrainingmethod 4: probability of lithofacies distribution given by seismic
litho-probability trend surface.
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the true reference model for the four constrainingmethods and the four noise-
variation conditions.
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this test application, it should be cautiously applied especially in
areaswith fewerwells (fewer control points), such that there is not
enough confidence to generate an accurate seismic attribute litho-
probability curve. On the other hand, when there are more than
two lithofacies types within the reservoir interval of interest or
when the pre-stack seismic inversion (e.g. simultaneous elastic
inversion (Fatti et al., 1994; Hampson et al., 2005)) has produced
several seismic elastic properties such as P-impedance, S-
impedance and density, method 3 might define the constraint
more accurately in lithofacies modelling. This can be performed
by the use of a combination of several seismic elastic properties to
generate multivariate probability density functions for reducing
ambiguity in Bayesian classification of each particular lithofacies
type (e.g. Avseth et al., 2005). An example of a successful
application of constraining method 3 (i.e. the Bayesian
classification technique) using multiple seismic-inverted elastic
attributes (P-impedance, Vp/Vs ratio and density) for reservoir
property modelling for a real data case study from offshore
Western Australia is presented by Emami Niri and Lumley
(2014). In addition, an application of the constraining method
2 in a real data case study to generate starting reservoir model for
a subsequent multi-objective reservoir modelling process is
discussed in Emami Niri and Lumley (2015).

Thus far in the analyses, we have used an exponential
variogram model (Equation 2) estimated from upscaled litho-
logs, where the lateral and vertical ranges are defined as the
separation distance at which the variogrammodel reaches 0.95 of
its sill (Isaaks and Srivastava, 1989):

gðhÞ ¼ c 1� eð
�3h
R Þ

� �
; ð2Þ

where c ¼ sill � nugget (in our case nugget= 0.2 and sill = 1);
h = 0.95c; and R is the variogram range. The major and minor
horizontal ranges are specified to be ~1000m; and the vertical
range is specified to be ~20m.

To study the effect of uncertain variogram parameters on the
reservoir lithofacies modelling result, we consider the following
variations:

Analysis 1: Long distances for variogram ranges
Analysis 2: Variogram ranges estimated from well logs
Analysis 3: Short distances for variogram ranges.

Figure 8 shows the sensitivity of the geostatistical lithofacies
modelling process to variogram parameters for constraining
method 2. It is evident that higher variogram ranges yields
unreasonable models, since they do not agree with either the
well log data or the seismic attributes; however smaller variogram
ranges result in the best match. This is mainly due to the fact that,
by using short distances for variogram ranges, the input seismic
constraint (the seismic attribute litho-probability curve, in this
case) is fully respected — in other words, the extent of the
heterogeneities of the reservoir lithofacies is no longer linked
to the variogram, but rather it is largely controlled by the seismic
constraint. This implies that small variogram ranges should be
used only when the quality of the inverted seismic data is highly
reliable since, as illustrated in Figure 8, the misfit error rises
considerably from Noise0 to Noise1, Noise 2 and Noise3.

Figure 9 shows that there is an excellent qualitative match
between the true reference lithofacies model and a realisation
of the simulated models using short variogram ranges and
constrained by method 2 in Noise0 option. According to
analysis 3 of Noise0 option in Figure 8, the average misfit
error between these two models is just 3%. It is notable that
the excellentmatch between true and seismic-constrainedmodels
is an idealised situation that rarely obtainable in real cases. This is

because of the fact that noise in the observed seismic data together
with fundamental insatiability of seismic inverse problems results
in the lack of confidence to use very short variogram ranges (to
fully respect the input seismic constraint).

Uncertainty analysis

It is common practice to incorporate 3D seismic information in
reservoir lithofacies and petrophysical property modelling;
however, the associated limits and uncertainties need to be
clarified in order to minimise the risk of misinterpretation.
This section describes an analysis of the uncertainties arising
when deterministic seismic inversion results are incorporated in
reservoir lithofacies modelling. These uncertainties are due to (1)
limited seismic resolution compared to the scale of the geological
heterogeneities, and (2) the non-unique elastic properties of the
different lithofacies types.

