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Abstract. To simulate the observation of the radiation pattern of an earthquake, the direct simulationMonte Carlo (DSMC)
method is modified by implanting a focal mechanism algorithm. We compare the results of the modified DSMC method
(DSMC-2) with those of the original DSMCmethod (DSMC-1). DSMC-2 showsmore or similarly reliable results compared
to those of DSMC-1, for events with 12 or more recorded stations, by weighting twice for hypocentral distance of less than
80 km. Not only the number of stations, but also other factors such as rough topography,magnitude of event, and the analysis
method influence the reliability of DSMC-2. Themost reliable result by DSMC-2 is obtained by the best azimuthal coverage
by the largest number of stations. TheDSMC-2method requires shorter time steps and a larger number of particles than those
of DSMC-1 to capture a sufficient number of arrived particles in the small-sized receiver.
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Introduction

Seismic wave attenuation, usually expressed as Q–1, is an
indispensable parameter in understanding the interior state and
tectonic history of the earth. In particular, regional information on
Q–1of high-frequencywaves in the lithosphere is veryhelpful, not
only for scientific research, but also for the practical purpose of
simulating earthquake ground motion in engineering seismology
(Yoshimoto et al., 1993).After theobservationof lithosphericQ–1

at high frequency (Dainty, 1981), recent regional studies (e.g.
Sato et al., 2012) have focused on the separation of the total
seismic attenuationQt

–1 (another formofQ–1), intoQi
–1 andQs

–1,
where Qi

–1 represents the intrinsic absorption caused by the
conversion of elastic energy to heat, and Qs

–1 is the scattering
attenuation caused by the redistribution of wave energy without
any loss.

Themost widely used approach to the separation intoQi
–1 and

Qs
–1 is multiple lapse time window analysis (MLTWA),

introduced almost simultaneously by Hoshiba et al. (1991) and
Fehler et al. (1992). Based on the observations that the early
portion of a seismogram is dominated by the direct S-wavewhose
amplitude is reduced by Qt

–1, whereas the S-coda is composed
entirely by scattered S-waveswhose amplitude is reduced byQi

–1

but enlarged by Qs
–1, MLTWA simulates the integral of the

observed energy from multiple earthquakes in three successive
time windows.

The simulated values, based on radiative transfer theory, were
first obtained analytically by Zeng et al. (1991) and Sato (1993)
using a model with a uniformly distributed scatterer in a
homogeneous half-space and a source located at the origin.
The simulated values were also obtained by the Monte Carlo
method, using an improved model with isotropic layers and

variable source depth (Hoshiba, 1997). The simulation method
was further improved by the direct simulation Monte Carlo
(DSMC) method (Yoshimoto, 2000) using a velocity gradient
in the layer model. The DSMC method, which utilises a finite
difference scheme for ray tracing, is expected to be applicable to a
three-dimensional structure model due to the simplicity of the
algorithm.

Despite the improvement of the simulation method, the
MLTWA method generally displays a large observational
scatter in the first window. The main cause of this scatter is
known to be the different radiation pattern of each earthquake
(e.g. Fehler et al., 1992). The regional alteration of local structure
has also been thought of as one of the causes of the observational
scatter (e.g. Giampiccolo et al., 2006). In addition, the different
focal depth of each earthquake may cause significant scatter,
because large variations ofQ–1 values of S-waves are well known
in the crust and upper mantle (Mitchell and Xie, 1994; Mitchell,
1995). Recently,MLTWA, using single earthquake data, showed
little observational scatter and presented reliable results despite
the relative dearth of data (Asep et al., 2014).

Tofit observation of the radiation pattern of an earthquake, the
current study first attempts to implant a focal mechanism
algorithm into the code of the DSMC method. As a
comparison test, the same analysis is also performed using an
unprocessed DSMC code. Hereafter, DSMC codes that are
unprocessed and implanted with a focal mechanism are
referred to as DSMC-1 and DSMC-2, respectively.

DSMC-1

The DSMC-1 method (Yoshimoto, 2000) synthesises the waves
coda envelope in three-dimensional scatteringmedia by using the
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number of energised particles moving out from a point source
with a take-off angle (y) and an azimuthal angle (’) (Figure 1),
which aremutually independent, random variables with values in
the range of [0, p] and [0, 2p], respectively.

