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ABSTRACT

Context. Defensive action of plants against biotic and abiotic stresses has been augmented by
silicon (Si). Spinach (Spinacia oleracea L.) is a nutritious leafy vegetable that is a cold-tolerant but
heat-sensitive crop. Aims and methods. The ability of exogenous application of Si (0, 2, 4 and
6 mmol L−1 in the form of K2SiO3) to alleviate heat stress in spinach cv. Desi Palak was
investigated. After an acclimatisation period, plants were grown with or without heat stress for
15 days, followed by Si treatment for 25 days. Plant growth and physiology were assessed at
65 days after sowing. Key results. Heat stress significantly inhibited plant growth, water status
and photosynthesis, soluble sugar and protein contents, and osmolyte status in spinach leaves,
but increased electrolyte leakage, activities of antioxidant enzymes, and proline content. Application
of Si alleviated heat stress by enhancing water status, photosynthetic pigments, soluble proteins and
essential minerals, and by reducing damage of the plasma membrane. The accumulation of osmolytes
counterbalance the osmotic stress imposed by heat. Conclusions. Silicon plays a vital role in
alleviating effects of heat stress by improving water status and photosynthetic rate, and accruing
osmoprotectants other than proline. Implications. Exogenous application of Si is an efficient
strategy to boost tolerance of spinach plants to heat stress, having significant impact on growth
and productivity of spinach at higher temperatures.

Keywords: antioxidants, heat stress, photosynthetic pigments, physio-biochemical, plasma
membrane, silicon, spinach, water relations.

Introduction

Food security is essential to a growing global population, but it is jeopardised by climate 
change and global warming. Various studies have shown that crop production is 
endangered by increases in temperature at the regional level (Abdelrahman et al. 2017). 
By the end of the 21st Century, the average temperature will have been raised by 1.8–4.0°C 
(Bita and Gerats 2013; Alizadeh et al. 2022). 

Heat stress significantly affects plant activities including seed germination, 
development, photosynthesis and reproduction, resulting in serious impacts on plant 
growth and, ultimately, yield of useful products (Hasanuzzaman et al. 2011). In order to 
survive under stressed conditions, plants have various morphological, physiological and 
molecular responses (Lobanov et al. 2008; Janská et al. 2010; Govindaraj et al. 2018). 
Specific field management options (selection of cultivar, date of sowing, method of 
sowing and irrigation scheduling) can be practiced to improve production under 
stressed conditions. However, heat stress severely limits the productivity of crop plants; 
for example, it limits wheat global productivity by >6% for each degree increase in 
temperature (Asseng et al. 2015). Despite the negative effects on overall crop 
production, increasing temperature has some beneficial effects on productivity in colder 
regions (Challinor et al. 2014; Zandalinas et al. 2021). 
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Spinach (Spinacia oleracea L.), a green nutritious leafy 
vegetable, is a cold-tolerant, heat-sensitive crop (Zhao 
et al. 2018; Giordano et al. 2021). Heat stress significantly 
affects its growth and development, causing a considerable 
decline in quality and yield. Studies have been done on 
the heat-shock response of spinach, both with whole 
plants and with detached leaf tissue (Moradpour et al. 
2021). After being exposed to heat shock (35–50°C) for 
30 min, CO2 assimilation decreases and pigment proteins 
in thylakoid membranes aggregate, slowing the plant’s 
ability to photosynthesise (Tang et al. 2007; Shabbir et al. 
2022). The first heat-shock proteins in spinach leaf tissue 
are induced when the temperature reaches 28°C, and a full 
range of heat-shock proteins are produced at 36°C. If a 
spinach genotype had a high germination percentage at 
high temperature (e.g. 35°C), it could be tolerant to heat 
at the germination stage (Chitwood et al. 2016; Zaman 
et al. 2022). 