To analyse uncertainties, we use a similar approach to the
one presented by Sams and Saussus (2010). For the same base
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Fig. 8. Effect of variogram parameters on the simulated lithofacies models
using constraining method 2, in terms of the average misfit error of 20
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Fig. 9. (a) Reference lithofacies model; (b) a realisation of the simulated
models by constraining method 2 and small variogram ranges in Noise0
option.Note the excellent qualitativematchbetween simulatedmodel and true
reference model.
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lithofacies model, we generate several P-impedance volumes
using the SGS technique with an exponential variogram range
of 10m vertically and 1000m in the major and minor horizontal
directions. We generate different impedance volumes to have
various degrees of overlapping P-impedance properties for clean
sand and shaly sand. The means of the distributions for all
P-impedance models are assigned as constant values: 6500 g/
cm3m/s for clean sand and 8500 g/cm3m/s for shaly sand, as
calculated from the petro-elastic model shown in Appendix A.
However, the standard deviations of the distributions are varied
for each separate P-impedance volume. In addition, to simulate
the limited frequency range of the inversion results, we apply the
Noise2 option (low-pass filter) to the P-impedance volumes. An
example of the P-impedance histograms and noise-free (Noise0)
3D impedancevolumewith a standarddeviationof 500 g/cm3m/s
is shown in Figure 10a, b. The effect of applying the Noise2
option in the histograms and impedance volume is shown in
Figure 10c, d. Comparing Figure 10a and c reveals that applying
a low-pass filter to P-impedance volume increases the
overlapping area in the histograms of P-impedance distribution
for clean sand and shaly sand, and therefore increases the
uncertainty in incorporating inverted seismic data in reservoir
property modelling, as we discuss hereafter.

For the uncertainty analysis, we choose constrainingmethod 2
to define the seismic constraint for lithofacies modelling
(although, of course, the same uncertainty analysis may also
be performed using constraining method 3). As discussed in
the section Constraining methods in geostatistical lithofacies
modelling, in constraining method 2 we extract a seismic litho-
probability curve that provides the probability of each lithofacies
as a function of the seismic attribute property (P-impedance in
our test case). The extracted litho-probability curve depends upon
the probability distribution function of P-impedance. Figure 11
shows the generated litho-probability curves (blue curves)
for high-resolution (noise-free) and low-pass filtered P-wave
impedance histograms (shown in Figure 10a, c). It is clear
that the constraining method 2 can generate the most reliable
litho-probability curve when there is a sufficiently large contrast
between the elastic properties of the different lithofacies classes,

and therefore in Figure 11 the uncertainty in the extracted
litho-probability curve is directly related to the overlapping
areas of the probability density functions of P-impedance for
each lithofacies class. For example, in Figure 12, E1 and E2 are
the overlapping areas of the probability density functions of
P-impedance for clean sand and shaly sand. If we make an
assumption that a prior probability of occurrence of clean sand

(a)

(b)

(c)

(d)

Fig. 10. (a) Histograms of P-impedance distribution for clean sand and shaly sand; (b) noise-free P-impedance volume;
(c) histograms of P-impedance distribution for clean sand and shaly sand with Noise2; (d) P-impedance volume with Noise2.
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Fig. 11. Litho-probability curves (blue curves) extracted from (a) the noise-
free distribution of P-impedance, and (b) the distribution of P-impedancewith
Noise2.
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and shaly sand is the same, the probability of error in lithofacies
classification (P(error)) may be addressed using the following
relationship (Duda et al., 2001):

PðerrorÞ /
ð
E1

f ðIPjclean sandÞdxþ
ð
E2

f ðIPjshaly sandÞdx; ð3Þ

where f (IP|clean sand) and f (IP|shaly sand) are class-conditional
distribution of P-impedance given clean sand and shaly sand,
respectively.

