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Probing the properties of molecules and complex materials 
using machine learning 
David A. WinklerA,B,C,*

ABSTRACT 

The application of machine learning to predicting the properties of small and large discrete 
(single) molecules and complex materials (polymeric, extended or mixtures of molecules) has 
been increasing exponentially over the past few decades. Unlike physics-based and rule-based 
computational systems, machine learning algorithms can learn complex relationships between 
physicochemical and process parameters and their useful properties for an extremely diverse 
range of molecular entities. Both the breadth of machine learning methods and the range of 
physical, chemical, materials, biological, medical and many other application areas have increased 
markedly in the past decade. This Account summarises three decades of research into improved 
cheminformatics and machine learning methods and their application to drug design, regenerative 
medicine, biomaterials, porous and 2D materials, catalysts, biomarkers, surface science, physico-
chemical and phase properties, nanomaterials, electrical and optical properties, corrosion and 
battery research.  

Keywords: artificial intelligence, batteries, Bayesian methods, biomaterials, catalysts, complex 
systems, computational molecular design, drug design, machine learning, nanomaterials, organic 
photovoltaic (OPV) devices, porous materials, quantitative structure-activity relationships 
(QSAR), regenerative medicine, science, 2D materials. 

Introduction 

Science has always been fascinated by change, uncovering new aspects of Nature and 
finding useful ways to exploit them to meet global challenges. The rate of change is 
accelerating, with average time between innovations decreasing exponentially (Fig. 1). 

Computational molecular design prior to ~1990 was focused on the use of computa-
tionally expensive physics-based methods like molecular modelling, molecular mechanics, 
molecular dynamics and quantum chemistry. The quantitative structure–activity relation-
ship (QSAR) methods, developed by Hansch and Fujita in the 1960s, were based on the 
observation that changes in the constitution of small organic molecules generated a 
corresponding change in their biological activities. Regression methods were used to 
find relationships between structure, encoded by mathematical entities called descriptors 
or features, and biological properties of small organic molecules, also numerically 
encoded. QSAR use was limited to modelling of small data sets of molecules with similar 
scaffolds, with the primary aim of understanding the molecular basis for drug (or agro-
chemical) action. As they were not mechanism- or physics-based, their empirical nature 
created doubt as to their efficacy, the question of when correlation means causation 
(still an important issue), and lack of data were major barriers to their wider adoption. 

After that time, technological developments involving automation, computational 
power, algorithms, synthesis and informatics have maintained this exponential accelera-
tion. As all scientists can attest, there have been massive increases in the number of small 
molecules and materials that can be synthesised and characterised, triggered by the 
invention of combinatorial and other high throughput synthesis methods for drugs and 
agrochemicals, and by genomics (and subsequently other ‘omics’) technologies in the late 
20th century. In the past two decades many of these technological developments have 
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been adopted by materials, nanomaterials and biomaterials 
researchers, triggering an explosion of materials research. 

As the molecular and biological systems that can be 
studied have become more complex, and analytical methods 
have become much more sensitive and selective, the amount 
of data generated has also increased exponentially. These 
massive data sets defy human interpretation. The key 
responses to this system complexity and overwhelming data 
and information are machine learning (ML) and complex 
systems science. Inspired by the success of QSAR methods 
using largely statistical regression and classification methods, 
ML differs from previous hard coded expert systems and rule- 
based algorithms in being able to autonomously learn com-
plex relationships and patterns in data. Being data-driven, it 
is ideally matched to modelling complexity and extracting 
information and meaning from very large, complex, multi-
dimensional data sets. ML is revolutionising many areas of 
science, technology, medicine and business. The application 
of ML to extracting patterns, rules and relationships from 
these rich, complex data sets has seen a broadening of the 
QSAR concept from mainly mechanistic understanding to 
accurate, robust and broadly applicable prediction of molec-
ular properties and biological activity. This divergence was 
reviewed recently in Fujita’s final published work.[1] 

Complex systems 

Complex systems science studies deep connections between 
diverse areas of science, technology, medicine, business, 
sociology etc. and the emergent properties generated by 

very complicated systems that contains many simpler inter-
acting elements. Key complexity concepts are the intercon-
nectedness of components into a network with different 
properties to those of the components, chaotic behaviour, 
phase changes, self-organisation and self-assembly, similar 
power law behaviour in seemly unconnected phenomena 
and non-equilibrium systems.[2] Components of complex 
systems most easily seen to be relevant to chemistry are 
self-organisation and self-assembly (e.g. porous materials, 
DNA origami),[3] non-equilibrium systems (e.g. Belousov– 
Zhabotinsky or BZ reaction) and emergent properties of 
complex systems[4] (exemplified by the success of ML in 
modelling overt properties of complicated, multidimensional 
phenomena). A study of complex systems provides a new 
way of thinking about and analysing complex molecular and 
biological systems.[5] The use of ML and other AI methods to 
find deep connections between parameters and complicated 
patterns in data can be thought of modelling emergent prop-
erties of molecular systems using information about their 
basic building blocks. 

Machine learning 

The first QSAR models were generated using basic regres-
sion and classification methods. The recognition that many 
relationships are non-linear and the need to remove human 
bias from the definition of QSAR models (e.g. assuming a 
parabolic dependency for certain descriptors) opened the 
door for adoption of ML methods from ~1990 onwards. A 
popular ML method, the neural network, is a universal 
approximator able to model any continuous function given 
sufficient data. Neural networks and other ML methods are 
trained on descriptors and response variables and can auto-
matically determine the degree of non-linearity and inter-
actions between descriptors, without the need for subjective 
decisions that were a feature of the early QSAR models. 
When statistical models such as regression and classification 
are used for prediction rather than inference, they are con-
sidered ML methods. 