Cultural practices such as irrigation, crop residues and 
mulching in combination with genetic modifications of crop 
plants are considered important tools for managing different 
abiotic stresses (Wahid 2007; Zaman et al. 2022). Exogenous 
application of mineral nutrients helps plants to combat heat 
stress by increasing their heat-tolerance capacity (Sarwar 
et al. 2019). In general, silicon (Si) supplementation to soil 
improves seed germination, root and shoot development, 
photosynthesis, nutrient uptake, nitrogen fixation, secondary 
metabolism and different yield attributes of crops (Mostofa 
et al. 2021). Furthermore, plants supplemented with Si have 
shown enhanced tolerance to various abiotic stresses including 
temperature extremes, salinity, drought, radiation and heavy 
metal toxicity (Khan et al. 2020b; Younis et al. 2020). 
Silicon applications to tomato, cucumber, rice, strawberry, 
date palm, barley, poinsettia and salvia effectively reduced 
the deleterious effects of heat stress by improving various 
growth-related attributes (Muneer et al. 2017; Khan et al. 
2020a). In terms of plant growth, Si an essential nutrient 
involved in various key functions (i.e. membrane stability, 
cell wall stabilisation, enhancement of key enzyme activities 
and phytohormones interaction) under abiotic stress (Naz 
et al. 2022; Shabbir et al. 2022). 

Use of mineral fertilisation is considered a novel approach 
to mitigate deleterious effects of heat stress in spinach. 
Moreover, balanced Si fertilisation is essential for normal 
physiological functioning and maintaining structural stability 
of plants (Waraich et al. 2012; Shabbir et al. 2022; Zaman et al. 
2022). Therefore, understanding the response of spinach to 
heat stress when receiving nutrient amendments will be of 
value to spinach growers. In this regard, the present study 
was designed to assess the efficiency of exogenously applied 
Si at varying levels on plant growth, biomass, physio-
biochemical parameters, antioxidant activity and osmolyte 
status under heat stress in spinach plants. 

Materials and methods

Experimental design and treatments

A pot experiment with spinach plants was conducted in a 
naturally lit glasshouse at the Department of Environmental 
Sciences, The University of Lahore, Pakistan. A completely 
randomised design was used consisting of two factors 
with three replications per treatment: heat stress application 
(normal growth conditions, or heat stress); and Si application 
(0, 2, 4 and 6 mmol L−1). Heat stress was applied at 15 days 
after sowing (DAS) by placing the pots in a transparent, 
polyethylene-sheet tunnel, and Si was applied in the form 
of K2SiO3. 

Experiment establishment and management

Homogenous seeds of spinach cv. Desi Palak were sterilised 
with 0.1% (w/v) sodium dodecyl solution and then washed 
with deionised water. Ten seeds were sown into each plastic 
pot (22.5 cm top diameter, 16.5 cm base diameter, 18 cm 
depth) filled with 7 kg sterilised soil. At 10 DAS, five healthy 
plants were maintained per pot. All pots were kept in open 
space under normal environmental conditions until application 
of the stress treatments. Tap water was used as source of 
irrigation to pot soil capacity on daily basis. A 50% Hoagland 
solution of moderate strength as a source of essential nutrients 
was applied weekly at a rate of 1 L per pot. The optimum 
temperature range for spinach growth is considered to be 
25–30°C (Atherton and Farooque 1983) and its growth is 
suppressed at 35°C (Leskovar et al. 1999; Katzman et al. 2001). 

After an acclimatisation period of 15 days, heat stress was 
imposed. A plastic tunnel made of black-tinted transparent 
polyethylene sheet was constructed over the pots by using 
bamboo sticks. Tiny holes were made in the sheeting to min-
imise the humidity. The pots in control treatment were placed 
under normal conditions (Shahid et al. 2017). Temperature 
and humidity were recorded with a digital temperature 
and humidity probe (Digital Multimeter 50302; Novanna 
Measurement Systems, Bury St Edmunds, UK). During heat 
stress, the temperature of control and heat-stressed pots was 
recorded twice a day and averaged (Both et al. 2015). A 
considerable increase in temperature was observed in heat-
stressed pots compared with control pots (Fig. 1). After 15 days 
of heat stress, foliar application of Si (0, 2, 4, 6 mmol L−1) in the  
form of potassium silicate (K2SiO3) salt in distilled water was 
applied, using 500 mL of the solution in each of two sprays 
at a 10-day interval (Naz et al. 2022). After 25 days of 
exposure to Si (65 DAS), data for morphological, biochemical 
and physiological attributes were recorded. 

