10.1071/CP12416 ## © CSIRO 2013 Supplementary Material: Crop & Pasture Science, 2013, 64(2), 123–136. ## Survival and growth of perennial halophytes on saltland in a Mediterranean environment is affected by depth to watertable in summer as well as subsoil salinity E. G. Barrett-Lennard^{A,B,C,D,F}, Sarita Jane Bennett^{B,C,E}, and M. Altman^{A,C,D} ^ACentre for Ecohydrology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. ^BSchool of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. ^CFuture Farm Industries Cooperative Research Centre, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. ^DDepartment of Agriculture and Food of Western Australia, 3 Baron-Hay Court, South Perth, WA 6151, Australia. ^ECurrent address: Department of Environment and Agriculture, Curtin University of Technology, GPO Box U1987, Bentley, WA 6845, Australia. FCorresponding author. Email: egbarrettlennard@agric.wa.gov.au **Table S1.** Soil characteristics down the profile The soil samples were taken on 30 October 2003 (Wubin), 25 November 2003 (Meckering) and 3 December 2003 (Pingaring) and were analysed by the Chemistry Centre of Western Australia | Depth | Meckering Pingaring Wubin | | Wubin | | | | |------------------------|---------------------------|-------------------|--------------------|--|--|--| | Texture (% sand) | | | | | | | | 0-0.1 m | $93 \pm 1 (4)$ | 91 ± 4 (5) | 85 ± 3 (3) | | | | | 0.1-0.3 m | $90 \pm 4 (4)$ | $79 \pm 8 (5)$ | $83 \pm 2 (4)$ | | | | | 0.3-0.5 m | $85 \pm 3 (3)$ | $61 \pm 5 (5)$ | $73 \pm 6 (4)$ | | | | | 0.5-1.0 m | $68 \pm 8 (2)$ | 72 ± 1 (5) | $58 \pm 3 (4)$ | | | | | | Texture (% clay) | | | | | | | 0-0.1 m | 3 ± 1 (4) | $5 \pm 3 (5)$ | 12 ± 2 (3) | | | | | 0.1-0.3 m | $5 \pm 2 (4)$ | $17 \pm 8 (5)$ | 13 ± 1 (4) | | | | | 0.3-0.5 m | $10 \pm 3 (3)$ | $35 \pm 4 (5)$ | $22 \pm 5 (4)$ | | | | | 0.5-1.0 m | $30 \pm 8 (2)$ | 25 ± 1 (5) | 32 ± 1 (4) | | | | | EC _e (dS/m) | | | | | | | | 0-0.1 m | $31.0 \pm 22.4 (4)$ | $3.3 \pm 1.5 (5)$ | 11.7 ± 3.2 (3) | | | | | 0.1-0.3 m | $24.9 \pm 18.0 (4)$ | $4.2 \pm 1.6 (5)$ | 10.2 ± 4.4 (3) | | | | | 0.3-0.5 m | $5.9 \pm 4.6 (3)$ | $7.9 \pm 2.3 (5)$ | 14.5 ± 8.4 (4) | | | | | 0.5-1.0 m | $1.7 \pm 0.9(2)$ | $9.2 \pm 3.5 (5)$ | 15.4 ± 8.1 (4) | | | | | | | pH | | | | | | 0-0.1 m | 6.9 ± 0.4 (4) | $6.9 \pm 0.4 (5)$ | $7.1 \pm 0.5 (3)$ | | | | | 0.1-0.3 m | 6.5 ± 0.6 (4) | $7.5 \pm 0.3 (5)$ | $6.8 \pm 0.6 (3)$ | | | | | 0.3-0.5 m | 6.4 ± 0.9 (3) | $7.3 \pm 0.3 (5)$ | $6.6 \pm 0.8 (4)$ | | | | | 0.5-1.0 m | 7.0 ± 1.2 (2) | $5.8 \pm 0.4 (5)$ | 6.1 ± 1.0 (4) | | | | | SAR | | | | | | | | 