SUPPLEMENTARY MATERIAL

In Situ Spectroelectrochemical Investigations of Ru^{II} Complexes with Bispyrazolyl Methane Triarylamine Ligands

Carol Hua,^A Brendan F. Abrahams,^B Floriana Tuna,^C David Collison,^C and Deanna M. D'Alessandro^{A,D}

^ASchool of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

^BSchool of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.

^CSchool of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.

^DCorresponding author. Email: deanna.dalessandro@sydney.edu.au

Experimental

[RuCl(tpy)(TPA-2bpm)]PF₆

¹H NMR (CD₃CN, 500 MHz): δ 9.01 (d, ³*J*_{H-H} = 2.0 Hz, 2H, **H6/H8**), 8.43 (d, ³*J*_{H-H} = 2.0 Hz, 2H, **H6/H8**), 8.38 (d, ³*J*_{H-H} = 3.5 Hz, 1H, **H19**), 8.36 (d, ³*J*_{H-H} = 3.5 Hz, 1H, **H21**), 8.30 (d, ³*J*_{H-H} = 8.0 Hz, 1H, **H16**), 8.24 (d, ³*J*_{H-H} = 8.0 Hz, 1H, **H24**), 7.99 (t, ³*J*_{H-H} = 8.0 Hz, 1H, **H22**), 7.93 (s, 1H, **H5**), 7.83 (t, ³*J*_{H-H} = 8.0 Hz, 1H, **H15**), 7.79 (t, ³*J*_{H-H} = 8.0 Hz, 1H, **H25**), 7.76 (br s, 3H, **H21**, **H29/H31**), 7.62 (d, ³*J*_{H-H} = 8.0 Hz, 1H, **H13**), 7.55 (d, ³*J*_{H-H} = 8.0 Hz, 1H, **H27**), 7.38 (t, ³*J*_{H-H} = 8.0 Hz, 1H, **H14**), 7.33 (t, ³*J*_{H-H} = 6.0 Hz, 1H, **H12**), 7.18 (t, ³*J*_{H-H} = 6.0 Hz, 1H, **H26**), 7.11 (d, ³*J*_{H-H} = 8.5 Hz, 2H, **H10/H11**), 7.04 (d, ³*J*_{H-H} = 8.5 Hz, 2H, **H10/H11**), 6.96 (t, ³*J*_{H-H} = 2.5 Hz, 2H, **H7**), 6.77 (d, ³*J*_{H-H} = 8.5 Hz, 2H, **H2/H3**), 6.44 (d, ³*J*_{H-H} = 2.0 Hz, 2H, **H22/H24**), 6.26 (d, ³*J*_{H-H} = 8.0 Hz, 2H, **H2/H3**), 6.07 (t, ³*J*_{H-H} = 2.0 Hz, 2H, **H23**) ppm. ¹³C {¹H</sup>} NMR (CD₃CN, 125 MHz): δ 161.2 (C18), 161.1 (C22), 160.0 (C17), 159.6 (C23), 154.5 (C9), 149.9 (C22/C24), 148.7 (C1), 148.2 (C6/C8), 145.9 (C6/C8), 141.3 (C13), 137.7 (C6/C8, C15, C29/C31, C28), 137.0 (C15'), 134.6 (C20), 130.9 (C14), 130.8 (C13'), 129.4 (C10/C11), 128.1 (C12), 127.9 (C4), 127.5 (C10/C11), 126.3 (C14'), 124.4 (C16), 124.1 (C16'),123.1 (C19), 123.0 (C19'), 121.6 (C2/C3), 109.0 (C7), 108.8 (C30), 107.2 (C2/C3), 77.7 (C21), 76.5 (C5) ppm. Elemental Analysis: Found C, 53.54; H, 3.52 and N, 15.82%; Calculated for C₄₇H₃₈ClF₆N₁₂PRu: C, 53.64; H, 3.64; N, 15.97%. ESI-MS (ESI⁺, MeOH): 906.93 (Calculated [M-PF₆]⁺ = 907.21, 100%) amu.