Being a pattern recognition method, ML essentially models 
emergent properties of complex systems, without needing to 
know all mechanistic details (e.g. between administration and 
response for acute toxicities of molecules towards mice) or 
between structure and physicochemical properties and useful 
materials properties. The use of ML models to predict bio-
logical or physical properties of molecules and materials 
has expanded markedly from an initial QSAR focus on the 
activities of drugs and agrochemicals, and prediction of logP 
(octanol/water) and aqueous solubilities.[6,7] 

The QSAR method was developed at a time when com-
putational resources and data were very limited. The key 
steps in QSAR modelling are descriptor generation, feature 
selection, structure–activity/structure–property mapping, 
model validation and model interpretation. An important 
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Fig. 1. Major paradigm shifts in the history of the world, as seen by 
fifteen different lists of key events. The ordinate is the time to next 
disruptive event and the abscissa is the time before the present era. 
Clearly the closer to the present era the shorter the time between 
disruptive innovations. There is a clear trend of smooth acceleration 
of innovations through biological evolution and then technological 
evolution. Ray Kurzweil, Kurzweil Technologies, Inc.; CC by 1.0.   
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element of my research, working with long-time collaborator, 
Frank Burden, has involved deconstructing and improving 
these steps using modern mathematical and computational 
methods. 

Descriptors 

To generate ML models, it is essential to convert molecules 
or materials into mathematical entities (descriptors) that are 
relevant to the property being modelled. Descriptors make 
the largest contribution to model quality, robustness and 
predictivity, much greater than the choice of ML method. 
We conducted early research on generating ‘universal’ 
descriptors that can be used to model most biological and 
materials properties. We generated descriptors and finger-
prints representing the connectivity of atoms in molecules 
and the partial charge distributions in molecules and used 
these to model biological properties.[8–10] More recently, we 
tackled the problem of generating descriptors for micron- 
scale topographical features on the surfaces of biomaterials 
(discussed below), a conceptually different problem to gener-
ating molecular descriptors. 

Feature selection 

Many thousands of descriptors can be generated for mole-
cules, but the most relevant ones for modelling a given 
property are context dependent. It is important to remove 
the least informative descriptors before building models, as 
including them can lead to overfitting of the model, difficul-
ties with model interpretation, and degradation of model 
quality. While there are a wide range of statistical methods 
to do this, we have adopted sparse feature selection methods 
such as LASSO (least absolute shrinkage and selection opera-
tor),[11] MLREM (multiple linear regression with expectation 
maximisation),[12] automatic relevance determination[13] and 
Bayesian regularised neural networks with a sparsity inducing 
Laplacian Bayesian prior[14] to provide the most relevant 
subset of descriptors for a given modelled property. These 
methods remove the less relevant descriptors and generate 
parsimonious models that have excellent predictive power 
and are easier to interpret because they have fewer features. 

Structure–activity and structure–property 
mapping 

Once a sparse set of relevant features has been generated, a 
wide range of ML methods can be used to generate the 
model. The main difference in performance occurs between 
linear models (e.g. multiple linear regression (MLR) and 
MLREM), and non-linear models. For a given set of features 
and dependent properties, most non-linear ML methods will 
generate models of similar quality. The main issue with 
generating robust models from given training data is ensur-
ing that the model has optimal complexity. If the model is 
too simple (bias, e.g. using a linear model for a non-linear 

relationship) or too complex (variance, model fits noise as 
well as the underlying relationship), its predictive power 
will be compromised. We solved this problem by employing 
Bayesian regularisation of a neural network (BRANN) to 
automatically control the complexity of models and gener-
ate optimum predictive power.[15,16] We employ Gaussian 
priors (BRANNGP) and sparsity-inducing Laplacian priors 
(BRANNLP), both automatically pruning the number of 
effective parameters (complexity) in the model with the 
latter also performing non-linear pruning of less relevant 
descriptors. As Fig. 2 shows, the performance of neural net-
work models employing Bayesian regularisation is almost 
independent of the number of units (commonly called 
neurons, neurodes, nodes, processing elements or units) or 
in the hidden layer beyond a minimum number.[17] 

Another common ML method used for classification (and 
regression) is the support vector machine (SVM), which can 
be prone to overfitting. We reported that by using the sparse 
Bayesian form of this algorithm, the relevant vector machine 
(RVM), sparser models of similar performance or less sparse 
models with superior performance could be generated from 
the same data sets.[18] 

Deep learning methods such as deep neural networks 
have emerged very recently as novel ways of modelling a 
wide range of chemical, physical, medical and business 
phenomena. Unlike shallow neural networks that contain a 
single hidden layer with few neurons, deep neural networks 
have multiple hidden layers with large numbers of neurons 
in each. Overfitting is minimised by use of regularising 
methods such as weight drop out and the problem of 
vanishing gradients in deep neural networks is addressed 
by linear rectifier transfer functions in the neurons. Two 
of the main advantages of DNNs over shallow NNs are 
their abilities to generate effective latent features from 
very simple representations of molecules or other objects, 
and their ability to decode latent features back into new                    
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Fig. 2. Relative independence of model training and test set pre-
dictions (standard error of estimation and prediction) on number of 
neurons in the hidden layer in a Bayesian Regularised neural network. 
Used with permission from Burden and Winkler.[ 17]   
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synthesisable molecules that potentially have better pro-
perties (e.g. encoder–decoder networks or generative– 
adversarial networks, GANs, Fig. 3).[19] 

Given the same descriptors and properties, the perform-
ance of DNNs is similar to that of shallow NNs, consistent 
with the universal approximation theorem.[21] As the avail-
ability of data is sometimes still an issue for data-driven ML 
methods, meta models (an ensemble method in which strong 
models are generated from a consensus of weak models) and 
active learning (adaptive experimental design) approaches 
can greatly improve the efficiency of model generation by 
identifying the most important training data required to 
improve the generalisation ability of models.[22,23] 

Model validation 

It is important to validate how predictive models are, that is, 
how well they can predict the properties of molecules or 
materials not used to train them. A range of statistical meth-
ods such as cross validation and bootstrapping are commonly 
employed to assess the predictivity of ML models. However, 
the use of an independent test set, partitioned from the 
training set and never used in model generation, provides a 
more realistic estimate of predictive power. Analysis of test 
set predictions to generate estimates of model predictivity is 
intrinsically simple,[24] but many variations have appeared 
in the literature, somewhat confusing the issue, and our 
research in this area has created much needed clarity. 
Measures of statistical dispersion such as standard errors of 
estimation (SEE, for training sets), standard errors of predic-
tion (SEP, for test sets), root-mean-square error (RMSE) and 
mean average error (MAE, better when outliers occur) are 
preferred over squared correlation coefficients (square of the 
correlation between observed and predicted y values, r2) as 
they are independent of the size of the training data set and 
number of parameters in the model. In some regressions, r2 

can depend on the number of parameters in the model unless 
it is adjusted for these degrees of freedom. 