To identify uncertainties, following Sams andSaussus (2010),
we first generate the net sand thickness map of the reference
lithofacies model (Figure 13). This map represents the actual net
sand thickness within the reservoir interval. Second, we focus on
the three impedance volumes for the same base lithofaciesmodel.
As discussed above, the mean values of the distributions for
all three P-impedance volumes are constant, but the standard
deviations of the distributions are varied, being 0 in the first75
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Fig. 12. Uncertainty in the extracted probability curve using constraining
method 2 and its link with overlapping areas E1 and E2. Fig. 13. Net sand thickness map in reference lithofacies model.
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Fig. 14. (a–c)Histograms of P-impedance distributions for sand and shaly sand; (d–f) respective seismic attribute litho-probability curves;
and (g–i) corresponding cross-plots of actual versus predicted net sand thickness.
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model, to 500 and 1000 g/cm3m/s in the second and third models
respectively (Figure 14a–c). We then separately use each of
the three P-impedance volumes to build seismic-constrained
lithofacies models using constraining method 2. Figure 14d–f
shows the generated litho-probability curves (blue) for each case.
Next, the corresponding net sand thickness maps are generated
from the constructed lithofacies models. Cross-plots of the actual
net sand thickness versus predicted net sand thickness extracted
from each lithofacies simulation give an estimate of the
uncertainty and biased errors in the prediction of the net sand
in the reservoir interval (Figure 14g–i).

Discussion of uncertainties

This section highlights the extent to which such factors as
overlapping (non-unique) elastic properties of different
lithofacies types and limited seismic resolution (which results in
errors in estimating the elastic properties, and also increases the
property overlap) affect the quantitative incorporation of the
seismic elastic properties in lithofacies modelling. In Figure 14a
it is seen that the standarddeviationof theP-impedancedistribution
is zero, meaning that there is no overlap between the P-impedance
values of the different lithology types (an unrealistic case). The
corresponding seismic attribute litho-probability curve (blue curve
inFigure14d) indicates a robust discriminationbetween clean sand
and shaly sand. The respective cross-plot analysis (Figure 14g)
shows a small uncertainty in the estimation of the net sand
thickness, with a small underestimation in the areas of greatest
net sand thickness. In Figure 14b, c the overlap of the elastic
propertiesofclean sandandshaly sand increases and, asa result, the
uncertainty in the extracted litho-probability curves also increases
(blue curves in Figure 14e, f). The respective cross-plots in
Figure 14h, i show that, with increasing overlap of the elastic

properties of clean sand and shaly sand, the areas with lowest net
sand thickness are overestimated and the areas of high net sand
thickness are underestimated. An interesting point is that the
corresponding errors in the net sand prediction are biased, the
amountofbiasvaryingwith thedegreeof thenon-uniqueoverlap in
the elastic properties.

The last stage of this study involves an investigation of the
effects of the limited seismic resolution on the net sand thickness
prediction process. To do this, we apply the Noise2 option to a
high-resolution P-impedance volume to mimic the effect of the
low-frequency content of the seismic data. It is clearly evident
that, where the thickness of the sand areas is smaller than
the seismic resolution, the errors in estimating the elastic rock
properties increase. This produces a significantly increased area
of overlap in the elastic properties (Figure 15a, b). The
corresponding cross-plots of actual versus estimated net sand
thickness (Figure 15c, d) indicate that the uncertainty in the
predicted values increases as seismic resolution decreases. In
particular, there is considerable over-prediction in the zones of
low net sand thickness.

It is worth mentioning that in our approach for reservoir
lithofacies modelling using inverted seismic data, we assume
that most seismic wavelet effects have been removed. However,
there are alternate techniques to consider when the seismic
wavelet effects have not been removed. For example,
Connolly (2005, 2007) presented a methodology for net pay
estimation from seismic data which may help to improve
resolvability in presence of tuning effects. He explains how
the average values of the extended elastic impedance
(Whitcombe et al., 2002) attribute relates to the seismic net-to-
gross ratio, which can be multiplied with the time difference
between two stratigraphic horizons to estimate the seismic net
pay.
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Fig. 15. (a,b)Histogramsof P-impedancedistributions for a noise-freevolumeand avolumewithNoise2;
(c, d) cross-plots of actual versus predicted net sand thickness.
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Conclusions

Construction of reservoir lithofacies and petrophysical property
models that are consistent with both geological knowledge and
pre-production seismic data is a fundamental step of reservoir
characterisation and history matching. In this paper, we analyse
the issues of significant impact on the match of the reservoir
lithofaciesmodelwithwell logs and inverted 3D seismic data.We
also address the values, limits and uncertainties of incorporation
of inverted seismic data, within a geostatistical framework, in
reservoir characterisation and model building process.