[RuCl(tpy)(TPA-3bpm)]PF₆

¹H NMR (CD₃CN, 500 MHz): δ 9.01 (br s, 2H, H6/H8), 8.46 (br s, 2H, H6/H8), 8.39 (t, ³*J*_{H-H} = 3.8 Hz, 1H, H16), 8.32 (d, ³*J*_{H-H} = 8.5 Hz, 1H, H12), 8.25 (d, ³*J*_{H-H} = 8.5 Hz, 1H, H20), 8.03-7.95 (m, 2H, H15, H17), 7.95 (s, 1H, H5), 7.87 (t, ³*J*_{H-H} = 8.5 Hz, 1H, H11), 7.79 (br s, 4H, H29/H31), 7.77 (s, 2H, H28), 7.75 (t, ³*J*_{H-H} = 8.5 Hz, 1H, H21), 7.64 (d, ³*J*_{H-H} = 8.5 Hz, 1H, H9), 7.56 (t, ³*J*_{H-H} = 8.5 Hz, 1H, H22), 7.34 (t, ³*J*_{H-H} = 8.5 Hz, 1H, H10), 7.11 (d, ³*J*_{H-H} = 8.5 Hz, 4H, H25/H26), 7.09 (d, ³*J*_{H-H} = 8.5 Hz, 1H, H22), 7.07 (d, ³*J*_{H-H} = 8.5 Hz, 4H, H25/H26), 6.96 (t, ³*J*_{H-H} = 2.0 Hz, 2H, H7), 6.83 (d, ³*J*_{H-H} = 8.5 Hz, 2H, H3), 6.45 (d, ³*J*_{H-H} = 2.0 Hz, 4H, H29/H31), 6.30 (d, ³*J*_{H-H} = 8.5 Hz, 2H, H2), 6.08 (t, ³*J*_{H-H} = 2.0 Hz, 2H, H30) ppm. ¹³C{¹H} NMR (CD₃CN, 125 MHz): δ 161.3 (C14/C18), 161.2 (C14/C18), 160.1 (C13/C19), 159.8 (C13/C19), 154.7 (C24), 153.5 (C1), 148.8 (C6/C8), 146.0 (C29/C30), 141.4 (C22), 137.8 (C6/C8), 137.7 (C29/C31), 137.7 (C11), 137.1 (C21), 134.7 (C15, C17), 133.6 (C2), 131.0 (C9), 129.7 (C25), 130.1 (C27), 128.2 (C4), 128.1 (C10), 127.5 (C23), 126.3 (C26), 125.0 (C12), 124.5 (C20), 123.1 (C16), 122.6 (C3), 109.1 (C7), 108.7 (C30), 107.3 (C2/C3), 77.8 (C28), 76.6 (C5) ppm. Elemental Analysis: Found C, 54.25; H, 3.95 and N, 18.72; Calculated for C₅₄H₄₄ClF₆N₁₆PRu: C, 54.12; H, 3.70; N, 18.70%. ESI-MS (ESI⁺, MeOH): 1053.13 (Calculated [M-PF₆]⁺ = 1053.27, 100%) amu.