Model interpretation 

Interpretability of models is a function of the types of descrip-
tors used and the type of model generated. If arcane but effi-
cient descriptors are used, interpreting these features in terms of 
chemical structure is extremely hard. There has been a signifi-
cant move away from arcane descriptors to those that can be 
more easily visualised, a trend initiated by the development of 
molecular field descriptors by Cramer et al.[25] Common inter-
pretable descriptors involve fragments (molecular fingerprints, 
molecular signatures), or smooth overlap of atomic positions 
(SOAP) that can be mapped back onto exemplar molecules 
(Fig. 4) in the training set to provide guidance to chemists on 
how to improve their lead molecules or materials.[26–28] 

Feature importance is also important for interpreting 
models. While MLR models are easily interpretable from 
the regression coefficients, in non-linear models feature 
importance is a local property that is context dependent. 
Working with colleagues from the University of Nottingham, 
we found that fuzzy fusion methods can help clarify the 
importance of molecular features and elucidate the types 
of molecular changes needed to improve target properties 
(D Rengasamy, JM Mase, M Torres Torres, B Rothwell, DA 
Winkler, GP Figueredo, unpubl. data). 

Diverse examples of the use of ML models 

Machine learning methods are platform technologies that 
are applicable to modelling and prediction of a very wide 
range of molecular and biological properties of molecules 
and materials. The following are examples from my various 
teams’ research of the breadth of applications in which ML 
methods have made substantial impact. 

Stem cells, adhesion, media and bioreactors 

We employed Bayesian regularised neural networks to model 
several types of stem cell experiments. The performance of 
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expand compound library
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Fig. 3. ML algorithms that can be used to generate suggestions for new compounds with specific 
properties predicted by a given ML model. Reprinted with permission from Tong et al.[ 20] 

Copyright 2021 American Chemical Society.    
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haematopoietic stem cell (HSC, blood stem cell) bioreactors 
was modelled to identify the key process variables and factors 
that control proliferation and differentiation of stem and pro-
genitor cells. The literature was scanned to identify 262 experi-
ments with 21 process variables that yielded expansion of 
7 types of cell populations: nucleated cells, CD34 positive 
cells, colony forming units, proerythroblasts, myelomonocytic 
progenitors, erythrocyte burst-forming units and long-term 
culture-initiating cells.[29] The non-linear models were 
more accurate than linear models and had useful levels of 
predictivity for new data not previously seen by the models 
(able to predict fold expansion to within a factor of between 
1.5 (BFU-E) and 4.0 (NC)) and identified the most important 
factors driving expansion of each cell type. 

Polymers have been used to control the attachment, pro-
liferation and differentiation of stem cells.[30,31] In a recent 
study with colleagues from Monash University we showed 
how data from experiments on a polymer library could be 
used to identify the most relevant physicochemical propert-
ies driving the fate of human dental pulp-derived stem cells 
(hDPSC).[32] An array of 141 homopolymers was assessed 
for hDPSC attachment, proliferation and osteogenic (bone 
forming) differentiation. The best homopolymers were used 
to derive a second-generation library of copolymers. Linear 
regression models could not accurately predict the attach-
ment, proliferation and differentiation of hDPSCs on changes 
to polymer surface chemistry so non-linear MLR methods, 
SVM and BRANN were employed. The biological data were 
bimodal and binary classification models of the three cell 
properties using a BRANN had accuracies of 85, 85 and 95% 
respectively, with those for the SVM models being slightly 
worse. In complementary studies with the University of 
Nottingham and the Langer group at MIT, the attachment 

of human embryoid bodies (hEB, a cluster of embryonic stem 
cells) to a library of 496 polymers was also successfully mod-
elled using neural networks.[33] An MLREM model successfully 
predicted the hEB adhesion on polymers in the test set with an 
r2 value of 0.66, and a standard error of prediction (SEP) of 
0.15 log EB. The sparse non-linear BRANNLP model predicted 
hEB adhesion of test set polymers with an r2 of 0.82, and an 
SEP of 0.10 log EB (predicted EB binding within a factor of 1.3), 
suggesting significant non-linearity in the relationship between 
the polymer surface chemistry and hEB attachment. 

Bioglasses (BG) containing strontium have been shown to 
increase bone growth or reduce bone loss but the mechanism 
by which this is achieved has remained elusive. With our 
collaborators from Imperial College London, we conducted 
experiments with mesenchymal stem cells (MSC) exposed to 
varying levels of strontium and other bioglass components. 
We performed a genome wide expression analysis of the 
effects.[34] Using an unbiased sparse Bayesian feature selec-
tion method for the MSC gene expression fold ratios, we 
surprisingly discovered a group of key genes related to fatty 
acid and steroid biosynthesis that were highly relevant. Fig. 5 
shows changes in hMSC global mRNA expression mediated 
by treatment with BG- and SrBG-conditioned media, and 
the most relevant sparse genes from the MLREM model. 
Subsequent experimental qPCR and lipid raft experiments 
validated the predictions of the sparse feature selection and 
identified a novel mechanism by which strontium drives MSC 
down the osteogenic pathway.[34] 

Biomarkers 

Sparse Bayesian feature selection and ML modelling have 
proven useful for identifying biomarkers for the symmetry 
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of ESC division, an important problem in stem cell biology. 
Working with colleagues from Korea and University of 
Massachusetts Medical School, ESCs were induced to divide 
symmetrically (producing two stem cells) or asymmetrically 
(producing one stem cell and one progenitor cell) using 
several types of physical and chemical stimuli, and the 
gene expression profiles of the ESC and daughter cells mea-
sured. Again, sparse feature selection identified two markers, 
H2A.Z and BTG1, that were specific for symmetric versus 
asymmetric ESC division, providing IP for the Boston start up 
biotechnology company, Asymmetrex.[35] Fig. 6 shows how 
the marker only binds to SCs, not progenitor cells. 