Growth attributes

Following harvest at 65 DAS, plants were separated into 
leaves and roots for measurement of growth parameters. 
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Fig. 1. Mean daily temperature of normal and heat-stress treatments
for 15 days.

Number of leaves was counted, and plant height, leaf length 
and width were measured (in cm) using a ruler. Leaf area 
(cm2) was measured using the LI-3100 Area Meter (LI-COR 
Biosciences, Lincoln, NE, USA). Plants were then washed 
with distilled water to remove adhered soil particles and 
air-dried. Roots and leaves were oven-dried at 70°C for  
48 h for estimation of dry weights of root and leaves 
separately. 

Gas exchange attributes

At 65 DAS, photosynthetic rate (A), stomatal conductance (gs) 
and transpiration rate (E) were measured on fully expanded 
uppermost leaves by using a portable infrared gas analyser 
(ADC Bioscientific, Hoddesdon, UK) at light saturation 
intensity between 09:00 and 12:00 on a sunny day, as 
described by Emanuil et al. (2020). 

Biochemical attributes

Electrolyte leakage
Small pieces of leaves (at 65 DAS) were dipped in deionised 

water and electrolyte leakage (EL) level was measured. The 
first reading of EL was taken after incubation of the sample 
at 32°C for 2 h, and the second reading after incubation 
at 121°C for 20 min (Dionisio-Sese and Tobita 1998). The 
following formula was used to calculate the EL level of 
samples: 

EL = ðEC1=EC2Þ × 100 

Chlorophyll content
A crushed sample of plant leaf (~5 g) was added to a 

test tube containing 85% acetone (v/v) and placed under 
dark conditions for 24 h for pigment extraction. The sample 
was then centrifuged for 10 min at 4000g and 4°C. A spec-
trophotometer (Halo DB-20/DB-20S; Dynamica Scientific, 
Newport Pagnell, UK) at wavelengths of 470, 647 and 
664.5 nm was used to measure the amount of chlorophyll 
in the supernatant, following the methods described by 
Lichtenthaler (1987). 

Enzymatic antioxidants
Fresh spinach leaves (1.0 g) were extracted in 50 mM 

phosphate buffer (pH ~7.8) and the homogenate was 
centrifuged at 15 000g for 10 min; the supernatant was 
used for assaying enzyme activity. The activity of peroxidase 
(POD) was measured according to the method described 
by Velikova et al. (2000), catalase (CAT) activity following 
the method presented by Aebi (1974), and superoxide 
dismutase (SOD) activity following the procedure presented 
by Beauchamp and Fridovich (1971). 

Water-related attributes
The method of Turner and Kramer (1980) was used for 

determination of relative water content (RWC), and the 
following formula was used for the calculation: 

RWC = ððFW − DWÞ=ðTW − DWÞÞ × 100 

where FW is fresh weight, TW is turgid weight, and DW is dry 
weight. 

The water potential (Ψw) obtained by fresh leaves was 
measured by the use of a Pressure Bomb (Soilmoisture 
Equipment, Santa Barbara, CA, USA). Leaf samples, which 
were already used for RWC, were frozen, thawed, squeezed 
and centrifuged (5000g). An osmometer (Digital Osmometer; 
Wescor, Logan, UT, USA) was used to obtain osmotic 
potential. 

Determination of osmolytes
Fresh leaf (0.5 g) was taken and ground in buffer (pH 7.2); a 

protease inhibitor cocktail in 1 μM phosphate buffered saline 
was added to make a homogenous mixture. The saline buffer 
comprised deionised water, 1.37 mM NaCl, 2 mM KH2PO4, 
2.7 mM KCl and 10 mM Na2HPO4, with the pH adjusted 
by adding HCl. The solution was autoclaved and then 
centrifuged (12 000g) for ~5 min to separate the supernatant. 
Total soluble proteins were detected via Bradford assay 
(Bradford 1976), and samples were stored. Various dilutions 
of bovine serum albumin (10, 20, 30, 40, 50, 60, 70, 80, 90 
and 100 μg μL−1) were taken to construct standard curves. 
Deionised water (400 μL) with dye stock was added and the 
prepared sample tubes were incubated for 30 min at room 
temperature and then vortexed. A UV 4000 UV-Vis 
spectrophotometer (Dynamica Company, London, UK) was 
used to read the absorbance level of the sample. 