[Ru₂Cl₂(tpy)₂(TPA-3bpm)](PF₆)₂

¹H NMR (CD₃CN, 500 MHz): δ 9.02 (d, ³*J*_{H-H} = 2.0 Hz, 1H, **H6/H8**), 8.57 (d, ³*J*_{H-H} = 2.0 Hz, 4H, **H6/H8**), 8.42-8.38 (m, 4H, **H15** and **H17**), 8.33 (d, ³*J*_{H-H} = 8.0 Hz, 2H, **H12**), 8.23 (d, ³*J*_{H-H} = 8.0 Hz, 2H, **H20**), 8.17 (s, 1H, **H28**), 8.01 (t, ³*J*_{H-H} = 8.0 Hz, 2H, **H16**), 7.90-7.87 (m, 6H, **H29/H31**, **H11**), 7.83 (s, 2H, H5), 7.66-7.64 (m, 2H, **H21**), 7.56-7.54 (m, 2H, **H9**), 7.49 (d, ³*J*_{H-H} = 5.5 Hz, 2H, **H23**), 7.34 (t, ³*J*_{H-H} = 7.0 Hz, 2H, **H10**), 7.19-7.16 (m, 4H, **H25**, **H26**), 6.99 (t, ³*J*_{H-H} = 2.0 Hz, 2H, **H7**), 6.95 (t, ³*J*_{H-H} = 7.0 Hz, 2H, **H22**), 6.82 (d, ³*J*_{H-H} = 8.5 Hz, 4H, **H2/H3**), 6.47 (d, ³*J*_{H-H} = 2.0 Hz, 2H, **H29/H31**), 6.253 (d, ³*J*_{H-H} = 8.5 Hz, 4H, **H2/H3**), 6.12 (t, ³*J*_{H-H} = 2.0 Hz, 2H, **H30**) ppm. ¹³C {¹H</sup>} NMR (CD₃CN, 125 MHz): δ 161.4 (C14/C18), 161.3 (C14/C18), 160.0 (C13), 159.8 (C19), 148.9 (C4), 148.8 (C6/C8), 147.2 (C27), 146.2 (C29/C31), 141.5 (C9), 141.4 (C23), 138.1 (C11), 138.1 (C6/C8), 137.9 (C29/C31), 134.8 (C16), 131.1 (C21), 131.0 (C1), 130.1 (C24), 129.7 (C25/C26), 128.3 (C10), 128.3 (C25/C26), 127.8 (C2/C3), 126.3 (C22), 124.6 (C12), 123.9 (C20), 123.8 (C2/C3), 123.2 (C15/C17), 123.1 (C15/C17), 109.2 (C30), 108.9 (C7), 77.7 (C5), 76.4 (C28) ppm. Elemental Analysis: Found C, 48.21; H, 3.22 and N, 15.73; Calculated for C₆₉H₅₅Cl₂F₁₂N₁₉P₂Ru₂: C, 48.37; H, 3.24; N, 15.53%. ESI-MS (ESI⁺, MeOH): 712.33 (Calculated [M-2PF₆]²⁺ = 711.62, 100%) amu.

Figure S1. Solution state ¹H NMR spectrum of [Ru₂Cl₂(tpy)₂(TPA-2bpm)](PF₆)₂ recorded at 500 MHz in CD₃CN.

Figure S2. Solution state ¹H NMR spectrum of [Ru₃Cl₃(tpy)₃(TPA-3bpm)](PF₆)₃ recorded at 500 MHz in CD₃CN.

Parameter	
Formula	$C_{32}H_{27}N_9$
M/g mol ⁻¹	537.63
Temperature (K)	150(2)
Crystal system	Triclinic
Crystal size (mm ³)	$0.188 \times 0.144 \times 0.100$
Crystal colour	Colourless
Crystal Habit	Block
<i>a</i> (Å)	9.9607(3)
<i>b</i> (Å)	12.2145(3)
<i>c</i> (Å)	12.9010(4)
α (°)	110.727(3)
β (°)	102.826(2)
γ (°)	101.316(2)
$V(Å^3)$	1364.85(7)
Ζ	2
$\rho_{calc} (mg/mm^3)$	1.308
λ(CuKα)	1.54178 Å
μ(CuKα)	0.652 mm ⁻¹
T(CRYSALISPRO) _{min,max}	0.93508, 1.000000
$2\theta_{\text{max}}$	151.82°
hkl range	-12 12, -15 14, -16 16
Reflections collected	24161/5651[R(int) = 0.0196]
Data/parameters	5022/370
Final R indexes [all data]	$R_1 = 0.0557, wR_2 = 0.1369$
Goodness-of-fit on F ²	1.076
Residual Extrema	-0.508, 0.570 e ⁻ Å ⁻³