Small molecule physicochemical properties 

The physicochemical properties of small molecules are very 
useful for designing drugs and agrochemicals and for aerospace 
applications, for example.[36] Aqueous solubility is a critical 
property of small organic molecules, both for synthesis and for 
useful pharmacokinetics. We probed the relationship between 
crystal lattice interactions, enthalpy of sublimation and aque-
ous solubility, an important unresolved issue in understanding 
the dissolution of organic crystals.[37] We trained an MLR 

model on the enthalpy of sublimation of 1302 small organic 
molecules and found a four-parameter equation that fitted that 
data with an r2 value of 0.96 and an average absolute error of 
7.9 ± 0.3 kJ mol–1. A melting point model could predict this 
property with a standard error of 45 ± 1 K and r2 value of 0.79. 

Using the enthalpy of sublimation as a surrogate for 
crystal lattice interactions, we generated ML models of aque-
ous solubility using a large and highly diverse data set 
of 4558 organic compounds.[38] MLR-EM and BRANNLP 

Sr0 Sr10

Sr100

786 162 893

b1
(a)

(c)

(d )

(b)
b2 b3

Gene number

Gene
symbol

PMP22
TMEM147
FDFT1

Gene name

Peripheral myelin protein 22
Transmembrane protein 147
Farnesyl-diphosphate farnesyltransferase 1

Condensed nuclear chromosome/meoisis
DNA repair/metabolic process

Fatty acid biosynthetic & metabolic processes
Bone development/osteoblast differentiation

Sterol transport & homeostasis
Steroid biosynthesis/ER membrane

Mitosis/cell division
Cell cycle process

Fatty acid biosynthesis
Histone H2A

Protein-DNA complex/nucleosome
Sterol/steroid biosynthesis & metabolic processes

NM_000304
NM_032635
NM_004462

2.2 ± 0.9
2.7 ± 1.4
0.8 ± 0.5

0 2 4 6
Enrichment scores

8 10

0.01
0.04
0.09

GeneBank
accession n°

Contribution
factor

P-value

b4

M
od

el
co

nt
rib

ut
io

n

162
199

1183

285

Fig. 5. (a) Venn diagram showing differentially expressed genes in response to BG and SrBG 
exposure. (b) Schematic of operation of the EM algorithm, showing progressive removal of genes 
less relevant to the SrBG treatment. (c) Most relevant discriminators from sparse feature analysis of 
hMSC response to SrBG-conditioned medium treatment. (d) Enrichment scores and functional 
annotation of genes differentially expressed in response to Sr100 treatment. Note strong enrich-
ment of the sterol–steroid biosynthesis and metabolic processes. Used with permission from 
Autefage et al.[ 34]    

Symmetric Asymmetric

DAPI

H2A.Z

SP CD SP CD
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methods were used to derive optimal predictive models of 
aqueous solubility. The BRANNLP model had the best statis-
tics, with a test set prediction r2 of 0.90 and a standard error 
of 0.67 log(S). Surprisingly, including descriptors that cap-
tured crystal lattice interactions did not significantly 
improve the quality of these aqueous solubility models. The 
model was applicable over more than 10 orders of magnitude 
of aqueous solubility and had a very broad domain of appli-
cability, making it useful for prediction of this property for a 
wide range of unsynthesised small molecule drug candidates. 

Drug transport and action 

Given the history of the early application of statistical and 
ML models to the modelling and design of pharmaceutical 
and agrochemical properties of small organic molecules, 
ML continues to contribute strongly to these fields. More 
complex models based on neural networks and other ML 
methods have a strong and increasing literature base. The 
introduction of robust and sparse Bayesian regularised 
neural networks and, more recently, deep learning methods 
to bioactive small molecules has seen a renaissance in the 
use of these very useful methods.[39] ML has been applied at 
CSIRO to very complex problems of the structure of liquid 
crystal and self-assembling nanoparticle drug delivery 
systems in which multiple coexisting phases can occur, 
only one of which may be useful for drug delivery.[40–42] 

There are three main phases, the gyroid (space group Ia3d), 
diamond (space group Pn3m) and primitive (space group 
Im3m) bicontinuous cubic phases, plus the inverse hexa-
gonal phase (HII) consisting of cylindrical inverse micellar- 
like structures packed in a hexagonal configuration. We 
used the BRANNGP ML methods to model each individual 
phase for a range of drugs, loadings and temperatures. As  
Fig. 7 exemplifies, we could model the different, coexisting 
phases in two lipids with accuracies > 99% for the training 
drugs, and 82% for a new set of drugs predicted by the 
model and tested subsequently. 

We have also applied ML to report some of the first robust, 
predictive models of intestinal absorption of drugs[43] and 
penetration of drugs across the blood–brain barrier (BBB).[44] 

For intestinal absorption, we trained a BRANNGP model on 

absorption values for 169 diverse small molecules. Using 
descriptors encoding physicochemical properties of the 
drugs, the test set absorptions could be predicted with r2 of 
0.86–0.89 with a standard error of < 10%. The BBB work 
used BBB partition coefficients for 106 compounds to 
develop ML models of this property. BRANNGP models of 
BBB partition could predict the property with an r2 of 0.65 
and a standard error of 0.54 logBBB. Analysis of the feature 
importance identified logP (octanol/water), molecular flexi-
bility (conformational entropy) and polar surface area as 
being the most relevant. 