The method of Maehly and Chance (1954) was followed for 
proline determination. Sulfosalicylic acid (3% w/v) was 
mixed with 0.5-g samples of fresh leaf and then filtered; the 
filtered samples were placed in test tubes and treated with 
glacial acetic acid and ninhydrin (2.5%). Samples were 
heated in test tubes in a water bath (100°C) for 60 min, 
after which toluene was added to the test tubes for the 
separation of chromophores. A UV-Vis spectrophotometer 
was used to record the optical density (520 nm). The 
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method defined by Giannakoula et al. (2008) use to detect 
soluble sugar content. 

Statistical analyses

Data were analysed using Fisher’s analysis of variance 
(ANOVA) for significance testing. Tukey’s honestly signifi-
cant difference test at P = 0.05 was applied for comparison 
of means where the ANOVA indicated significant differences. 
Regression and correlation analyses were computed by 
using the Minitab-19 statistical software. All statistical 
computations were performed with Statistix software ver. 
10 (Analytical Software, Tallahassee, FL, USA). 

Results

Growth and biomass attributes

Heat stress, foliar-applied Si and their interaction significantly 
(P ≤ 0.01) affected growth and biomass attributes of spinach 
plants. Heat stress decreased plant height (20.4%), number of 
leaves (22.8%), leaf length (22.1%), leaf width (13.2%), leaf 
area (29.8%), root dry weight (11.1%) and leaf dry weight 
(25.92%) compared with the unstressed control (Fig. 2). 
Under normal and heat-stressed conditions, respectively, 
maximum plant height (27.1 and 21.4 cm), number of 
leaves (8.67 and 7.33), leaf length (16.8 and 13.5 cm), leaf 
width (3.6 and 3.1 cm), leaf area (55.5 and 42.5 cm2), root 
fresh weight (3.72 and 3.36 g), root dry weight (0.39 and 
0.35 g), leaf fresh weight (11.93 and 10.46 g) and leaf dry 
weight (1.15 and 0.96 g) were observed with foliar 
application of 4 mmol L−1 of Si solution (Fig. 2). 

Photosynthetic attributes

Heat stress, Si application and their interaction significantly 
(P ≤ 0.01) affected photosynthetic attributes of spinach 
plants. Decreases in transpiration rate (9.45%), photosyn-
thetic rate (24.4%) and stomatal conductance (10.5%) were 
observed with heat treatment relative to the unstressed 
control. However, maximum increases in transpiration 
rate (58.7%), photosynthetic rate (158%) and stomatal 
conductance (64.1%) were observed with foliar application 
of 4 mmol L−1 of Si solution compared with the nil-Si 
control under heat-stress conditions (Fig. 3). 

Enzymatic antioxidants and physio-biochemical
attributes

Heat stress, foliar application of Si and their interaction 
showed significant (P ≤ 0.01) impact on biochemical (Fig. 4) 
and enzymatic (Fig. 5) attributes of spinach. Under heat stress, 
decreases in chlorophyll contents (21.1%) and carotenoid 
contents (22.1%), and increases in SOD (11.2%), POD 
(12.08%), CAT (18.8%) and electrolyte leakage (49.9%) 

were observed compared with the unstressed control. 
Maximum improvements in chlorophyll and carotenoid 
contents and decreases in SOD (56.67%), POD (45.7%), 
CAT (58.4%) and electrolyte leakage (33.5%) were 
observed with foliar application of 4 mmol L−1 of Si compared 
with the nil-Si control under heat-stress conditions 
(Figs 4 and 5). 

Water-related attributes

Foliar-applied Si, heat stress and their interaction showed 
significant (P ≤ 0.01) impact on water-related attributes of 
spinach. Under heat stress, decreases in RWC (11.81%), 
water potential (25.66%) and osmotic potential (21.67%) 
were observed compared with the unstressed control. 
Under normal and heat-stressed conditions, respectively, 
maximum RWC (91.67% and 77.22%), water potential 
(−1.86 and −2.25 MPa), and osmotic potential (−2.24 and 
−2.63 MPa) were observed with foliar application of 
4 mmol L−1 of Si (Fig. 6). 