Table A1.1. Crystal data and structure refinement details for TPA-2bpm

 ${}^{*}R1 = \Sigma ||F_{0}| - |F_{c}||/\Sigma |F_{0}| \text{ for } F_{0} > 2\sigma(F_{0}); wR2 = (\Sigma w(F_{0}^{2} - F_{c}^{2})^{2}/\Sigma (wF_{c}^{2})^{2})^{1/2}$ all reflections w=1/[$\sigma^{2}(F_{0}^{2})$ +(0.0452P)²+0.9594P] where P=(F_{0}^{2} +2 F_{c}^{2})/3

Parameter	
Formula	$C_{39}H_{33}N_{13}O_{1.62}$
M/g mol ⁻¹	709.65
Temperature (K)	100(1)
Crystal system	Hexagonal
Crystal size (mm ³)	$0.10 \times 0.10 \times 0.06$
Crystal colour	Colourless
Crystal Habit	plate
<i>a</i> (Å)	11.903(2)
<i>b</i> (Å)	11.903(2)
<i>c</i> (Å)	14.466(3)
γ (°)	120
$V(Å^3)$	1775.0(7)
Ζ	2
$\rho_{calc} (mg/mm^3)$	1.328
λ (Synchrotron)	0.7109 Å
μ (Synchrotron)	0.087 mm^{-1}
hkl range	-15 15, -15 15, -18 18
Reflections collected	27876/1410[R(int) = 0.0701]
Data/parameters	1286/152
Final R indexes [all data]	$R_1 = 0.0761, wR_2 = 0.1801$
Goodness-of-fit on F ²	1.124
Residual Extrema	-0.186, 0.189 e ⁻ Å ⁻³

Table A1.2. Crystal data and structure refinement details for TPA-3bpm

 $R1 = \Sigma(|F_o| - |F_c|)/\Sigma(|F_o|); \ wR_2 = [\Sigma\{w(F_o^2 - F_c^2)^2/\Sigma\{w(F_o^2)^2\}]^{1/2}, \ wR_2 = (\Sigma w(F_o^2 - F_c^2)^2/\Sigma\{w(F_o^2)^2\}]^{1/2}, \ wR_2 = (\Sigma w(F_o^2 - F_c^2)^2/\Sigma\{w(F_o^2)^2\})^{1/2}, \ wR_2 = (\Sigma w(F_o^2 - F_c^2)^2/\Sigma\{w(F_o^2 - F_c^2)^2/\Sigma\{w(F_o^2)^2\})^{1/2}, \ wR_2 = (\Sigma w(F_o^2 - F_c^2)^2/\Sigma\{w(F_o^2)^2\})^{1/2}, \ wR_2 = (\Sigma w(F_o^2 - F_c^2)^2/\Sigma\{w(F_o^2 - F_c^2)^2/\Sigma\{w($

Figure S3. Solution state electrochemistry on **TPA-2bpm** in $[(n-C_4H_9)_4N]PF_6/CH_3CN$ electrolyte at scan rates of a) 10-100 mV/s and b) $[(n-C_4H_9)_4N]PF_6/CH_2Cl_2$ electrolyte at scan rates of 100-1000 mV/s where the arrow indicates the direction of the forward scan.

Figure S4. Solution state electrochemistry on **TPA-3bpm** in $[(n-C_4H_9)_4N]PF_6/CH_3CN$ electrolyte, referenced against the Fc/Fc⁺ couple at scan rates of a) 10-100 mV/s, b) 100-1000 mV/s, c) square wave voltammogram at 10 mV and 39 Hz against the cyclic voltammogram at 50 mV/s and d) scan rates of 50-1000 mV/s in $[(n-C_4H_9)_4N]PF_6/CH_2Cl_2$ electrolyte.