With colleagues from Flinders University, we also applied 
the SVM ML method and quantum chemical descriptors to 
predicting the phase 2 metabolism (glucuronidation) of small 
molecule drugs. Twelve isoform-specific data sets of substrates 
and non-substrates for each UGT isoform, ranging in size from 
50 to 250 chemicals, were collated from the literature. We 
successfully assigned the appropriate phase 2 metabolism 
pathway of the drugs to the 12 isoforms of the key metabolic 
enzyme, UDP-glucuronosyltransferase (Table 1).[45–47] 

We published one the first studies that showed how to 
simultaneously model both efficacy and selectivity of antic-
ancer drug candidates inhibiting farnesyl transferase in a 
single ML model.[48] Farnesyl transferase inhibition for com-
pounds in the test set was predicted with r2 of 0.76 and SEP of 
0.16 and for geranylgeranyl transferase with r2 = 0.78 and 
SEP = 0.38. The selectivity index that denoted molecules with 
high FTase inhibition active and highly selectivity (low GGTase 
inhibition) was predicted with an r2 = 0.77 (Fig. 8). 

ML models have been very useful in modelling and pre-
dicting toxic effects of small molecules, as well as their 
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Fig. 7. Prediction of complex phase 
behaviour of a selection of drugs in a phy-
tantriol nanocarrier at different drug load-
ings. The phases are denoted for each 
panel, and the incorrect phase predictions 
are circled. Note that for some systems 
multiple phases coexist. Used with permis-
sion from Le et al.[ 40]    

Table 1. Percentage of compounds correctly predicted for each 
UGT isoform.        

UGT 
isoform 

SVM% UGT 
isoform 

SVM% UGT 
isoform 

SVM%   

1A1 85 1A7 79 2B4 83 

1A3 89 1A8 77 2B7 64 

1A4 83 1A9 80 2B15 67 

1A6 67 1A10 80 2B17 80   
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useful biological effects.[49–52] The current pandemic has 
shone a bright light on the importance of developing better 
drugs for ‘neglected’ tropical diseases. Although the impact 
of ML methods on this field is relatively small, large 
increases in data from screening campaigns has stimulated 
substantial effort on the use of ML methods to discover drugs 
for these diseases, which have a disproportionately massive 
impact on the lives of people in developing countries.[19,53] 

Biomaterials 

With the ageing population, extended lifespans and rapid 
expansion of medical device technologies, there is a greatly 
increased need for materials that are biocompatible and 
bioactive, that can be used to modulate biology and improve 
the performance of implantable and indwelling medical 
devices and cell therapies. These materials must undergo 
rigorous testing prior to registration for medical use, resulting 
in a relatively small number of approved materials (mainly 
polymers and metals/alloys) being available for a very wide 
range of medical needs. Research into much superior poly-
meric materials has expanded greatly over the past two dec-
ades, and the recognition of the almost infinite number of 
materials that could be synthesised is driving development of 
high throughput synthesis and characterisation methods, and 
the use of ML methods to extract knowledge and information 
from the resulting large data sets. 

Working with researchers from MIT and Nottingham, we 
have been developing descriptors and models describing the 
interactions of different types of polymer surface chemistries 
with a range of cell types and soluble proteins. We were one 
of the first to successfully model the attachment of bacterial 
pathogens to a polymer library, work aimed at generating 
very low attachment polymers for biomedical coatings. We 
could successfully model and predict attachment of three 
important nosocomial pathogens, Staphylococcus aureus, 
Pseudomonas aeruginosa and uropathogenic E coli whose 
attachment was assessed using microbes transformed with 

green fluorescent protein (fluorescence was proportional to 
number of bacteria). Initially we developed robust models of 
the attachment of each pathogen alone[54] but subsequently 
found we could generate a model that could simultaneously 
predict the attachment of all three pathogens to the poly-
mers.[55] Non-linear models were clearly better at predicting 
the attachment of multiple pathogens to the polymers in a 
test set than the linear model (SEP of 0.19 logF versus 
0.28 logF), and the multipathogen model had a very similar 
accuracy to the average of the test set predictions for the three 
individual pathogen models (Fig. 9). Computed descriptors 
generated more accurate MLR model predictions of multi-
pathogen attachment than those derived from experimental 
time-of-flight secondary ion mass spectrometry (ToF-SIMS) 
ion peaks (SEP of 0.28 logF versus 0.33 logF), but the non- 
linear BRANN models had similar predictive power. 

We also used ML methods to generate design rules for low 
protein fouling polymers for biomedical applications in a 
collaboration with RMIT. By appropriate choice of efficient 
and interpretable descriptors for the polymers in the study, 
we could not only quantitatively predict the attachment of 
proteins to different polymers, but also improve the reliability 
of earlier antifouling polymer design rules reported by 
Whiteside.[56] Using a set of 48 molecules forming self- 
assembled monolayers, we assessed the adsorption of lyso-
zyme and fibrinogen at 3 and 30 min exposure times. These 
prototype proteins were used because they have different 
properties such as size, shape and pI. The combined data set 
of 176 points was used to train the ML models using descrip-
tors from the Whitesides rules, and those from our aug-
mented rule set. The prediction of the protein adsorption 
on the monolayers improved markedly from r2 = 0.35, 
SEP = 24% for the original Whitesides rules to r2 = 0.82, 
SEP = 12% for the augmented rules. 

