Micellar Catalysis and Reactivity in Nanostructured Ionic Liquids: Two Sides of the Same Coin?
Navjot K. Kahlon A B and Cameron C. Weber A B CA School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
B The MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand.
C Corresponding author. Email: cameron.weber@auckland.ac.nz
Navjot Kaur Kahlon obtained her B.Sc. Chem. (Hons) and M.Sc. from the University of Delhi. She is currently doing her Ph.D. under the supervision of Dr Cameron Weber in the School of Chemical Sciences at the University of Auckland, examining reactivity within nanostructured ionic solvents. |
Cameron obtained his B.Sc.(Adv)(Hons) and Ph.D. from the University of Sydney under the supervision of Associate Professor Tony Masters and Professor Thomas Maschmeyer. Following post-doctoral positions with Professor Allan Myerson (MIT) and then Professor Tom Welton (Imperial College), Cameron received a Marie Curie Individual Fellowship held at Imperial College. He was subsequently appointed as a lecturer at the Auckland University of Technology before taking up his current position as Senior Lecturer and Deputy Director of the Centre for Green Chemical Science at the University of Auckland. His research involves investigating the use of alternative solvents for chemical processes. |
Australian Journal of Chemistry 75(2) 9-23 https://doi.org/10.1071/CH21109
Submitted: 6 May 2021 Accepted: 3 June 2021 Published: 30 June 2021
Abstract
Micellar catalysis has been established for several decades although has recently been gaining attention as a method for enabling greener chemical synthesis. While the main reason underpinning the modern renaissance of micellar catalysis is the ability to perform reactions using water as a solvent, the use of micellar conditions influences reactivity in ways that do not occur in homogeneous solutions, owing to the confinement of reagents within the micelle and their interactions with micellar headgroups. Recently, it has been discovered that ionic liquids, low-melting salts, can form amphiphilic nanostructures with bicontinuous polar and non-polar domains. Here, we review the evidence to date of the influence of ionic liquid nanostructure on reactivity in comparison with the known influence of micellar catalysis to examine the relationship between these approaches to reactivity in structured media. Key benefits and limitations of each approach are highlighted, with areas likely to benefit from the development of a deeper understanding of reactivity in nanostructured ionic liquids identified.
Keywords: ionic liquids, micellar catalysis, kinetics, nanostructure, self-assembly, pseudophase, solvent effects, Stern layer.
References
[1] B. H. Lipshutz, Curr. Opin. Green Sustain. Chem. 2018, 11, 1.| Crossref | GoogleScholarGoogle Scholar |
[2] L. S. Romsted, C. A. Bunton, J. Yao, Curr. Opin. Colloid Interface Sci. 1997, 2, 622.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) R. Hayes, G. G. Warr, R. Atkin, Chem. Rev. 2015, 115, 6357.
| Crossref | GoogleScholarGoogle Scholar | 26028184PubMed |
(b) J. N. Canongia Lopes, M. F. Costa Gomes, A. A. H. Padua, J. Phys. Chem. B 2006, 110, 16816.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) J. N. A. Canongia Lopes, A. A. H. Padua, J. Phys. Chem. B 2006, 110, 3330.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. Yalcin, I. D. Welsh, E. L. Matthewman, S. P. Jun, M. McKeever-Willis, I. Gritcan, et al. Phys. Chem. Chem. Phys. 2020, 22, 11593.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Wang, G. A. Voth, J. Am. Chem. Soc. 2005, 127, 12192.
| Crossref | GoogleScholarGoogle Scholar |
[5] N. J. Buurma, Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2012, 108, 316.
| Crossref | GoogleScholarGoogle Scholar |
[6] N. J. Buurma, in Advances in Physical Organic Chemistry (Ed. J. P. Richard) 2009, pp. 1–37 (Academic Press: New York, NY).
