10.1071/CP12416

© CSIRO 2013

Supplementary Material: Crop & Pasture Science, 2013, 64(2), 123–136.

Survival and growth of perennial halophytes on saltland in a Mediterranean environment is affected by depth to watertable in summer as well as subsoil salinity

E. G. Barrett-Lennard^{A,B,C,D,F}, Sarita Jane Bennett^{B,C,E}, and M. Altman^{A,C,D}

^ACentre for Ecohydrology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

^BSchool of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

^CFuture Farm Industries Cooperative Research Centre, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

^DDepartment of Agriculture and Food of Western Australia, 3 Baron-Hay Court, South Perth, WA 6151, Australia.

^ECurrent address: Department of Environment and Agriculture, Curtin University of Technology, GPO Box U1987, Bentley, WA 6845, Australia.

FCorresponding author. Email: egbarrettlennard@agric.wa.gov.au

Table S1. Soil characteristics down the profile

The soil samples were taken on 30 October 2003 (Wubin), 25 November 2003 (Meckering) and 3 December 2003 (Pingaring) and were analysed by the Chemistry Centre of Western Australia

Depth	Meckering Pingaring Wubin		Wubin			
Texture (% sand)						
0-0.1 m	$93 \pm 1 (4)$	91 ± 4 (5)	85 ± 3 (3)			
0.1-0.3 m	$90 \pm 4 (4)$	$79 \pm 8 (5)$	$83 \pm 2 (4)$			
0.3-0.5 m	$85 \pm 3 (3)$	$61 \pm 5 (5)$	$73 \pm 6 (4)$			
0.5-1.0 m	$68 \pm 8 (2)$	72 ± 1 (5)	$58 \pm 3 (4)$			
	Texture (% clay)					
0-0.1 m	3 ± 1 (4)	$5 \pm 3 (5)$	12 ± 2 (3)			
0.1-0.3 m	$5 \pm 2 (4)$	$17 \pm 8 (5)$	13 ± 1 (4)			
0.3-0.5 m	$10 \pm 3 (3)$	$35 \pm 4 (5)$	$22 \pm 5 (4)$			
0.5-1.0 m	$30 \pm 8 (2)$	25 ± 1 (5)	32 ± 1 (4)			
EC _e (dS/m)						
0-0.1 m	$31.0 \pm 22.4 (4)$	$3.3 \pm 1.5 (5)$	11.7 ± 3.2 (3)			
0.1-0.3 m	$24.9 \pm 18.0 (4)$	$4.2 \pm 1.6 (5)$	10.2 ± 4.4 (3)			
0.3-0.5 m	$5.9 \pm 4.6 (3)$	$7.9 \pm 2.3 (5)$	14.5 ± 8.4 (4)			
0.5-1.0 m	$1.7 \pm 0.9(2)$	$9.2 \pm 3.5 (5)$	15.4 ± 8.1 (4)			
		pH				
0-0.1 m	6.9 ± 0.4 (4)	$6.9 \pm 0.4 (5)$	$7.1 \pm 0.5 (3)$			
0.1-0.3 m	6.5 ± 0.6 (4)	$7.5 \pm 0.3 (5)$	$6.8 \pm 0.6 (3)$			
0.3-0.5 m	6.4 ± 0.9 (3)	$7.3 \pm 0.3 (5)$	$6.6 \pm 0.8 (4)$			
0.5-1.0 m	7.0 ± 1.2 (2)	$5.8 \pm 0.4 (5)$	6.1 ± 1.0 (4)			
SAR						
0-0.1 m	39 ± 19 (4)	$18 \pm 6 (5)$	17 ± 4 (3)			
0.1-0.3 m	56 ± 22 (3)	$32 \pm 11 (4)$	18 ± 5 (3)			
0.3-0.5 m	47 ± 17 (2)	$44 \pm 7 (5)$	23 ± 8 (4)			
0.5-1.0 m	43 (1)	$45 \pm 4 (5)$	31 ± 6 (4)			
Boron (mg/kg)						
0-0.1 m	4.2 (1)	7.8 (1)	4.2 (1)			
0.1-0.3 m	1.2 (1)					
0.3-0.5 m			10.1 ± 4.0 (2)			
0.5-1.0 m	1.8 (1) ND* 12.5 :		12.5 ± 1.5 (2)			

^{*} ND = not determined.

Table S2. Availability of mineral nutrients in the topsoil (0-0.1 m)*

The soil samples were taken on 30 October 2003 (Wubin), 25 November 2003 (Meckering) and 3 December 2003 (Pingaring) and were analysed by the Chemistry Centre of Western Australia

Characteristic	c Meckering Pingaring Wubin		Wubin
Organic C (%)	0.46 ± 0.06	0.36 ± 0.07	0.40 ± 0.09
N (total %)	0.037 ± 0.009	0.028 ± 0.005	0.032 ± 0.005
P (mg/kg)	25.8 ± 7.5	5.6 ± 1.0	29.0 ± 11.0
K (mg/kg)	55 ± 17	127 ± 54	245 ± 45
S (mg/kg)	78 ± 40	10 ± 5	54 ± 8
Cu (mg/kg)	0.105 ± 0.010	0.124 ± 0.059	0.575 ± 0.065
Fe (mg/kg)	9.6 ± 4.6	14.1 ± 4.8	9.8 ± 0.1
Mn (mg/kg)	5.6 ± 1.4	11.4 ± 2.4	29.0 ± 13.0
Zn (mg/kg)	0.38 ± 0.13	0.15 ± 0.02	0.49 ± 0.03
CEC (me %)	2.5 ± 0.3	3.2 ± 1.0	5.5 ± 1.5

^{*}Values are the mean ± SEM of 5 (Pingaring), 4 (Meckering) or 2-3 replicates (Wubin).