Osmolyte attributes

Heat stress and foliar-applied Si significantly (P ≤ 0.01) 
affected soluble sugar, soluble protein and proline contents 
of spinach plants. Heat stress significantly decreased the 
soluble sugar (20.92%) and soluble protein (17.71%) contents, 
and increased proline content (16.52%). Maximum soluble 
sugar and protein contents of 17.46 and 35.84 mg g−1 FW 
under control conditions, and 14.68 and 31.05 mg g−1 FW 
under heat-stressed conditions, were observed with foliar 
application of 4 mmol L−1 of Si (Fig. 7). 

Correlation matrix

Growth, enzymatic, water-related and biochemical attributes 
were subjected to correlation analysis (Table 1). All of the 
enzymatic activities (SOD, POD and CAT) were negatively 
correlated with chlorophyll content, leaf dry weight, root 
dry weight and RWC. Significant positive correlations of 
enzymatic activities were noted with electrolyte leakage, 
proline content, osmotic potential and water potential, and 
among those four parameters. Electrolyte leakage correlated 
negatively with leaf dry weight, root dry weight and RWC. 
Chlorophyll content was positively correlated with leaf dry 
weight, root dry weight and RWC. 

Regression analysis

Growth, physiological, water-related and biochemical 
attributes were also tested using regression analysis 
(Fig. 8a–f ). The R2 values of regressions were: leaf dry 
weight and RWC, 73.36% (Fig. 8a); electrolyte leakage and 
osmotic potential, 79% (Fig. 8b); chlorophyll content and 
leaf dry weight association, 94.84% (Fig. 8c); stomatal 
conductance and water potential, 72.35% (Fig. 8d); soluble 
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Fig. 2. Growth attributes of spinach cv. Desi
Palak under normal and heat-stressed conditions
in response to various rates of foliar-applied
Si (0, 2, 4 and 6 mmol L−1): (a) plant height,
(b) number of leaves per plant, (c) leaf length,
(d) leaf width, (e) leaf area, (f ) root fresh
weight, (g) root dry weight, (h) leaf fresh weight,
and (i) leaf dry weight. The line and red dot inside
the box are the median and mean, respectively.
For each parameter, means with the same letter
are not significantly different across treatments.
Capped lines denote standard deviation of
three replicates.

sugar and proline contents, only 45.90% (Fig. 8e); and 
photosynthetic rate and leaf area, 88.38% (Fig. 8f ). 

Discussion

Under stressful conditions such as drought, salt and 
high temperature, plants may alter their morphological, 

molecular, physiological and biochemical processes as 
adaptation strategies (Wahid 2007; Chaudhry and Sidhu 
2022). The present study showed that heat stress signifi-
cantly decreases the growth and biomass of spinach plants. 
High temperature causes loss of cell water content, ultimately 
reducing cell size and growth (Ali et al. 2021; Hassan et al. 
2021; Okereke et al. 2021). Under extreme heat stress, 
plants can show programmed cell death in specific cells or 
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Fig. 3. Physiological attributes of spinach cv. Desi Palak under
normal and heat-stressed conditions in response to various rates
of foliar-applied Si (0, 2, 4 and 6 mmol L−1): (a) stomatal conductance,
(b) photosynthetic rate, and (c) transpiration rate. The line and red dot
inside the box are the median and mean, respectively. For each
parameter, means with the same letter are not significantly different
across treatments. Capped lines denote standard deviation of three
replicates.

Fig. 4. Biochemical attributes of spinach cv. Desi Palak under
normal and heat-stressed conditions in response to various rates
of foliar-applied Si (0, 2, 4 and 6 mmol L−1): (a) electrolyte leakage,
(b) chlorophyll content, and (c) carotenoid contents. The line and
red dot inside the box are the median and mean, respectively. For
each parameter, means with the same letter are not significantly
different across treatments. Capped lines denote standard deviation
of three replicates.
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Fig. 5. Enzymatic attributes of spinach cv. Desi Palak under normal
and heat-stressed conditions in response to various rates of foliar-
applied Si (0, 2, 4 and 6 mmol L−1): (a) SOD, (b) POD, and (c) CAT.
The line and red dot inside the box are the median and mean,
respectively. For each parameter, means with the same letter are not
significantly different across treatments. Capped lines denote
standard deviation of three replicates.