This method, however, assumes an isotropic source radiation
and scattering of seismic waves with locally uniform coefficients
of scatteringZs ¼ 2pf

v Q�1
s

� �
and intrinsicZi ¼ 2pf

v Q�1
i

� �
. Consider

that the particle propagates over distance v(z)Dt, where v(z) is the
seismic velocity at depth z, and Dt is a short time interval. Then,
the probability of a scattering event is represented by Zsv(z)Dt
(Feynman et al., 1989), and the occurrence of scattering in the
distance v(z)Dt is determined by the inequality:

ZsvðzÞDt > I ; ð1Þ
where I is a random number between 0.0 and 1.0. If equation 1
is fulfilled, the particle moves to a different direction by the
redetermination of y and ’. In the x’–z plane (Figure 1), the
particle location at time Dt follows the seismic ray theory
expressed as the following:

ðDx0;DzÞ ¼ ½vðzÞDt sin#; vðzÞDt cos#�; ð2Þ
where # is the angle of particle propagation, initially #= y at the
source, and satisfies the following differential equation (Cervený
and Ravindra, 1971):

D# ¼ dvðzÞ
dz

Dt sin# ð3Þ

The finite difference method at interval time Dt= 0.2 s was
used for the propagation of the particles, whose number at source
is 106 based on the Monte Carlo scheme.

Upon arrival in a receiver regionwith a volume element ofDV,
each particle was considered equivalent to a seismic energy
packet. At the receiver, the energy of a particle at the source
was reduced by exp (�ZiDt). Torus volume, just beneath the free
surface, was assumed as a receiver (Figure 1) because the
isotropic assumption of source radiation and scattering of
seismic waves signify a spherical symmetry of the DSMC-1
method. The size of torus volume, with the thickness of 7 km
and with the radius of epicentral distance, is large enough to

stabilise the number of arrived particles but small enough to retain
temporal resolution.

The DSMC-1 method showed better results than those of
the analytical solution byusing a depth-dependent velocitymodel
(Chung et al., 2010) and a source with a depth of 10 km (Chung,
2014).

DSMC-2

Basedon the codeofDSMC-1, theDSMC-2method incorporated
the radiation pattern of both traverse SV and SH waves by using
well-known relations (Aki and Richards, 1980) as in equations 4
and 5:

SVrad ¼ sin l cos 2d cos � sinð’� �sÞ
� cos l cos d cos 2� cosð’� �sÞ
þ 1
2
cos l sin d sin 2� sin 2ð’� �sÞ

� 1
2
sin l sin 2d sin 2� sin 2ð’� �sÞ;

ð4Þ

SHrad ¼ cos l cos d cos � sinð’� �sÞ
þ cos l sin d sin � cos 2ð’� �sÞ
þ sin l cos 2d sin 2� cosð’� �sÞ
� 1
2
sin l sin 2d sin 2� sin 2ð’� �sÞ

ð5Þ

where fs, d and l represent the strike, dip and rake of the fault,
respectively. This incorporation means an expanded application
from the two-dimensional to the three-dimensional isotropic
model, which was claimed as an advantage of the DSMC
method over previous methods (Yoshimoto, 2000). The
geometrical expansion, however, resulted in the torus volume
being reduced to a small receiver with hemisphere volume
(Figure 1), because a spherical symmetry of DSMC-1 was no
longer available to DSMC-2.

In Figure 2, the amplitude of DSMC-2 is compared with
DSMC-1 at a receiver with the hypocentral distance of 30 km.
The azimuth of the receiver inDSMC-2was 90� for the source at a

y

x

x’

z

ϑ

Particle Scattering

Receiver

Source

Torus volume

Hemisphere
volume

Free
surface

θ Δ

ϕ

V

Fig. 1. Schematic diagram for an energised particle, starting from the source
located at the origin of the Cartesian coordinate and drifting to a spherical-
shaped receiver of volumeDV, to count the number of the energised particles.
Whereas the DSMC-1 used a torus-shaped receiver with the average radius
proportional to the epicentral distance (~), DSMC-2 replaced the torus with
a hemisphere. Both receivers are located just beneath the free surface.

–4.5

–5.0

–5.5

–6.0

–6.5

0 5 10

Time (s)

Lo
g 

(A
m

pl
itu

de
)

15 20

DSMC–1
DSMC–2

Fig. 2. Comparison of the amplitude between DSMC-1 (grey line) and
DSMC-2 (black dotted lines) at a receiver with the hypocentral distance of
30 km. The azimuth of the receiver in DSMC-2 was 90� for the source at a
depth of 10 km with focal mechanism parameters of strike = 180�, dip = 90�,
and rake = 90�.
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depth of 10 kmwith focalmechanismparameters of strike = 180�,
dip = 90� and rake = 90�. By considering the small volume of the
receiver in DSMC-2, we shoot 2� 106 particles in DSMC-2,
twice as many as those of DSMC-1, and shorten the interval time
as Dt= 0.1 s. The envelopes of DSMC-2 are inflected around 12 s
due to the anisotropic source radiation.