Figure S5. Mechanism of the dimerisation of TPA-2bpm upon oxidation to form the triarylamine radical cation.

Figure S6. Cyclic voltammograms of $[Ru_2Cl_2(tpy)_2(TPA-2bpm)](PF_6)_2$ at scan rates of a) 10-100 mV/s and b) 100-1000 mV/s and $[RuCl(tpy)(TPA-3bpm)]PF_6$ at different scan rates where c) 10-100 mV/s and d) 100-1000 mV/s in $[(n-C_4H_9)_4N]PF_6/CH_3CN$ electrolyte.

Figure S7. Solution state spectroelectrochemistry of **TPA-2bpm** in $[(n-C_4H_9)_4N]PF_6/CH_3CN$ electrolyte a) upon increasing the potential from 0 to 0.9 V, b) holding at 0.95 V and c) increasing the potential from 1.0 to 1.2 V.

	v _{max} /cm ⁻¹	ε _{max} /M ⁻ ¹ cm ⁻¹	$\Delta v_{1/2}/cm^{-1}$	v _{1/2} (high) /cm ⁻¹	$\Delta v_{1/2}^{\circ}/cm^{-1}$	H _{ab} /cm ⁻¹	r _{ab} /Å
TPA-2bpm	7582	881	3325	1896	4185	337	9.72
[Ru ₂ Cl ₂ (tpy) ₂ (TPA- 2bpm)](PF ₆) ₂	7783	2620	3495	1974	4240	566	9.72

Table S3. Parameters used in the IVCT analysis of the NIR bands of the TPA-2bpm ligand and $[Ru_2Cl_2(tpy)2(TPA-2bpm)](PF_6)_2$.

Calculation of $\Delta v_{1/2}^{\circ 1-3}$

$$\Delta v_{1/2}^{\circ} = [16RT \times \log_e(2) \times v_{max}]^{1/2}$$
$$= [2310 \times v_{max}]^{1/2}$$

Calculation of H_{ab}¹⁻³

 $H_{ab}=0.0206(\nu_{max}\times\epsilon_{max}\times\Delta\nu_{1/2})^{1/2}~/~r_{ab}$

Figure S8. Solution state spectroelectrochemistry of **TPA-3bpm** in [(*n*-C₄H₉)₄N]PF₆/CH₃CN electrolyte upon increasing the potential from a) 0 to 0.92 V, b) 0.95 to 1.05 V and c) 1.0 to 1.15 V.

Figure S9. Solution state UV/Vis/NIR spectroelectrochemistry of $[Ru_3Cl_3(tpy)_3(TPA-3bpm)](PF_6)_3$ in $[(n-C_4H_9)_4N]PF_6/CH_3CN$ electrolyte where the potential was increased from a) 0 to 1.0 V, b) 1.4 to 1.45 V and c) 1.45 to 1.6 V.

Table S4. *g*-factor and hyperfine coupling values for the Ru(II) complexes containing the **TPA-3bpm** ligand.

Compound	g-factor	A (MHz) for N
[Ru(tpy)\Cl(TPA-3bpm)]PF ₆	2.0068	26.7
[Ru ₂ (tpy) ₂ Cl ₂ (TPA-3bpm)](PF ₆) ₂	2.0069	26.7
[Ru ₃ (tpy) ₃ Cl ₃ (TPA-3bpm)](PF ₆) ₃	2.0071	26.7

Table S5. Simulation parameters for the ¹⁴N and ¹H nuclei in $[Ru(tpy)Cl(TPA-3bpm)]PF_6$ as a frozen solution at X-band and Q-band.

	g _x (N)	g _y (N)	g _z (N)	A (MHz)	Line Broadening (Voigtian)	g (H)	A (MHz)
X-band (5 K)	1.985	1.9985	2.0115	9.8	0.25, 0.25	1.9985	15.4
Q-band (50 K)	1.9915	1.9957	1.9995	9.8	0.25, 0.25	1.9957	15.4

Nucleus	g	A (MHz)	Correlation Time (s)	Line broadening (Voigtian)	No. Of Nuclei
Ν	2.0069	25.3	1×10^{-8}	0.45, 0.4	1
Н	2.005	15.4		0, 0.1	6

Table S6. Simulation parameters for the ¹⁴N and ¹H nuclei in $[Ru(tpy)Cl(TPA-3bpm)]PF_6$ as a solution at X-band.