We use a geostatistical simulation technique to test four
constraining methods for lithofacies modelling. Of the four,
those that adopted seismic attribute litho-probability curves
and seismic litho-probability cubes are found to give the
smallest misfit errors, even when realistic noise is introduced
into the datasets. These methods perform well when there is a
sufficiently large contrast between the elastic properties of the
different lithofacies. In addition, for a given seismic constraint, a
variogram parameter analysis shows that reservoir lithofacies can
be accurately modelled provided a very short variogram range is
used and the quality of seismic data is highly reliable.

We also address two fundamental uncertainties in seismic
inversion for estimating reservoir properties: bandlimited seismic
resolution, and a non-unique overlap of elastic properties for
different lithofacies types. Increasing the overlap of the elastic
properties for different lithofacies increases uncertainty in the
extracted seismic attribute litho-probability curves, resulting in
overestimation in areas of small net sand thickness, and
underestimation in areas of large net sand thickness. We have
also demonstrated that errors in estimating the elastic rock
properties increase if the sand thickness is smaller than the
seismic vertical resolution, which in turn affects the degree to
which the elastic properties overlap. As a result, sand thickness is
considerably overestimated in areas of small net thickness. From
this we conclude that the limits and uncertainties of including 3D
seismic information in reservoir lithofacies and petrophysical
property modelling need to be studied carefully in order to
minimise the risk of misinterpretation.
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Appendix A

Petro-elastic model
Petro-elasticmodel comprises a series of theoretical equations andexperimental relationshipswhich links the reservoir properties such as
porosity, clay content, fluid saturation and pore pressure to seismic elastic properties like P- and S-wave velocities and impedances (e.g.
Falcone et al., 2004; Menezes and Gosselin, 2006). When rock is assumed to be an isotropic and elastic medium, it reacts to
compressional and shear seismic waves in accordance with its elastic properties including bulk modulus (K), shear modulus (G) and
density (r) (Mavko et al., 2009).

In our petro-elastic model, we calculate the dry rock bulk and shear moduli from (Nur et al., 1998):

Kdry ¼ Km 1� F
Fc

� �
;Gdry ¼ Gm 1� F

Fc

� �
; ðA-1Þ

where Km and Gm are bulk and shear moduli of the dry rock minerals, and fc is the critical porosity.
Following Lumley (1995), we assume that Gassmann’s equation (Gassmann, 1951) is suitable for the reservoir condition and its

associated frequency range:

Ksat ¼ Kdry þ ð1� Kdry

Km
Þ2

F
K f

þ 1�F
Km

þ Kdry

K2
m

;Gsat ¼ Gdry; ðA-2Þ

where Kf is the fluid bulk modulus and can be calculated usingWood’s formula (Wood, 1955) for multi-phase fluids in the pore space:

1
K f

¼
X3

i¼ 1

Si
Ki

¼ So
Ko

þ Sw
Kw

þ Sg
Kg

; ðA-3Þ

where subscripts o, w and g stand for oil, water and gas. Saturated rock density is defined as the linear combination of matrix and fluid
densities weighted by the corresponding volumes fractions as:

r ¼ ð1�FÞrm þF ðSoro þ Swrw þ SgrgÞ: ðA-4Þ
Finally, we estimate P- and S-waves velocities and impedances of saturated rocks from the following well known equations:

V p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ksat þ 4=3Gsat

r

s
;V s ¼

ffiffiffiffiffiffiffiffi
Gsat

r

s
: ðA-5Þ

Ip ¼ rV p; I s ¼ rV s: ðA-6Þ
The petro-elasticmodel should be applied, cell-by-cell, to the cubes of reservoir properties, in order to compute the elastic response of

the true reference model.
A further step of the modelling may be performed to compute the synthetic seismic traces. For example, each angle-dependent

synthetic trace may be generated by convolution of the reflection coefficients (calculated from any form of Zoeppritz equations) and the
estimated wavelet (Aki and Richards, 1980):

dðt; �Þ ¼ wðt; �Þ � RPPðt; �Þ ; ðA-7Þ
where t and y are traveltime and angle, respectively. Angle-dependent trace and wavelet are denoted by d andw; andRpp is the vector of
reflection coefficients.
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