Recently, we have used microtopographies on the surface 
of chemically diverse polymers to add an additional control 
over cells (Fig. 10) (M Vassey, L Ma, L Kämmerling, C 
Mbadugha, GF Trindade, GP Figueredo, F Pappalardo, R 
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Markus, S Rajani, Q Hu, DA Winkler, D Irvine, R Hague, AM 
Ghaemmaghami, R Wildman, MR Alexander, unpubl. 
data). ML methods could determine the relative importance 
of deliberately introduced surface topographies and surface 
chemistries for modulating the behaviour of a diverse range 
of cell types, notably macrophages and other immune 
cells.[57,58] We found that surface microtopographies alone 
could polarise macrophages into pro- and anti-inflammatory 
phenotypes, although a combination of surface chemistry 
and topography is more powerful. For surface chemistries 
alone we studied a library of 400 polymers encoded 
using molecular descriptors to train two class (M2 and M1 
polarisation) RF, SVM and neural network models of macro-
phage polarisation with 80% accuracies. We used a LASSO to 
eliminate less informative descriptors. For the surface topog-
raphy studies we generated topographical features from prim-
itive features (circle, triangle and rectangle; sized 3–23 μm in 
diameter and 10 μm in height). 2176 designs were arranged 
periodically to form 290 × 290 μm TopoUnits. The TopoUnit 
topographies were used to construct the features in addition 
to parameters from Cell Profiler that describe characteristics 
of surface feature area and shape. 246 descriptors were inves-
tigated. Pearson correlation analysis was applied to remove 
overlapping and non-intuitive descriptors (≥ 0.85). A regres-
sion model for polarisation had r2 of 0.84 and 0.56 for the 
macrophage phenotype training and test sets respectively. 

Subsequently we reported that microtopographies alone 
could affect the attachment of GFP-transformed representa-
tive Gram negative (Ps. aeruginosa) and Gram positive 
(S. aureus) bacterial pathogens to a polymer surface 
(M Romero, J Luckett, GP Figueredo, AM Carabelli, A Carlier, 
A Vasilevich, S Vermeulen, D Scurr, AL Hook, J‐F Dubern, AC 
da Silva, DA Winkler, A Ghaemmaghami, J de Boer, P Williams, 
MR Alexander, unpubl. data). We experimentally surveyed 
2176 combinatorially generated shapes using an unbiased 

high throughput micro-topographical polystyrene polymer 
chip. Bacterial surface attachment was sensitive to surface 
topography, reducing colonisation in vitro by up to 15-fold 
compared with a flat surface for both motile and non-motile 
bacterial pathogens. Using similar topographical descriptors to 
those in the prior study, we elucidated how the topographies 
drive phenotypes. A RF model predicted the observed attach-
ment values for topographies in the test sets for both bacterial 
species models with high efficacy: r2 = 0.85 for P. aeruginosa 
and r2 = 0.81 for S. aureus average fluorescence. 

Working with colleagues from Eindhoven University of 
Technology, Maastricht University, and the Broad Institute 
of MIT and Harvard, we extended the work on microtopo-
graphies by using evolutionary methods (genetic algorithm) 
to ‘evolve’ topographies towards those generating desired 
cell phenotypes.[59] We converted the information about 
design topography from a set of design parameters into a 
‘topography genes’. We selected 81 parent topographies, 
based on their induction of ALP expression in MSCs 
(an osteogenic marker), from a pool of 2176 TopoChip topo-
graphies. These ‘parents’ were used to generate millions of 
diverse topographies using genetic mutation methods. 
Breeding and mutation were performed over multiple cycles 
in which groups of 10 parents were selected from an initial 
pool of 81 parent surfaces. These generated 10 × 10 parent 
pairs, plus the 10 best original parents (elitism operator), a 
total of 110 topographies to be assessed for fitness. We 
showed that a few cycles of evolutions could identify topo-
graphies that could induce markedly better cell responses 
that the initial pool. 

Corrosion and batteries 

Corrosion control is a > US$1Tn impost on industry and 
conventional methods of control are being phased out or 
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Fig. 9. Comparison between standard 
errors of prediction of individual ML models 
of pathogen attachment to a polymer library, 
and these from a model that predicts attach-
ment of all three pathogens simultaneously 
(two types of descriptors used). Used with 
permission from Mikulskis et al.[ 55]    
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banned due to carcinogenicity. In the flip side, control of 
metal dissolution is very important for many new, existing 
and potential battery technologies. Small organic molecules 
are excellent candidates for corrosion control agents and 
dissolution modulators for batteries and potentially provide 
improved performance. Given the vastness of small organic 
molecules space, high throughput assessment methods 
have been developed, providing data for training ML models. 
Although the application of ML to these applications is 
embryonic, it shows great potential for exploring large 
areas of chemical space to find very effective dissolution 
modulators. Colleagues at the CSIRO and Helmholtz- 
Zentrum Geesthacht and I have reported several seminal 
ML studies in this area, for both batteries and corrosion 
inhibitors[28,60–62] (T Würger, L Wang, D Snihirova, SV 
Lamaka, DA Winkler, D Höche, ML Zheludkevich, RH 
Meißner, C Feiler, unpubl. data). Using high throughput 
experiments to assess corrosion inhibition of aerospace 
aluminium alloys AA2024 and AA7075 by 100 small organic 
molecules, we generated robust, predictive, quantitative com-
putational models of inhibitor efficiency at pH 4 and 10 using 
these data. BRANNGP models could predict corrosion inhibi-
tion with standard errors of ≤ 10% for test set compounds 
except for AA7075 at pH 10, which exhibited a standard error 
of 16%. ML studies of 71 organic compounds at a concentra-
tion of 50 mM that modulate the dissolution of two Mg alloys 
could predict the acceleration or inhibition of a blind test set 
not used in training with a useful r2 of 0.82. 