Data and processing

Our data are based on the study byChung andAsep (2013),which
used 41 events during the period of 1999 – 2009. Each event of

depth and magnitude ranges from 6.1 to 16.9 km and from 2.0
to 4.8, respectively, which were recorded by 3 to 18 stations
operated by the Korea Meteorological Agency (KMA) and
the Korea Institute of Geoscience and Mineral Resources
(KIGAM). From these events, DSMC-2 showed similar or
smaller residuals – reliable results – than those of DSMC-1 for
the events that have been recorded by 12 or more stations
(see Tables 1 and 2). The results were obtained by MLTWA
processing as follows. The MLTWA method was applied for
each event with hypocentral distances less than 120 km. The first

Table 1. Earthquakes with more than 12 recorded stations. Focal mechanism parameters of events were obtained by Hong and Choi (2012), except
event 5 (Park et al., 2007). In parameter evaluation, P denotes both the P-wave polarities and S/P amplitude ratios, and I denotes waveform inversion.

No Date Location M Num. Focal mechanism Method
Y-M-D H:M:S Lat. Long. Depth (km) data Strike Dip Rake

1 2003–03–10 03 : 28 : 03 36.13 128.34 10.8 3.1 12 301 65 48 P
2 2004–01–04 21 : 11 : 52 36.15 127.03 9.6 2.9 12 297 57 –21 P
3 2004–04–26 04 : 29 : 26 35.83 128.23 10.5 3.9 13 139 71 47 I
4 2004–08–05 20 : 32 : 54 35.84 127.32 8.5 3.3 13 122 82 7 I
5 2004–09–27 09 : 47 : 34 35.48 128.28 16.9 2.5 16 97 85 –42 P
6 2007–01–20 11 : 56 : 53 37.68 128.59 10.0 4.8 13 203 86 –180 I
7 2009–05–01 22 : 58 : 28 36.55 128.71 13.3 4.0 18 307 73 41 I

Table 2. Comparison of Msum between DSMC-1 and DSMC-2. The
values in parentheses denote non-weighting values.

Event Number DSMC-2 DSMC-1

1 13.16 (18.93) 12.47 (15.62)
2 17.29 (25.90) 9.38 (11.79)
3 17.67 (26.70) 18.43 (26.30)
4 15.61 (22.01) 15.02 (16.86)
5 23.65 (31.74) 16.10 (20.36)
6 18.72 (27.52) 14.45 (16.61)
7 28.81 (37.23) 42.20 (48.10)

0 20 40 60

Time (s)

Fig. 3. An example of the seismogram used in this study. MLTWA
processing was conducted by dividing three time windows (grey vertical
line) with a length of 15 s starting from S-wave onset.
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for three windows at the least Msum for five frequency-bands.
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processing step was removing the trend and the mean values
and the application of a 5% cosine taper to each end of the time
series of a seismogram. Then, the seismogram was filtered by
a four-pole Butterworth band-pass filter centred at five
frequencies: 1.5Hz, 3Hz, 6Hz, 12Hz, and 24Hz. The filtering

used a low-pass Gaussian Nadaraya–Watson kernel regression
smoother (RDevelopmentCoreTeam, 2006).After estimating the
noise during the 5 s before the P-waves arrival, further processing
was done for only seismograms with a signal/noise ratio greater
than 2.
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From the three windows (Figure 3) for the processed
seismograms, the seismic energies were obtained by
integrating the squared amplitudes over time for the
seismograms. The geometrical spreading effect was corrected
by multiplication of 4pr2, where r is the hypocentral distance.
In addition, each integral was normalised by the coda spectral

amplitude of a 10 s time window centred at 45 s to correct
different sources and site effects (Hoshiba, 1993). Whereas the
observed values of the envelope energy were obtained by the
aforementioned procedure, the theoretical values were derived
from the methods of DSMC-1 and 2 for the uniform velocity
(= 3.5 km/s) model. For least-square estimates of the attenuation
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Fig. 5. (continued)
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coefficients of intrinsic (Zi) and scattering (Zs), a grid-search with
an interval of 0.001 km–1 was done to find the minimum values
of the misfit function Mf for each frequency f (Hoshiba, 1991):

