A computational search of the ideal metal fragment for monohapto coordination of dihydrogen
Lucía Morán-González A B and Feliu Maseras A *A
B
Abstract
Sigma complexes containing η2-H2 ligands, with both hydrogen atoms interacting with the metal center and with each other, are well known nowadays. The possibility of η1-H2 coordination, with only one hydrogen atom interacting with the metal center, remains an intriguing, but unreported, possibility. In this study, we used the hidden descriptors (HD) strategy previously developed in our group to investigate the capacity of well-established metal fragments to achieve stable LnM(η1-H2) metal complexes. Computational techniques, including low-cost density functional theory (DFT) calculations and the BDE Matrix App are used. The results confirm that the search for stable LnM(η1-H2) complexes is challenging, as no obvious candidate can be identified. Hints are obtained about what the properties of this hypothetic metal fragment should be, such as a strong tendency to covalent association with ligands. The outcomes of this research provide a comprehensive framework for comparing and investigating atypical candidates for this type of bonding and serve as a valuable resource for future explorations in this field.
Keywords: bond energy, chemical thermodynamics and energetics, density functional calculations, descriptors, hapticity, hydrogen, transition metal chemistry.
References
1 Roesky PW, Fout AR. Diversity in small-molecule activation: the adventure continues. Inorg Chem 2021; 60: 13757-13758.
| Crossref | Google Scholar | PubMed |
2 Vaska L, DiLuzio JW. Carbonyl and hydrido-carbonyl complexes of Iridium by reaction with alcohols. Hydrido complexes by reaction with acid. J Am Chem Soc 1961; 83: 2784-2785.
| Crossref | Google Scholar |
3 Riehl JF, Pelissier M, Eisenstein O. Influence of a cis hydride on a coordinated molecular hydrogen ligand cis hydride, ab initio calculations. Inorg Chem 1992; 31: 3344-3345.
| Crossref | Google Scholar |
4 Kubas GJ. Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding. J Organomet Chem 2001; 635: 37-68.
| Crossref | Google Scholar |
5 Heinekey DM, Lledós A, Lluch JM. Elongated dihydrogen complexes: what remains of the H–H Bond? Chem Soc Rev 2004; 33: 175-182.
| Crossref | Google Scholar | PubMed |
6 Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ. Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J Am Chem Soc 1984; 106: 451-452.
| Crossref | Google Scholar |
7 Maseras F, Duran M, Lledos A, Bertran J. Molecular hydrogen complexes with a hydride ligand. An ab initio study on the iron hydride, [Fe(PR3)4H(H2)]+, system. J Am Chem Soc 1991; 113: 2879-2884.
| Crossref | Google Scholar |
8 Maseras F, Duran M, Lledos A, Bertran J. Intramolecular atom exchange between molecular hydrogen and hydride ligands in cis-[Fe(PR3)4H(H2)]+ complexes. An ab initio theoretical study. J Am Chem Soc 1992; 114: 2922-2928.
| Crossref | Google Scholar |
9 Maseras F, Lledós A, Clot E, Eisenstein O. Transition metal polyhydrides: from qualitative ideas to reliable computational studies. Chem Rev 2000; 100: 601-636.
| Crossref | Google Scholar | PubMed |
10 Besora M, Lledós A, Maseras F. Protonation of transition-metal hydrides: a not so simple process. Chem Soc Rev 2009; 38: 957-966.
| Crossref | Google Scholar | PubMed |
11 Ortuño MA, Lledós A. How acid can become a dihydrogen complex in water? A DFT study. J Organomet Chem 2021; 949: 121957.
| Crossref | Google Scholar |
12 Ozin GA, Garcia-Prieto J. Pd(η1-H2) and Pd(η2-H2): ligand-free end-on and side-on bonded molecular dihydrogen complexes. J Am Chem Soc 1986; 108: 3099-3100.
| Crossref | Google Scholar |
13 Musaev DG, Charkin OP. Theoretical study of the structure and stability of complexes of molecular hydrogen with K+, Cu+, Be2+, and Zn2+. J Struct Chem 1989; 30: 365-372.
| Crossref | Google Scholar |
14 Lakuntza O, Besora M, Maseras F. Searching for hidden descriptors in the metal–ligand bond through statistical analysis of Density Functional Theory (DFT) results. Inorg Chem 2018; 57: 14660-14670.
| Crossref | Google Scholar | PubMed |
15 Morán-González L, Besora M, Maseras F. Seeking the optimal descriptor for SN2 reactions through statistical analysis of Density Functional Theory results. J Org Chem 2022; 87: 363-372.
| Crossref | Google Scholar | PubMed |
16 Morán-González L, Pedregal JRG, Besora M, Maseras F. Understanding the binding properties of N-heterocyclic carbenes through BDE Matrix App. Eur J Inorg Chem 2022; 2022: e202100932.
| Crossref | Google Scholar |
18 Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98: 5648-5652.
| Crossref | Google Scholar |
19 Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988; 37: 785-789.
| Crossref | Google Scholar | PubMed |
20 Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010; 132: 154104.
| Crossref | Google Scholar | PubMed |
21 Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 1988; 89: 2193-2218.
| Crossref | Google Scholar |
22 Petersson GA, Al-Laham MA. A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. J Chem Phys 1991; 94: 6081-6090.
| Crossref | Google Scholar |
23 Fuentealba P, Preuss H, Stoll H, Von Szentpály L. A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds. Chem Phys Lett 1982; 89: 418-422.
| Crossref | Google Scholar |
24 Fuentealba P, von Szentpaly L, Preuss H, Stoll H. Pseudopotential calculations for alkaline-earth atoms. J Phys B 1985; 18: 1287-1296.
| Crossref | Google Scholar |
25 Dolg M, Wedig U, Stoll H, Preuss H. Energy‐adjusted ab initio pseudopotentials for the first row transition elements. J Chem Phys 1987; 86: 866-872.
| Crossref | Google Scholar |
26 Aquilante F, Malmqvist PÅ, Pedersen TB, Ghosh A, Roos BO. Cholesky Decomposition-Based Multiconfiguration Second-Order Perturbation Theory (CD-CASPT2): application to the spin-state energetics of CoIII(diiminato)(NPh). J Chem Theory Comput 2008; 4: 694-702.
| Crossref | Google Scholar | PubMed |
27 Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev 2005; 105: 2999-3094.
| Crossref | Google Scholar | PubMed |
28 Scalmani G, Frisch MJ. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 2010; 132: 114110.
| Crossref | Google Scholar | PubMed |
29 Álvarez-Moreno M, De Graaf C, López N, Maseras F, Poblet JM, Bo C. Managing the computational chemistry big data problem: the ioChem-BD platform. J Chem Inf Model 2015; 55: 95-103.
| Crossref | Google Scholar | PubMed |