[7] (a) L. Onel, N. J. Buurma, J. Phys. Chem. B 2011, 115, 13199.
| Crossref | GoogleScholarGoogle Scholar | 21950540PubMed |
(b) C. A. Bunton, Adv. Colloid Interface Sci. 2006, 123–126, 333.
| Crossref | GoogleScholarGoogle Scholar |
[8] N. Fadnavis, J. B. F. N. Engberts, J. Org. Chem. 1982, 47, 152.
| Crossref | GoogleScholarGoogle Scholar |
[9] A. Acharjee, A. Rakshit, S. Chowdhury, B. Saha, J. Mol. Liq. 2021, 321, 114897.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) N. Lebedeva, R. Ranganathan, B. L. Bales, J. Phys. Chem. B 2007, 111, 5781.
| Crossref | GoogleScholarGoogle Scholar | 17488113PubMed |
(b) H. Cang, D. D. Brace, M. D. Fayer, J. Phys. Chem. B 2001, 105, 10007.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. S. Farafonov, A. V. Lebed, N. O. McHedlov-Petrossyan, Langmuir 2017, 33, 8342.
| Crossref | GoogleScholarGoogle Scholar |
[11] T. Rispens, J. B. F. N. Engberts, J. Org. Chem. 2002, 67, 7369.
| Crossref | GoogleScholarGoogle Scholar | 12375967PubMed |
[12] G. La Sorella, G. Strukul, A. Scarso, Green Chem. 2015, 17, 644.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) N. R. Lee, M. Cortes-Clerget, A. B. Wood, D. J. Lippincott, H. Pang, F. A. Moghadam, et al. ChemSusChem 2019, 12, 3159.
| Crossref | GoogleScholarGoogle Scholar | 30889298PubMed |
(b) P. Klumphu, B. H. Lipshutz, J. Org. Chem. 2014, 79, 888.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata, C. Duplais, et al. J. Org. Chem. 2011, 76, 4379.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. H. Lipshutz, S. Ghorai, W. W. Y. Leong, B. R. Taft, D. V. Krogstad, J. Org. Chem. 2011, 76, 5061.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) N. A. Mazer, G. B. Benedek, M. C. Carey, J. Phys. Chem. 1976, 80, 1075.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. Duplâtre, M. F. Ferreira Marques, M. da Graça Miguel, J. Phys. Chem. 1996, 100, 16608.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. Krasovskiy, C. Duplais, B. H. Lipshutz, J. Am. Chem. Soc. 2009, 131, 15592.
| Crossref | GoogleScholarGoogle Scholar | 19827762PubMed |
[16] (a) S. Handa, Y. Wang, F. Gallou, B. H. Lipshutz, Science 2015, 349, 1087.
| Crossref | GoogleScholarGoogle Scholar | 26339028PubMed |
(b) B. S. Takale, R. R. Thakore, E. S. Gao, F. Gallou, B. H. Lipshutz, Green Chem. 2020, 22, 6055.
| Crossref | GoogleScholarGoogle Scholar |
[17] B. S. Takale, R. R. Thakore, G. Casotti, X. Li, F. Gallou, B. H. Lipshutz, Angew. Chem. Int. Ed. 2021, 60, 4158.
| Crossref | GoogleScholarGoogle Scholar |
[18] E. D. Slack, C. M. Gabriel, B. H. Lipshutz, Angew. Chem. Int. Ed. 2014, 53, 14051.
| Crossref | GoogleScholarGoogle Scholar |
[19] R. R. Thakore, B. S. Takale, G. Casotti, E. S. Gao, H. S. Jin, B. H. Lipshutz, Org. Lett. 2020, 22, 6324.
| Crossref | GoogleScholarGoogle Scholar | 32806206PubMed |
[20] A. Adenot, E. B. Landstrom, F. Gallou, B. H. Lipshutz, Green Chem. 2017, 19, 2506.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) C. Z. J. Ren, P. Solís Muñana, J. Dupont, S. S. Zhou, J. L. Y. Chen, Angew. Chem. Int. Ed. 2019, 58, 15254.