Fig. 6. Water related attributes of spinach cv. Desi Palak under normal
and heat-stressed conditions in response to various rates of foliar-applied
Si (0, 2, 4 and 6mmol L−1): (a) relative water contents; (b) water potential
and (c) osmotic potential. The line and red dot inside the box are the
median and mean, respectively. For each parameter, means with the
same letter are not significantly different across treatments. Capped
lines denote standard deviation of three replicates.
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Fig. 7. Osmolytes status of spinach cv. Desi Palak under normal and
heat-stressed conditions in response to various rates of foliar-applied
Si (0, 2, 4 and 6 mmol L−1): (a) soluble sugar, (b) soluble protein, and
(c) proline contents. The line and red dot inside the box are the
median and mean, respectively. For each parameter, means with the
same letter are not significantly different across treatments. Capped
lines denote standard deviation of three replicates.

tissues; on the other hand, moderate heat stress for extended 
periods causes gradual death. Both types of injury or death 

can lead to the shedding or shortening of leaves, reduction 
in fresh and dry biomass, or even death of the entire plant 
(Abdelrahman et al. 2017; Das et al. 2017; Fahad et al. 
2017; Hussain et al. 2019). The results presented here 
concur with those of previous reports by Mahdieh et al. 
(2015), Abbas et al. (2017), and An et al. (2022), where 
the application of exogenous Si alleviated the negative 
effects of abiotic stress and restored plant growth. In the 
present investigation, we found improved leaf area, better 
growth, and greater fresh and dry weights in response to 
application of Si (Fig. 9). This suggests the involvement of 
Si in cell division and expansion, which might lead to 
internodal elongation and influence the height of the plant 
(Soundararajan et al. 2014; Hussain et al. 2019; Younis 
et al. 2020). The literature reveals that Si is considered a 
plant-growth-regulator-like compound that is necessary for 
cell division and expansion (Hwang et al. 2007; Khan et al. 
2020a; An et al. 2022), and has a defensive role against a 
wide range of environmental stresses (Tripathi et al. 2013; 
Shalaby et al. 2021). 

In all green plants, the most fundamental physiological 
process is photosynthesis, and all of its components are 
sensitive to stress conditions; any type of stress at any stage 
of life affects overall photosynthetic efficiency of green 
plants (Alabdallah et al. 2021). The present findings reveal 
that heat stress significantly decreases the photosynthetic 
attributes of spinach plants compared with control tempera-
tures, which might be due to the decreased stomatal 
conductivity and transpiration rate (Mahdavi et al. 2021). 
In tomato, high stomatal conductivity and transpiration rate 
under heat stress improve leaf cooling, providing better 
protection for chlorophyll and maintaining relatively high 
photosynthetic rate (Haque et al. 2021). Under abiotic 
stress environments, photosynthetic pigment degradation 
occurs; for example, under salt stress conditions, chlorophyll 
pigments break down (Iqbal et al. 2021). The improvement 
of spinach physiological attributes might be the result of 
increased total chlorophyll content with optimum Si applica-
tion under heat-stressed conditions (Fig. 9). Breakage in the 
walls of chloroplasts could be delayed with Si application, 
by which photosynthetic and transpiration rate and efficiency 
can be improved (Xie et al. 2014; Das et al. 2021). Effects of 
foliar-applied Si in improving photosynthetic potential and 
efficiency by opening angle of leaves, keeping the leaf 
erect, and decreasing self-shading have been reported in 
rice, barely, wheat and sugarcane (Soratto et al. 2012; 
Othmani et al. 2021). 