Mf ðZs; ZiÞ ¼
XN
k¼1

X3
j¼1

ðEOjðrkÞ � EMjðrkÞÞ2; ð6Þ

where k and j are the number of observations and time windows,
respectively. EOj (rk) and EMj (rk) present the observed and
theoretical energies, respectively. Comparisons of theoretical
with observed values are exemplified in Figure 4. The sum of
the misfit function, Msum, is given by combining the misfit
function for each frequency:

MsumðZi; ZsÞ ¼
X5
f¼1

Mf ðZi; ZsÞ: ð7Þ

Because the radiation pattern is naturally a large influence
near the source range, we empirically find weight factors for
the residuals between observed and theoretical values, twice for
distances less than 80 km.Through this distance-weighting,Msum

of DSMC-2 is decreased more than that of DSMC-1 (Table 2).
The error intervals of the two attenuation coefficients for each
frequency (Tables 3 and 4) were evaluated from the confidence
contour using the F distribution test (Draper and Smith, 1998) as
follows:

Mf ðZs; ZiÞ ¼ Mf ðẐs; ẐiÞ 1þ p

n� p
F60ðp; n� pÞ

� �
; ð8Þ

whereMf ðẐs; ẐiÞ is the minimum value ofMf (Zs, Zi), the number
of model parameter is p = 2(Zs and Zi) and n is the number of
observations. F60 denotes the Fisher distribution function with a
confidence level of 60%,whichwas also used by previous studies
(Bianco et al., 2002, 2005; Giampiccolo et al., 2006). The ratios
Mf ðZs; ZiÞ=Mf ðẐs; ẐiÞwere depicted by the shading zones for the
confidence areas (Figure 5). The seismic albedo,B0 = Zs/(Zi + Zs),
and the inverse of the extinction length, Le

–1 = Zi + Zs, are
also shown in Tables 3 and 4. The seismic albedo represents
a dimensionless ratio of scattering loss to total attenuation,
whereas, the inverse of the extinction length describes the
inverse of the distance over which the primary S-wave energy
is decreased by exponent (e).

Results and discussion

Through application of distance weighting, DSMC-2 shows
smaller Msum than that of DSMC-1 for events 3 and 7, and
similar Msum for events 1 and 4 (Table 2). The focal
mechanisms of events showing smaller or similar Msum were
considered as reliable, and only events 1, 3, 4 and 7 are
exemplified in Figures 4 and 5 and Tables 3 and 4. In
particular, event 7 shows significantly smaller Msum of DSMC-
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Fig. 6. Topographic maps of the events (triangles) with their focal mechanism solutions in Table 1 and recorded
stations (circles). Events 1, 3, 4 and 7, which showed reliable results for DSMC-2, are denoted by yellow triangles
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2 than that of DSMC-1, even without the application of distance
weighting.This reliability of event 7 seems tobe related to the best
azimuthal coverage among the data events (Figure 6). Although
event 6 is the largest event, and the focal mechanism is well
defined, theMsum ofDSMC-2 is larger than that ofDMSC-1. This
might be related to the topographic effect, whose contribution
of amplitude variation is well known in rough terrain (Geli et al.,
1988; Rodgers et al., 2010). The location of event 6 shows rough
topography with a high mountainous area (Figure 6), which
possibly caused amplitude errors in the waveform inversion
using the simplified one-dimensional model.

Despite using the focal mechanism, however, improvements
ofMsumwere not significant formany events. This is thought to be
due to the uncertainty of the focal mechanism, which is generally
known to be large for small and shallow earthquakes, as in our
data (Helffrich, 1997). The small magnitude of event 5 is
attributed to larger Msum of DSMC-2 than that of DSMC-1, in
spite of the second-most numerous recorded stations. In Figure 7,
the Qs

–1 values for DSMC-2 are low compared with those for
DSMC-1 and Chung and Asep’s (2013) results, which were also
performed by DSMC-1. However, the Qs

–1 values are consistent

with theQs
–1 values obtained by Lee et al. (2010) in Kyeongsang

Basin. The low Qs
–1 values would imply that the intrinsic

absorption predominates in our study region.
The DSMC-2 method requires more computations than the

DSMC-1 method to complement the small size of receivers. We
increased the total number of particles and decreased the interval
of time steps in theDSMC-2 process. These parameters should be
determined to stabilise the number of arrived particles and retain
temporal resolution.
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