| Crossref | GoogleScholarGoogle Scholar |
(b) Z. Tang, W. Wang, Y. Pi, J. Wang, C. Li, R. Tan, et al. ACS Sustain. Chem.& Eng. 2019, 7, 17967.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. Liu, P. G. Jessop, M. Cunningham, C. A. Eckert, C. L. Liotta, Science 2006, 313, 958.
| Crossref | GoogleScholarGoogle Scholar | 16917059PubMed |
[23] P. Solís Muñana, G. Ragazzon, J. Dupont, C. Z. J. Ren, L. J. Prins, J. L. Y. Chen, Angew. Chem. Int. Ed. 2018, 57, 16469.
| Crossref | GoogleScholarGoogle Scholar |
[24] Y.-L. Wang, B. Li, S. Sarman, F. Mocci, Z.-Y. Lu, J. Yuan, et al. Chem. Rev. 2020, 120, 5798.
| Crossref | GoogleScholarGoogle Scholar | 32292036PubMed |
[25] (a) N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, et al. J. Electrochem. Soc. 1996, 143, 3099.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. Welton, Chem. Rev. 1999, 99, 2071.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliot, et al. Energy Environ. Sci. 2014, 7, 232.
| Crossref | GoogleScholarGoogle Scholar |
[26] N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123.
| Crossref | GoogleScholarGoogle Scholar | 18197338PubMed |
[27] C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic Chemistry 2011 (Wiley-VCH Verlag & Co. KGaA: Weinheim).
[28] H. Niedermeyer, J. P. Hallett, I. J. Villar-Garcia, P. A. Hunt, T. Welton, Chem. Soc. Rev. 2012, 41, 7780.
| Crossref | GoogleScholarGoogle Scholar | 22890419PubMed |
[29] G. G. Warr, R. Atkin, Curr. Opin. Colloid Interface Sci. 2020, 45, 83.
| Crossref | GoogleScholarGoogle Scholar |
[30] A. Cognigni, P. Gaertner, R. Zirbs, H. Peterlik, K. Prochazka, C. Schröder, et al. Phys. Chem. Chem. Phys. 2016, 18, 13375.
| Crossref | GoogleScholarGoogle Scholar | 27121134PubMed |
[31] K. Bica, P. Gärtner, P. J. Gritsch, A. K. Ressmann, C. Schröder, R. Zirbs, Chem. Commun. 2012, 5013.
| Crossref | GoogleScholarGoogle Scholar |
[32] A. Cognigni, S. Kampichler, K. Bica, J. Colloid Interface Sci. 2017, 492, 136.
| Crossref | GoogleScholarGoogle Scholar | 28081457PubMed |
[33] M. Taskin, A. Cognigni, R. Zirbs, E. Reimhult, K. Bica, RSC Adv. 2017, 7, 41144.
| Crossref | GoogleScholarGoogle Scholar | 29308189PubMed |
[34] (a) F. A. Butt, P. A. Bhat, S. A. Bhat, N. Rashid, M. A. Rather, S. A. Pandit, et al. Phys. Chem. Chem. Phys. 2020, 22, 11337.
| Crossref | GoogleScholarGoogle Scholar | 32373796PubMed |
(b) A. Kulshrestha, G. Kumar, N. H. Khan, A. Kumar, J. Mol. Liq. 2020, 299, 112157.
| Crossref | GoogleScholarGoogle Scholar |
[35] A. Cognigni, Á. M. Palvögyi, C. Schröder, H. Peterlik, A. R. M. Müllner, R. Zirbs, et al. Aust. J. Chem. 2019, 72, 34.
| Crossref | GoogleScholarGoogle Scholar |
[36] L. Lin, Y. Li, S. Zhang, S. Li, Synlett 2011, 1779.