Chlorophyll is very sensitive to heat stress (Murkowski 
2001; Song et al. 2018). High-temperature-induced decline 
in chlorophyll and carotenoid contents has been reported in 
field and vegetable crops (Jeon et al. 2006). The same 
trend was found in spinach plants grown under a high-
temperature regime in our study. Leakage of electrolytes, 
which are indicators of stress sensitivity, was higher in 
heat-treated spinach plants than the control. The increase 
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Table 1. Correlation matrix of growth, water-related, enzymatic and biochemical attributes of spinach in response to various rates of foliar
applied silicon (0, 2, 4 and 6 mmol L−1) under normal and heat-stressed conditions.

Variables CAT CC EL LDW POD PRO RDW RWC SOD OP

CC −0.96**

EL 0.81** −0.83**

LDW −0.93** 0.96** −0.85**

POD 0.93** −0.96** 0.80** −0.92**

PRO 0.73** −0.71** 0.65** −0.65** 0.72**

RDW −0.92** 0.92** −0.79** 0.87** −0.91** −0.69**

RWC −0.78** 0.85** −0.84** 0.84** −0.86** −0.67** 0.84**

SOD 0.94** −0.95** 0.75** −0.92** 0.97** 0.64** −0.92** −0.83**

OP 0.91** −0.91** 0.89** −0.88** 0.85** 0.82** −0.88** −0.82** 0.83**

WP 0.91** −0.91** 0.89** −0.89** 0.86** 0.83** −0.88** −0.82** 0.83** 0.99**

**P ≤ 0.01.
CAT, catalase activity; CC, chlorophyll content; EL, electrolyte leakage; LDW, leaf dry weight; PRO, proline content; RDW, root dry weight; RWC, relative water
content; SOD, superoxide dismutase activity; OP, osmotic potential; WP, water potential.

in lipid peroxidation might be a result of the overproduction 
and accumulation of reactive oxygen species (ROS), which 
then causes membrane peroxidation, protein degradation 
and DNA damage, severely inhibiting growth (Awasthi 
et al. 2015; Zhang et al. 2017). In one study, Si enhanced 
chlorophyll and carotenoid contents in a barley cultivar 
under high-temperature regimes, possibly by protecting the 
chlorophyll pigments from oxidative damage through 
strengthening of the level of carotenoids (Heile et al. 2021; 
Zaman et al. 2021). Exogenously applied Si improved 
plant defence systems to detoxify ROS induced under heat 
stress, which in turn helped to increased chlorophyll and 
carotenoid contents by limiting electrolyte leakage (Heile 
et al. 2021; Zaman et al. 2021). 

Tolerant plants show a tendency to protection against the 
damaging effects of ROS through the synthesis of various 
enzymatic and nonenzymatic ROS-scavenging and detoxifica-
tion systems (Jing et al. 2020). Activities also differ depending 
upon tolerance or susceptibility of different crop varieties, 
their growth stages and growing season (Li et al. 2020). 
The antioxidants CAT, SOD and POD are known for the 
dismutation of hydrogen peroxide to water and molecular 
oxygen in cells, as well as the elimination of stress-induced 
ROS directly or indirectly via the production of ascorbate 
and glutathione (Kim et al. 2014). In this study, we found 
that the activities of ROS-eliminating enzymes differed 
significantly in spinach plants under heat-stressed and 
control conditions. Plants receiving foliar-applied Si 
showed enhanced enzymatic activity during heat stress 
compared with normal temperature conditions, concurring 
with previous findings (Soundararajan et al. 2015; Heile 
et al. 2021; Zaman et al. 2021). 

In addition to biomass, heat stress caused a significant 
reduction in water-related attributes of spinach plants 
(Sinha et al. 2021). Our results are in agreement with 

previous reports in rice (Fahad et al. 2016) and wheat 
(Hameed et al. 2012). The decrease in leaf water content 
and water potential might affect plant metabolism and 
decrease plant growth and biomass (Sun et al. 2020). The 
application of Si alleviated heat stress significantly by 
improving the water status of spinach plants. Naz et al. 
(2022) found that, at a balanced Si concentration, RWC was 
almost constant under abiotic stress, which was probably 
due to an advanced ability for osmotic adjustment. Moreover, 
Si application helps in removing restrictions and improves 
turgor pressure in the cells to maintain water balance. 
Maximum RWC in the treatment with Si at 4 mmol L−1 

under heat stress might be due to the protective effect of Si in 
stressed plants by maintaining membrane integrity, because 
one of the primary effects of heat stress is a disruption of 
membrane integrity. Similar findings have been reported 
for wheat, sorghum and maize plants, suggesting that the 
positive impact of Si application under drought stress may 
be associated with reduced transpiration (Wang et al. 2021). 