Table S3. Calibration equations used to convert EM38 readings (EC_{ah} and EC_{av}) to EC_e values

Date	Depth interval (m)	Relationship of best fit	Variance accounted	Р
	interval (III)		for	
Meckering	0.005	FO 0440*FO 404F	0.000	0.004
28 Nov. 2003	0-0.25	EC _e = 0.149*EC _{av} - 10.15	0.989	< 0.001
21 Jun. 2004	0.25-0.50 0-0.25	$EC_e = 0.0953*EC_{av} - 5.51$ $EC_e = 0.628*EC_{ah} - 0.464*EC_{av} + 5.0$	0.866 0.845	< 0.001 < 0.001
21 Juli. 2004	0.25-0.50	$EC_e = 0.026 \ EC_{ah} - 0.404 \ EC_{av} + 3.00 \ EC_e = 0.190 ^*EC_{ah} - 0.024 ^*EC_{av} - 3.1$	0.780	0.001
20 Jun. 2005	0-0.25	$EC_e = 0.1247*EC_{av} - 8.21$	0.780	< 0.002
20 0011. 2000	0.25-0.50	Not determined*	0.002	V 0.001
13 Sep. 2005	0–0.25	EC _e = 0.1908*EC _{ah} - 0.062*EC _{av} - 4.91	0.937	< 0.001
	0.25-0.50	$EC_e = 0.2233*EC_{ah} - 0.1085*EC_{av} + 1.87$	0.977	< 0.001
Pingaring				
3 Dec. 2003	0-0.25	$EC_e = 0.031 * EC_{ah} - 1.043$	0.764	< 0.001
0 200. 2000	0.25-0.50	$EC_e = 0.1184*EC_{ah} - 0.0501*EC_{av} -$	0.955	< 0.001
		0.62		
16 Jun. 2004	0–0.25	$EC_e = 0.2126 * EC_{ah} - 0.1703 * EC_{av} + 6.9$	0.662	0.009
	0.25-0.50	$EC_e = 0.1405 * EC_{ah} - 0.0730 * EC_{av} + 0.58$	0.922	< 0.001
28 Jun. 2005	0-0.25	$EC_e = 0.288 + 0.122*(1.00912**EC_{ah})$	0.963	< 0.001
	0.25-0.50	$EC_e = 0.1841*EC_{ah} - 0.1106*EC_{av} + 2.59$	0.959	< 0.001
23 Sep. 2005	0–0.25	$EC_e = 0.0724*EC_{ah} - 0.0396*EC_{av} + 0.39$	0.901	< 0.001
	0.25-0.50	$EC_e = 0.0587*EC_{ah} + 0.0136*EC_{av} - 6.49$	0.970	< 0.001
Wubin				
30 Oct. 2003	0-0.25	$EC_e = 0.1443 * EC_{ah} - 6.49$	0.521	0.017
	0.25-0.50	$EC_e = 0.1345 * EC_{ah} - 8.01$	0.968	< 0.001
22 Jun. 2004	0–0.25	EC _e = 4.44/(1 - 0.0021767*EC _{av}) - 0.99	0.945	< 0.001
	0.25-0.50	EC _e = 14.2/(1 - 0.001792*EC _{av}) - 14.1	0.812	0.001
21 Jun. 2005	0-0.25	$EC_e = 0.0903 * EC_{av} - 3.10$	0.602	0.003
	0.25-0.50	$EC_e = 0.1278*EC_{ah} + 0.0055*EC_{av}$	0.898	< 0.001
45.0	0.005	4.61	0.000	0.004
15 Sep. 2005	0-0.25	$EC_e = 0.1765 * EC_{ah} - 0.95$	0.886	< 0.001
	0.25–0.50	$EC_e = 0.1697*EC_{ah} - 8.38$	0.974	< 0.001

^{*}Subsoil samples were not taken on this day as the soil was partly saturated (waterlogged).

Table S4. Relationships between non-destructive measures of plant growth (volume in m³; planar area in m²) and shoot dry mass (kg)

Plants were sampled in June 2004 and February-March 2005

Species	Regression/ source of plants
June 2004 River saltbush	
Rhodes grass	49 from Wubin, 42 from Meckering, 43 from Pingaring) Dry mass = 0.24*Area - 0.91; R ² = 0.53; P < 0.001 (n = 30; all
Janes	from Meckering)
February-Marc	h 2005
•	Dry mass = $1.32*$ Volume + 0.51 ; R ² = 0.49 ; $P < 0.001$ ($n = 30$; 10 from Wubin, 10 from Meckering, 10 from Pingaring)
Small leaf bluebush	Dry mass = $0.86*$ Volume + 0.02 ; $R^2 = 0.80$; $P < 0.001$ ($n = 30$; 10 from Wubin, 10 from Meckering, 10 from Pingaring)
Samphire	Dry mass = $3.56*$ Volume + 0.09 ; R ² = 0.78 ; $P < 0.001$ ($n = 10$; all from Meckering)
Rhodes grass	Dry mass = $0.032*$ Area + 0.036 ; R ² = 0.26 ; P = 0.035 (n = 14; all from Meckering)
Saltwater couch	Not sampled as the plants were obscured by annual weeds