| Crossref | GoogleScholarGoogle Scholar |
[37] (a) B. Šarac, Ž. Medoš, A. Cognigni, K. Bica, L.-J. Chen, M. Bešter-Rogač, Colloids Surf. A Physicochem. Eng. Asp. 2017, 532, 609.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. Friesen, T. Buchecker, A. Cognigni, K. Bica, R. Buchner, Langmuir 2017, 33, 9844.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. Schäffer, M. Alber, W. Korth, M. Cokoja, A. Jess, ChemistrySelect 2017, 2, 11891.
| Crossref | GoogleScholarGoogle Scholar |
[39] F. Schmidt, B. Zehner, W. Korth, A. Jess, M. Cokoja, Catal. Sci. Technol. 2020, 10, 4448.
| Crossref | GoogleScholarGoogle Scholar |
[40] M. Rather, S. Bhat, S. Pandit, F. Bhat, G. Rather, M. Bhat, Catal. Lett. 2019, 149, 2195.
[41] U. Schröder, J. D. Wadhawan, R. G. Compton, F. Marken, P. A. Z. Suarez, C. S. Consorti, et al. New J. Chem. 2000, 24, 1009.
| Crossref | GoogleScholarGoogle Scholar |
[42] Y. Wang, G. A. Voth, J. Phys. Chem. B 2006, 110, 18601.
| Crossref | GoogleScholarGoogle Scholar | 16970489PubMed |
[43] A. E. Bradley, C. Hardacre, J. D. Holbrey, S. Johnston, S. E. J. McMath, M. Nieuwenhuyzen, Chem. Mater. 2002, 14, 629.
| Crossref | GoogleScholarGoogle Scholar |
[44] S. M. Urahata, M. C. Ribeiro, J. Chem. Phys. 2004, 120, 1855.
| Crossref | GoogleScholarGoogle Scholar | 15268318PubMed |
[45] J. N. A. Canongia Lopes, A. A. H. Pádua, J. Phys. Chem. B 2006, 110, 3330.
| Crossref | GoogleScholarGoogle Scholar |
[46] (a) A. B. Pereiro, M. J. Pastoriza-Gallego, K. Shimizu, I. M. Marrucho, J. N. Canongia Lopes, M. M. Piñeiro, et al. J. Phys. Chem. B 2013, 117, 10826.
| Crossref | GoogleScholarGoogle Scholar | 23964834PubMed |
(b) J. J. Hettige, J. C. Araque, C. J. Margulis, J. Phys. Chem. B 2014, 118, 12706.
| Crossref | GoogleScholarGoogle Scholar |
[47] T. Murphy, R. Atkin, G. G. Warr, Curr. Opin. Colloid Interface Sci. 2015, 20, 282.
| Crossref | GoogleScholarGoogle Scholar |
[48] J. J. Hettige, H. K. Kashyap, H. V. R. Annapureddy, C. J. Margulis, J. Phys. Chem. Lett. 2013, 4, 105.
| Crossref | GoogleScholarGoogle Scholar | 26291220PubMed |
[49] A. Triolo, O. Russina, H.-J. Bleif, E. Di Cola, J. Phys. Chem. B 2007, 111, 4641.
| Crossref | GoogleScholarGoogle Scholar | 17388414PubMed |
[50] N. J. Brooks, F. Castiglione, C. Doherty, A. Dolan, A. J. Hill, P. A. Hunt, et al. Chem. Sci. 2017, 8, 6359.
| Crossref | GoogleScholarGoogle Scholar | 29619199PubMed |
[51] T. Pott, P. Méléard, Phys. Chem. Chem. Phys. 2009, 11, 5469.
| Crossref | GoogleScholarGoogle Scholar | 19551217PubMed |
[52] K. Shimizu, A. A. H. Pádua, J. N. Canongia Lopes, J. Phys. Chem. B 2010, 114, 15635.
| Crossref | GoogleScholarGoogle Scholar | 21058699PubMed |
[53] J. J. Hettige, J. C. Araque, H. K. Kashyap, C. J. Margulis, J. Chem. Phys. 2016, 144, 121102.