0-0.1 m | 39 ± 19 (4) | $18 \pm 6 (5)$ | 17 ± 4 (3) | | | | | 0.1-0.3 m | 56 ± 22 (3) | $32 \pm 11 (4)$ | 18 ± 5 (3) | | | | | 0.3-0.5 m | 47 ± 17 (2) | $44 \pm 7 (5)$ | 23 ± 8 (4) | | | | | 0.5-1.0 m | 43 (1) | $45 \pm 4 (5)$ | 31 ± 6 (4) | | | | | Boron (mg/kg) | | | | | | | | 0-0.1 m | 4.2 (1) | 7.8 (1) | 4.2 (1) | | | | | 0.1-0.3 m | 1.2 (1) | | | | | | | 0.3-0.5 m | | | 10.1 ± 4.0 (2) | | | | | 0.5-1.0 m | 1.8 (1) ND* 12.5 : | | 12.5 ± 1.5 (2) | | | | ^{*} ND = not determined. Table S2. Availability of mineral nutrients in the topsoil (0-0.1 m)* The soil samples were taken on 30 October 2003 (Wubin), 25 November 2003 (Meckering) and 3 December 2003 (Pingaring) and were analysed by the Chemistry Centre of Western Australia | Characteristic | c Meckering Pingaring Wubin | | Wubin | |----------------|-----------------------------|-------------------|-------------------| | Organic C (%) | 0.46 ± 0.06 | 0.36 ± 0.07 | 0.40 ± 0.09 | | N (total %) | 0.037 ± 0.009 | 0.028 ± 0.005 | 0.032 ± 0.005 | | P (mg/kg) | 25.8 ± 7.5 | 5.6 ± 1.0 | 29.0 ± 11.0 | | K (mg/kg) | 55 ± 17 | 127 ± 54 | 245 ± 45 | | S (mg/kg) | 78 ± 40 | 10 ± 5 | 54 ± 8 | | Cu (mg/kg) | 0.105 ± 0.010 | 0.124 ± 0.059 | 0.575 ± 0.065 | | Fe (mg/kg) | 9.6 ± 4.6 | 14.1 ± 4.8 | 9.8 ± 0.1 | | Mn (mg/kg) | 5.6 ± 1.4 | 11.4 ± 2.4 | 29.0 ± 13.0 | | Zn (mg/kg) | 0.38 ± 0.13 | 0.15 ± 0.02 | 0.49 ± 0.03 | | CEC (me %) | 2.5 ± 0.3 | 3.2 ± 1.0 | 5.5 ± 1.5 | ^{*}Values are the mean ± SEM of 5 (Pingaring), 4 (Meckering) or 2-3 replicates (Wubin). **Table S3.** Calibration equations used to convert EM38 readings (EC_{ah} and EC_{av}) to EC_e values | Date | Depth
interval (m) | Relationship of best fit | Variance accounted | Р | |---------------|-----------------------|--|--------------------|--------------------| | | interval (III) | | for | | | | | | | | | Meckering | 0.005 | FO 0440*FO 404F | 0.000 | 0.004 | | 28 Nov. 2003 | 0-0.25 | EC _e = 0.149*EC _{av} - 10.15 | 0.989 | < 0.001 | | 21 Jun. 2004 | 0.25-0.50
0-0.25 | $EC_e = 0.0953*EC_{av} - 5.51$
$EC_e = 0.628*EC_{ah} - 0.464*EC_{av} + 5.0$ | 0.866
0.845 | < 0.001
< 0.001 | | 21 Juli. 2004 | 0.25-0.50 | $EC_e = 0.026 \ EC_{ah} - 0.404 \ EC_{av} + 3.00 \ EC_e = 0.190 ^*EC_{ah} - 0.024 ^*EC_{av} - 3.1$ | 0.780 | 0.001 | | 20 Jun. 2005 | 0-0.25 | $EC_e = 0.1247*EC_{av} - 8.21$ | 0.780 | < 0.002 | | 20 0011. 2000 | 0.25-0.50 | Not determined* | 0.002 | V 0.001 | | 13 Sep. 2005 | 0–0.25 | EC _e = 0.1908*EC _{ah} - 0.062*EC _{av} - 4.91 | 0.937 | < 0.001 | | | 0.25-0.50 | $EC_e = 0.2233*EC_{ah} - 0.1085*EC_{av} + 1.87$ | 0.977 | < 0.001 | | Pingaring | | | | | | 3 Dec. 2003 | 0-0.25 | $EC_e = 0.031 * EC_{ah} - 1.043$ | 0.764 | < 0.001 | | 0 200. 