Plants affected by heat stress show the accumulation of 
compatible solutes such soluble sugars and proline (Rivero 
et al. 2014; Zhao et al. 2018). In the present study, 
enhanced proline content was observed under heat stress 
compared with control temperatures. Increased accumulation 
of proline due to heat stress has been reported by other 
researchers, who concluded that proline helps to stabilise 
membranes, subcellular structures and cellular redox poten-
tial by destroying the radicals (Hussain et al. 2018; Wang 
et al. 2018; Naz et al. 2022). Liu et al. (2011) observed a 
significant increase in starch content under heat-shock 
treatment >30°C. The increase in osmolyte status, soluble 
protein and soluble sugars and decrease in proline content 
in response to Si application may be due to the fact that Si 
has a pivotal role in binding amino acids to form specific 
proteins (Soundararajan et al. 2014; Rady et al. 2019; 
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Fig. 8. Regressions showing significance for: (a) leaf dry weight vs relative water content, (b) electrolyte
leakage vs osmotic potential, (c) chlorophyll content vs leaf dry weight, (d) stomatal conductance vs water
potential, (e) soluble sugar vs proline contents, and (f ) photosynthetic rate and leaf area.

Zaman et al. 2022), and Si is actively engaged in formation of 
DNA and functioning of mRNA (Abbas et al. 2015; AlKahtani 
et al. 2021). In addition, foliar-applied Si reduced the accumu-
lation of proline content in the heat-stressed seedlings, which is 
associated with improved growth of spinach plants under heat 
stress (Fig. 9). This result suggests that foliar-applied Si could 
provide protection to cells by keeping the accumulation of 
proline to an optimum level, and Si probably employed 
other osmoprotectants for stress mitigation, such that a high 
level of proline accumulation was not required. The major 
outcomes of this research are that an appropriate level of Si 
not only improves the morpho-physiological parameters but 

also decreases electrolyte leakage. This finding addresses 
issues of health and nutritional challenges and of improving 
farm productivity in regions facing extreme heat waves. 
However, further research is required to test more genotypes 
for thermo-tolerance and assess under field conditions. 

Conclusion

Heat stress significantly inhibited the growth, physiological, 
water relations and osmolyte status of spinach plants. Silicon 
supplementation improved plant growth, physio-biochemical, 
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Fig. 9. Pictorial representation of major damage caused by heat stress in spinach plants, and the defensive role of Si in
responding. Heat stress causes oxidative, osmotic and electrolyte leakage in plants. An increase in sodium ions in soil
lowers the soil water potential of plant cells. Heat stress reduces water uptake by plants, and resulting in cellular
dehydration, biomass reduction, lipid peroxidation and, ultimately, yield reduction. To combat this, plants decrease
ROS-induced oxidative stress pathways. These enzymatic antioxidants result in lowering of cellular water potential
and lipid peroxidation and maintain a favourable gradient for water uptake. Balanced Si application alleviates osmotic
stress by improving the photosynthetic process, antioxidant machinery and maintenance of osmoprotectant
homeostasis. Si fertilisation reinforces the tolerance mechanism of plants to heat-induced oxidative stress.

photosynthetic, and tissue water parameters under heat 
stress compared with nil-Si treatment. Application of Si 
enhanced plant growth, most likely through decreased elec-
trolyte leakage. Application of Si also increased enzymatic 
antioxidants. Application of Si at 4 mmol L−1 performed 
best in alleviating heat stress in spinach plants. Moreover, 
exogenous application of Si is an environmentally friendly 
approach for growing spinach under heat-stressed condi-
tions. Future research activities focusing on root architecture 
traits, molecular forms of Si and heat-stress interactions, 
economic benefits and diet diversity in addition to vital 
nutrients will be essential to developing agricultural 
strategies aiming at improving crop yield under abiotic 
stress. 
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