| Crossref | GoogleScholarGoogle Scholar | 27036419PubMed |
[54] C. Hardacre, J. D. Holbrey, M. Nieuwenhuyzen, T. G. Youngs, Acc. Chem. Res. 2007, 40, 1146.
| Crossref | GoogleScholarGoogle Scholar | 17580978PubMed |
[55] A. Triolo, O. Russina, B. Fazio, R. Triolo, E. Di Cola, Chem. Phys. Lett. 2008, 457, 362.
| Crossref | GoogleScholarGoogle Scholar |
[56] O. Russina, A. Triolo, L. Gontrani, R. Caminiti, D. Xiao, L. G. Hines, et al. J. Phys. Condens. Matter 2009, 21, 424121.
| Crossref | GoogleScholarGoogle Scholar |
[57] R. Atkin, G. G. Warr, J. Phys. Chem. B 2008, 112, 4164.
| Crossref | GoogleScholarGoogle Scholar | 18341331PubMed |
[58] T. L. Greaves, D. F. Kennedy, S. T. Mudie, C. J. Drummond, J. Phys. Chem. B 2010, 114, 10022.
| Crossref | GoogleScholarGoogle Scholar | 20684625PubMed |
[59] T. L. Greaves, K. Ha, B. W. Muir, S. C. Howard, A. Weerawardena, N. Kirby, et al. Phys. Chem. Chem. Phys. 2015, 17, 2357.
| Crossref | GoogleScholarGoogle Scholar | 25475718PubMed |
[60] U. Kapoor, J. K. Shah, J. Phys. Chem. B 2018, 122, 213.
| Crossref | GoogleScholarGoogle Scholar | 29202582PubMed |
[61] C. Cruz, B. Heinrich, A. C. Ribeiro, D. W. Bruce, D. Guillon, Liq. Cryst. 2000, 27, 1625.
| Crossref | GoogleScholarGoogle Scholar |
[62] (a) A. Triolo, O. Russina, R. Caminiti, H. Shirota, H. Y. Lee, C. S. Santos, et al. Chem. Commun. 2012, 4959.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. Hayes, S. Imberti, G. G. Warr, R. Atkin, Phys. Chem. Chem. Phys. 2011, 13, 3237.
| Crossref | GoogleScholarGoogle Scholar |
[63] (a) C. C. Weber, A. F. Masters, T. Maschmeyer, Green Chem. 2013, 15, 2655.
| Crossref | GoogleScholarGoogle Scholar |
(b) H. J. Jiang, R. Atkin, G. G. Warr, Curr. Opin. Green Sustain. Chem. 2018, 12, 27.
| Crossref | GoogleScholarGoogle Scholar |
[64] T. L. Greaves, D. F. Kennedy, A. Weerawardena, N. M. K. Tse, N. Kirby, C. J. Drummond, J. Phys. Chem. B 2011, 115, 2055.
| Crossref | GoogleScholarGoogle Scholar | 21319828PubMed |
[65] (a) S. Puttick, A. L. Davis, K. Butler, L. Lambert, J El harfi, D. J. Irvine, et al. Chem. Sci. 2011, 2, 1810.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. Puttick, A. L. Davis, K. Butler, D. J. Irvine, P. Licence, K. J. Thurecht, Polym. Chem. 2013, 4, 1337.
| Crossref | GoogleScholarGoogle Scholar |
[66] (a) C. C. Weber, A. F. Masters, T. Maschmeyer, Angew. Chem. Int. Ed. 2012, 51, 11483.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. C. Weber, A. F. Masters, T. Maschmeyer, Org. Biomol. Chem. 2013, 11, 2534.
| Crossref | GoogleScholarGoogle Scholar |
[67] M. G. Freire, C. M. S. S. Neves, I. M. Marrucho, J. A. P. Coutinho, A. M. Fernandes, J. Phys. Chem. A 2010, 114, 3744.