2D materials properties 

2D layered materials are attracting much research attention 
currently because of their wide range of applications, their 
superlubricant, superconductivity, magnetism, and photelec-
tric properties and their almost endless potential to be tuned 
to specific applications. These properties can usually be 
predicted using expensive and resource intensive high level 

quantum chemical methods that are intractable for very 
large numbers of multilayer hybrid 2D materials especially. 
Researchers at the University of Melbourne, University of 
Queensland and University of Technology Sydney and I have 
shown how ML can effective leverage DFT calculations on a 
relatively small number of carefully chosen materials to 
predict properties of a much larger set not yet synthesised. 
This allows prioritising of the difficult syntheses of these 
materials toward those most likely to be useful. We recently 
successfully applied ML methods to a data set of DFT band-
gap predictions, allowing the ML model to estimate the likely 
bandgaps and optical properties of a wide range of new 
materials and to focus on those with optimal bandgaps for 
different applications (Fig. 11).[63,64] 109 quantum chemical 
bandgap calculations were used to build an initial Bayesian 
neural network (BNN) model. Given the cost of DFT calcula-
tions and synthesis of complex hybrid 2D materials, we 
adopted an active learning approach to maximise the predic-
tive range of ML models while minimising the number of 
DFT calculations and experiments required. Active learning 
involves generating an ML model from an existing modest 
data set then predicting beyond the domain of the model. 
The relevant properties of materials with the largest predic-
tion uncertainty are then predicted by DFT calculations and 
the results added to the data set. This process continues until 
all materials in the desired prediction domain can be esti-
mated with acceptable error.[23] Using this active learning 
approach, a final training set of 473 structures generated 
models in which bandgaps were predicted with an r2 of 0.81 
and mean absolute percentage error of 0.16, and the test set 
was predicted with an r2 of 0.92 and mean absolute percent-
age error of 0.11 (Fig. 11). 

We adopted a similar approach with colleagues from 
University of Technology Sydney, Univeristy of Queensland 
and the University of North Carolina Chapel Hill to predict the 
super lubricant properties of layered 2D materials, identifying 
several materials with significant commercial potential as 
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advanced lubricants.[65] Bayesian neural network models of 
bilayer interlayer energy or the elastic constant (C33), trained 
on DFT values for 282 and 226 structures respectively and 
graph-based Voronoi tessellation down-selected by LASSO, 
predicted the test sets with r2 of 0.80 and MAE of 0.035 eV 
Å–2 for interlayer energy and r2 of 0.80 and MAE of 16.0 GPa 
for C33. These models were used to screen a virtual library 
of 18 million bilayer 2D materials to identify those with 
promising super lubricant properties. 

Nanomaterials 

Nanomaterials have unique and useful properties relative to 
their bulk forms, due to greatly increased surface to volume 
ratios. The number of commercial products containing 
nanomaterials has been rising rapidly, raising concerns 
about their human and environmental safety, and the ability 
of regulatory agencies to manage their safe and responsible 
use. Nanosafety concerns are driving substantial research 
investment, with a CSIRO nanosafety project then a cluster 
of EU Horizon 2020 projects addressing various aspects 
of nanosafety, including computational nanotoxicology. 
The aim of computational nanosafety research is to use 
ML models to predict useful and potentially deleterious 
properties of nanomaterials and use these to create a ‘safe- 
by-design’ paradigm for industrial applications of nano-
materials.[66,67] With colleagues from CSIRO, we have 
reported some of the first successful ML models of nano-
materials properties,[68] and showed how to generate accurate 
and interpretable models of their properties using different ML 
approaches.[66] With colleagues from the Izmir Institute of 
Technology, we have also reviewed the application of 
ML methods to modelling properties and nanomaterials 
and the protein corona that modulates their interactions 
with biology.[69,70] 

ML methods again have been very successful in modelling 
and predicting the properties of these complex materials, the 
complexity being increased by their interactions with biolog-
ical macromolecules to generate a surface coating or corona, 
their size and poorly defined structures and their tendency to 

agglomerate. We used Bayesian NNs to model the biological 
effects of a library of 45 types of ZnO nanoparticles with 
varying particle sizes, aspect ratios, doping types, doping 
concentrations and surface coatings.[66] Biological assays 
measuring cell viability, membrane integrity (LDH release) 
and oxidative stress were used to study the responses 
of human umbilical endothelial cells (HUVECs) or human 
hepatocellular liver carcinoma cells (HepG2) to the nano-
particles. Bayesian neural network models could predict the 
test set of nanoparticles with r2 values of 0.89 for cell 
viability, 0.86 for LDH release and 0.67 for oxidative stress 
(Fig. 12). 

Surface science 

The surfaces of materials control many of their important 
properties such as corrosion, catalysis, and biological 
responses. Surface analysis instrumentation has undergone 
a spectacular increase in capabilities over the past decade, 
and methods such as ToF SIMS now generate very large and 
information-rich datasets for a wide variety of engineered 
and biological samples. Modelling and analysis of these 
large data sets has fallen behind the instrumental develop-
ment, creating an opportunity for ML researchers to signifi-
cantly increase the utility of these and other surface analysis 
methods. Our team at La Trobe University applied informa-
tion theory and a particular type of neural network, the self- 
organising map (SOM), to the analysis of complex ToF SIMS 
data sets. For example, by binning mass spectra we could 
investigate the information content of different resolutions, 
finding ~1 m/z being the point at which information is 
optimum. This process avoids subjective manual peak pick-
ing commonly used by ToF-SIMS researchers for analysis of 
their data. Applying a SOM (Fig. 13) to mass spectrometric 
data provided enhanced information and performance 
compared to traditional data analysis methods such as 
PCA. Subsequent use of a deep learning algorithm, a con-
volutional neural network, provided spectacular spatial 
and mass resolution enhancement of hyperspectral 2D and 
3D mass spectrometric images of both non-biological and 
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biological samples such as tumour sections. This resulted in 
greatly improved understanding of surface characteristics 
of materials and biological samples such as breast cancer 
tissue samples.[71–75] 

Porous materials and catalysts for energy and 
environment 

Porous materials such as metal–organic frameworks (MOFs), 
zeolitic imidazoline frameworks (ZIFs) and covalent organic 
frameworks (COFs) have become an important class of 
materials due to their large surface areas and materials 
spaces, and their ability to be tuned for specific applications. 
They are particularly important for energy and environmen-
tal applications such as hydrogen storage, CO2 capture and, 
with integrated catalysts, CO2 reduction to useful fuels. 
Electrocatalysts and photocatalysts are also important tech-
nologies for a sustainable energy and environmental future. 
Working with colleagues from RMIT, we recently reviewed 
the application of ML methods to the modelling and design 
of these types of industrially important catalysts.[76] 