Table S7. Simulation parameters for Ru^{3+} in [Ru(tpy)Cl(TPA-3bpm)]PF₆ as a frozen solution at X-band.

	g _x (Ru ³⁺)	g _y (Ru ³⁺)	g _z (Ru ³⁺)	A∥ (MHz)	A⊥ (MHz)	Line Broadening (Voigtian)
X-band (5 K)	2.5	2.32	1.99	238	11.2	4.5, 4.5

Figure S10. EPR spectroelectrochemistry of $[Ru(tpy)Cl(TPA-3bpm)]PF_6$ in $[(n-C_4H_9)_4N]PF_6/CH_3CN$ electrolyte showing the simulated vs. experimental spectrum of the radical a) in solution at 240 K at X-band, b) as a frozen solution at 5 K at X-band, c) as a frozen solution at 50 K at Q-band and d) the Ru³⁺ and radical at X-band at 5K where the signals indicated by * are due to the cavity.

Figure S11. X-band EPR spectrum of the radical produced by the electrochemical experiment in $[(n-C_4H_9)_4N]PF_6/CH_2Cl_2$ electrolyte of **TPA-3bpm** a) at 170, 190 and 200 K and b) the simulated vs. experimental spectrum at 170 K as a frozen solution at a potential of 1.7 V.

Figure S12. EPR spectroelectrochemistry in $[(n-C_4H_9)_4N]PF_6/CH_3CN$ electrolyte of a) $[Ru(tpy)Cl(TPA-2bpm)](PF_6)$ and $[Ru_2(tpy)_2Cl_2(TPA-2bpm)](PF_6)_2$, b) simulated vs. experimental spectrum of $[Ru_2(tpy)_2Cl_2(TPA-2bpm)](PF_6)_2$ and c) photo of $[Ru_2(tpy)_2Cl_2(TPA-2bpm)](PF_6)_2$ during the experiment.

Figure S13. Absorbance and fluorescence spectra of a) TPA-2bpm, ox-TPA-2bpm and b) TPA-3bpm, ox-TPA-3bpm as solutions in acetonitrile.

Figure S14. Absorbance and fluorescence spectra of a) $[RuCl(tpy)(TPA-2bpm)]PF_6$ and b) $[Ru_2Cl_2(tpy)_2(TPA-2bpm)](PF_6)_2$ upon excitation at 350 (28570 cm⁻¹) and 500 nm (20000 cm⁻¹).

Figure S15. Absorbance and fluorescence spectra of a) $[RuCl(tpy)(TPA-3bpm)]PF_6$ and b) $[Ru_2Cl_2(tpy)_2(TPA-3bpm)](PF_6)_2$ and their oxidised species upon excitation at 490 nm (no fluorescence at 320 nm).

Figure S16. Absorbance and Fluorescence spectra of [Ru₃Cl₃(tpy)₃(TPA-3bpm)](PF₆)₃ upon excitation at 320 nm and 495 nm.

References

- 1. Hush, N. S., Intervalence-Transfer Absorption. Part 2. Theoretical Considerations and Spectroscopic Data. In *Prog. Inorg. Chem.*, John Wiley & Sons, Inc.: 2007; pp 391-444.
- 2. Hush, N. S., *Electrochim. Acta* **1968**, *13*, 1005-1023.
- 3. D'Alessandro, D. M.; Keene, F. R., Chem. Soc. Rev. 2006, 35, 424-440.