| Crossref | GoogleScholarGoogle Scholar | 20235600PubMed |
[68] D. W. Bruce, Y. Gao, J. N. Canongia Lopes, K. Shimizu, J. M. Slattery, Chem. – Eur. J. 2016, 22, 16113.
| Crossref | GoogleScholarGoogle Scholar | 27659146PubMed |
[69] S. T. Keaveney, T. L. Greaves, D. F. Kennedy, J. B. Harper, J. Phys. Chem. B 2016, 120, 12687.
| Crossref | GoogleScholarGoogle Scholar | 27973829PubMed |
[70] C. Shi, Y. Zhao, J. Xin, J. Wang, X. Lu, X. Zhang, et al. Chem. Commun. 2012, 4103.
| Crossref | GoogleScholarGoogle Scholar |
[71] (a) K. V. Axenov, S. Laschat, Materials 2011, 4, 206.
| Crossref | GoogleScholarGoogle Scholar | 28879986PubMed |
(b) J. D. Holbrey, K. R. Seddon, J. Chem. Soc., Dalton Trans. 1999, 2133.
| Crossref | GoogleScholarGoogle Scholar |
[72] K. Shimizu, M. F. Costa Gomes, A. A. H. Padua, L. P. N. Rebelo, J. N. Canongia Lopes, J. Mol. Struct. THEOCHEM 2010, 946, 70.
| Crossref | GoogleScholarGoogle Scholar |
[73] H. M. Yau, S. A. Barnes, J. M. Hook, T. G. A. Youngs, A. K. Croft, J. B. Harper, Chem. Commun. 2008, 3576.
| Crossref | GoogleScholarGoogle Scholar |
[74] (a) A. Schindl, R. R. Hawker, K. S. Schaffarczyk McHale, K. T. C. Liu, D. C. Morris, A. Y. Hsieh, et al. Phys. Chem. Chem. Phys. 2020, 22, 23009.
| Crossref | GoogleScholarGoogle Scholar | 33043942PubMed |
(b) T. L. Greaves, K. S. Schaffarczyk McHale, R. F. Burkart-Radke, J. B. Harper, T. C. Le, Phys. Chem. Chem. Phys. 2021, 23, 2742.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Crowhurst, R. Falcone, N. L. Lancaster, V. Llopis-Mestre, T. Welton, J. Org. Chem. 2006, 71, 8847.
| Crossref | GoogleScholarGoogle Scholar |
[75] (a) R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
| Crossref | GoogleScholarGoogle Scholar | 11982358PubMed |
(b) Y. Pu, N. Jiang, A. J. Ragauskas, J. Wood Chem. Technol. 2007, 27, 23.
| Crossref | GoogleScholarGoogle Scholar |
[76] (a) T. G. A. Youngs, J. D. Holbrey, C. L. Mullan, S. E. Norman, M. C. Lagunas, C. D’Agostino, et al. Chem. Sci. 2011, 2, 1594.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Brandt, J. Gräsvik, J. P. Hallett, T. Welton, Green Chem. 2013, 15, 550.
| Crossref | GoogleScholarGoogle Scholar |
[77] (a) H. J. Jiang, S. Miao, S. Imberti, B. A. Simmons, R. Atkin, G. G. Warr, Green Chem. 2021, 23, 856.
| Crossref | GoogleScholarGoogle Scholar |
(b) H. J. Jiang, S. Imberti, B. A. Simmons, R. Atkin, G. G. Warr, ChemSusChem 2019, 12, 270.
| Crossref | GoogleScholarGoogle Scholar |
[78] N. A. S. Ramli, N. A. S. Amin, BioEnergy Res. 2020, 13, 693.
| Crossref | GoogleScholarGoogle Scholar |
[79] P. Pollet, C. A. Eckert, C. L. Liotta, Chem. Sci. 2011, 2, 609.
| Crossref | GoogleScholarGoogle Scholar |