2000 | 0.25-0.50 | $EC_e = 0.1184*EC_{ah} - 0.0501*EC_{av} -$ | 0.955 | < 0.001 | | | | 0.62 | | | | 16 Jun. 2004 | 0–0.25 | $EC_e = 0.2126 * EC_{ah} - 0.1703 * EC_{av} + 6.9$ | 0.662 | 0.009 | | | 0.25-0.50 | $EC_e = 0.1405 * EC_{ah} - 0.0730 * EC_{av} + 0.58$ | 0.922 | < 0.001 | | 28 Jun. 2005 | 0-0.25 | $EC_e = 0.288 + 0.122*(1.00912**EC_{ah})$ | 0.963 | < 0.001 | | | 0.25-0.50 | $EC_e = 0.1841*EC_{ah} - 0.1106*EC_{av} + 2.59$ | 0.959 | < 0.001 | | 23 Sep. 2005 | 0–0.25 | $EC_e = 0.0724*EC_{ah} - 0.0396*EC_{av} + 0.39$ | 0.901 | < 0.001 | | | 0.25-0.50 | $EC_e = 0.0587*EC_{ah} + 0.0136*EC_{av} - 6.49$ | 0.970 | < 0.001 | | Wubin | | | | | | 30 Oct. 2003 | 0-0.25 | $EC_e = 0.1443 * EC_{ah} - 6.49$ | 0.521 | 0.017 | | | 0.25-0.50 | $EC_e = 0.1345 * EC_{ah} - 8.01$ | 0.968 | < 0.001 | | 22 Jun. 2004 | 0–0.25 | EC _e = 4.44/(1 - 0.0021767*EC _{av}) - 0.99 | 0.945 | < 0.001 | | | 0.25-0.50 | EC _e = 14.2/(1 - 0.001792*EC _{av}) - 14.1 | 0.812 | 0.001 | | 21 Jun. 2005 | 0-0.25 | $EC_e = 0.0903 * EC_{av} - 3.10$ | 0.602 | 0.003 | | | 0.25-0.50 | $EC_e = 0.1278*EC_{ah} + 0.0055*EC_{av}$ | 0.898 | < 0.001 | | 45.0 | 0.005 | 4.61 | 0.000 | 0.004 | | 15 Sep. 2005 | 0-0.25 | $EC_e = 0.1765 * EC_{ah} - 0.95$ | 0.886 | < 0.001 | | | 0.25–0.50 | $EC_e = 0.1697*EC_{ah} - 8.38$ | 0.974 | < 0.001 | ^{*}Subsoil samples were not taken on this day as the soil was partly saturated (waterlogged). **Table S4.** Relationships between non-destructive measures of plant growth (volume in m³; planar area in m²) and shoot dry mass (kg) Plants were sampled in June 2004 and February-March 2005 | Species | Regression/ source of plants | |-----------------------------|--| | June 2004
River saltbush | | | Rhodes grass | 49 from Wubin, 42 from Meckering, 43 from Pingaring) Dry mass = 0.24*Area - 0.91; R ² = 0.53; P < 0.001 (n = 30; all | | Janes | from Meckering) | | February-Marc | h 2005 | | • | Dry mass = $1.32*$ Volume + 0.51 ; R ² = 0.49 ; $P < 0.001$ ($n = 30$; 10 from Wubin, 10 from Meckering, 10 from Pingaring) | | Small leaf bluebush | Dry mass = $0.86*$ Volume + 0.02 ; $R^2 = 0.80$; $P < 0.001$ ($n = 30$; 10 from Wubin, 10 from Meckering, 10 from Pingaring) | | Samphire | Dry mass = $3.56*$ Volume + 0.09 ; R ² = 0.78 ; $P < 0.001$ ($n = 10$; all from Meckering) | | Rhodes grass | Dry mass = $0.032*$ Area + 0.036 ; R ² = 0.26 ; P = 0.035 (n = 14; all from Meckering) | | Saltwater couch | Not sampled as the plants were obscured by annual weeds |