ML methods have been shown to be useful for leveraging 
a relatively small number of accurate but computationally 
expensive Grand Canonical Monte Carlo (GCMC) calcula-
tions into a much larger number of porous materials. The 
GCMC calculations can reliably predict the loading of gases, 
and using these data to train ML models provides a rapid 
method of estimating loading capacities of large porous 
materials datasets. With other collaborators from CSIRO, 
we initially used ML methods to generate a model for CO2 
storage with a view to identifying the best materials for 
storage and catalytic reduction of CO2.[77] We modelled 
167 ideal silica zeolites, 164 hypothetical silica zeolites 
plus an additional ‘smart’ set of 60 zeolites chosen by the 
ML model. The BRANN model predictions for both CO2 
and H2 uptake were excellent, with r2 values of 0.93 and 
0.97 and standard errors of 9.5 cm3 STP cm–3 (CO2), and 
1.3 cm3 STP cm–3 (H2). We recently applied the same 
approach to modelling the storage limits of porous materials 
for hydrogen storage (e.g. for hydrogen powered vehicles). 
We also adopted an evolutionary approach, where GCMC 
results trained ML models that predicted a new limited set 

of materials with improved performance to be subjected to 
GCMC calculations. This cycle continued until the performance 
limits for hydrogen storage inherent in these materials were 
identified (Fig. 14).[78] 

OLEDs, OPV and optical polymers 

Large organic molecules and polymers are also playing a 
leading role in the development of next generation organic 
photovoltaic (OPV) devices, organic LEDs for display appli-
cations and for sensor applications. Collaborators at RMIT 
and I employed ML methods to model a universal polymer 
platform for charge transfer-dependent full-colour emis-
sion.[79] A chemically diverse library of 71 naphthalene 
diimide polymers was synthesised and their photolumines-
cence (PL) properties, λem, quantum yields (Φ) and CIE 1931 
chromaticity coordinates (CIE x and CIE y) in aggregate or 
solid state, were measured. These were used to train MLREM 
and BRANNLP ML models to predict these four properties. 
For λem, the test set prediction SEP for the neural network 
was significantly smaller than that for the MLREM model 
(0.072 versus 0.096). For the prediction of Φ, BRANNLP and 
MLREM gave very similar results for the prediction of the 
test set (with SEP of 0.037 and 0.039) while the non-linear 
BRANNLP models for the CIE coordinates of the polymers 
were superior to those generated by the MLREM algorithm. 
The BRANNLP test set prediction SEP values of CIE x and CIE 
y (0.059 and 0.085) were about half those of those for 
the MLREM model. Thus, a full-colour tuneable polymer 
platform was achieved, guided by ML algorithms (Fig. 15). 
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We also curated a large set of experimental studies on 
organic photovoltaic devices for solar energy conversion 
and used these to identify the key materials and device 
characteristics controlling four important device para-
meters, conversion efficiency (PCE), open circuit voltage 
(Voc), short circuit current (Jsc) and frontier orbital energies. 
We generated ML models trained on this large data set and 
could predict these properties for new materials with good 
accuracy.[80] We generated models for PCE, Voc, Jsc, HOMO 
energy, LUMO energy and the HOMO–LUMO gap for the 
344 compounds in the dataset. These donor–acceptors pairs, 
with donors encoded by signature descriptors and acceptors 
captured by 1-hot binary vectors were used to train sparse 
MLREM and BRANNLP models. The models predicted 
the test set properties with the following fit statistics: PCE 
% r2 = 0.78 and SEP = 0.48%; Voc r2 = 0.58 and 
SEP = 0.16 V; Jsc r2 = 0.60 and SEP = 22 mA cm–2; EHOMO 
r2 = 0.49 and SEP = 0.007 eV; ELUMO r2 = 0.67 and 
SEP = 0.008 eV. The model was also useful for subsequent 

de novo prediction of OPV properties of materials from the 
literature not used in the modelling study. 

Summary and perspective 

My research on ML methods and applications at CSIRO and 
several universities has expanded greatly over the last three 
decades, demonstrating the great utility of ML methods for 
molecular science. Clearly, ML methods will continue to be 
widely and increasingly applied to a myriad of applications 
across diverse domains of science, technology, medicine, busi-
ness and beyond. This trend will continue and accelerate as 
larger data sets become available, new and more effective 
algorithms are proposed and new applications and unmet 
needs are addressed. In chemistry, several important inno-
vations have occurred recently. It has now become possi-
ble for ML methods to design chemical syntheses, freeing 
organic chemists for more creative aspects of the task.[81] 
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Researcher intervention

Understanding Experiment modeling Data input

Autonomous discovery loop

Compound
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Evaluation Functional
molecules Fig. 16. Autonomous chemistry (or materials) lab-

oratory. AI models the experiment and designs a 
compound, robots perform the synthesis, and AI 
evaluates the output and designs the next compound. 
The loop terminates when the goal is achieved, or no 
further progress is achieved. Adapted from Connor 
W. Coley/Will Ludwig/C&EN (R. Mullin, CEN 99[ 11] 

March 2021).    

www.publish.csiro.au/ch                                                                                                             Australian Journal of Chemistry 

919 

https://www.publish.csiro.au/ch


The ability to use trained ML models to predict synthesi-
sable molecules and materials is also now possible, and 
an increasing number of examples are appearing in the 
literature. Deep learning methods can now be trained on 
large numbers of high-level quantum chemical calculations, 
allowing them to make accurate predictions of molecular 
properties millions of times faster.[82] The application of 
other AI methods such as evolutionary algorithms is likely 
to be the next innovative computational paradigm adopted 
broadly. Evolutionary algorithms can search very large 
chemical spaces more efficiently than other methods and 
are starting to be used for the discovery and optimisation of 
drugs[83,84] and materials.[59,85] Ultimately, the fusion of 
synthesis design, synthesis robots, evolutionary methods 
and ML will make possible autonomous chemists[86] and 
materials scientists,[87] greatly expanding the range and 
reliability of drugs and useful materials in the short to 
medium term future (Fig. 16). 
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