Two Coordination Polymers Constructed from Pentanuclear Zinc Clusters with Triazolate and Benzenecarboxylate Ligands: Selective Gas Adsorption
Wen-Wen Zhang A , Yu-Ling Wang A B , Ying Liu A and Qing-Yan Liu A BA College of Chemistry and Chemical Engineering, and Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China.
B Corresponding authors. Email: ylwang@jxnu.edu.cn; qyliuchem@hotmail.com
Australian Journal of Chemistry 71(3) 111-118 https://doi.org/10.1071/CH17498
Submitted: 9 September 2017 Accepted: 19 October 2017 Published: 9 November 2017
Abstract
Reactions of Zn(NO3)2·6H2O with 1,2,4-triazole (Htrz) and 1,3,5-benzenetricarboxylic acid (H3BTC) or 5-sulfoisophthalic acid (5-H3SIP) afforded two coordination polymers, {[Zn5(μ3-OH)2(trz)2(BTC)2(DMF)2]·x(solvent)}n (1) and {[Zn7(trz)8(5-SIP)2(H2O)4]·4(H2O)}n (2). Compound 1 has pentanuclear [Zn5(μ3-OH)2] clusters, which are linked by the triazolate ligands to give a 2D layer. The 2D layer is further bridged by BTC3− ligands to form a 3D framework. The 3D framework of 1 has 1D channels filled by solvent molecules. Desolvated 1 shows a moderate CO2 uptake and high CO2/CH4 and CO2/N2 adsorption selectivities due to its carboxylate oxygen decorated pore environment. Compound 2 contains a rare 3D zinc-triazolate framework constructed from a pentanuclear [Zn5(trz)8] cluster wherein the five zinc atoms are arranged linearly. The 3D zinc-triazolate substructure has 1D open channels filled by 5-SIP3− ligands, which interact with the zinc-triazolate framework through Zn–O bonds, leading to a non-porous 3D structure of 2. Introduction of BTC3− into the zinc-triazolate system gave the porous structure of 1. While a variation of BTC3−, 5-SIP3− was introduced into the zinc-triazolate system yielding a non-porous structure of 2, demonstrating that the secondary ligands play an important role in the formation of the final structures.
References
[1] (a) G. Férey, Chem. Soc. Rev. 2008, 37, 191.| Crossref | GoogleScholarGoogle Scholar |
(b) H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
| Crossref | GoogleScholarGoogle Scholar |
(d) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126.
| Crossref | GoogleScholarGoogle Scholar |
(f) C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, K. E. Cordova, O. M. Yaghi, Nat. Rev. Mater. 2017, 2, 17045.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OnsbbL&md5=d1ca3bd10b625ce633a9cc51ffe508a6CAS |
(b) Y. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 2014, 43, 5657.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
| Crossref | GoogleScholarGoogle Scholar |
(d) Q. Gao, J. Xu, D. Cao, Z. Chang, X.-H. Bu, Angew. Chem. Int. Ed. 2016, 55, 15027.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. Wang, J. Xu, D.-S. Zhang, Q. Chen, R.-M. Wen, Z. Chang, X.-H. Bu, Angew. Chem. Int. Ed. 2015, 54, 5966.
| Crossref | GoogleScholarGoogle Scholar |
(f) Z. Chang, D.-H. Yang, J. Xu, T.-L. Hu, X.-H. Bu, Adv. Mater. 2015, 27, 5432.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamu7Y%3D&md5=5797f8ce9435da90f34dcac884b76ff7CAS |
(b) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 2014, 43, 6011.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Yoon, R. Srirambalaji, K. Kim, Chem. Soc. Rev. 2012, 112, 1196.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. Sadakiyo, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 9906.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKntbg%3D&md5=b8df880c8e6514346ee2fc6d0fe537efCAS |
(b) J. M. Taylor, K. W. Dawson, G. K. H. Shimizu, J. Am. Chem. Soc. 2013, 135, 1193.
| Crossref | GoogleScholarGoogle Scholar |
(c) L.-J. Zhou, W.-H. Deng, Y.-L. Wang, G. Xu, S.-G. Yin, Q.-Y. Liu, Inorg. Chem. 2016, 55, 6271.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) K.-L. Wong, G.-L. Law, Y.-Y. Yang, W.-T. Wong, Adv. Mater. 2006, 18, 1051.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksV2itLo%3D&md5=89c53426334ed413336eb556990a866dCAS |
(b) Z.-L. Wu, J. Dong, W.-Y. Ni, B.-W. Zhang, J.-Z. Cui, B. Zhao, Inorg. Chem. 2015, 54, 5266.
| Crossref | GoogleScholarGoogle Scholar |
(c) X.-Y. Dong, R. Wang, J.-Z. Wang, S.-Q. Zang, T. C. W. Mak, J. Mater. Chem. A 2015, 3, 641.
| Crossref | GoogleScholarGoogle Scholar |
[6] J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Chem. Rev. 2012, 112, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SrsrnE&md5=462bd5e1334068c6f647cd72a5c2881cCAS |
[7] (a) A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2010, 43, 58.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlegu77O&md5=b47c43be2fa5b85ad448b083a0715db8CAS |
(b) V. Colombo, S. Galli, H. J. Choi, G. D. Han, A. Maspero, G. Palmisano, N. Masciocchic, J. R. Long, Chem. Sci. 2011, 2, 1311.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) Y.-Y. Lin, Y.-B. Zhang, J.-P. Zhang, X.-M. Chen, Cryst. Growth Des. 2008, 8, 3673.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOqtLzP&md5=2981155d80eabacfce7f6ca5603612a7CAS |
(b) H. Park, J. F. Britten, U. Mueller, J. Lee, J. Li, J. B. Parise, Chem. Mater. 2007, 19, 1302.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Park, D. M. Moureau, J. B. Parise, Chem. Mater. 2006, 18, 525.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y.-L. Zhang, S.-P. Chen, S.-L. Gao, Z. Anorg. Allg. Chem. 2009, 635, 537.
| Crossref | GoogleScholarGoogle Scholar |
(e) K.-J. Chen, R.-B. Lin, P.-Q. Liao, C.-T. He, J.-B. Lin, W. Xue, Y.-B. Zhang, J.-P. Zhang, X.-M. Chen, Cryst. Growth Des. 2013, 13, 2118.
| Crossref | GoogleScholarGoogle Scholar |
(f) Q.-G. Zhai, Q. Lin, T. Wu, L. Wang, S.-T. Zheng, X. Bu, P. Feng, Chem. Mater. 2012, 24, 2624.
| Crossref | GoogleScholarGoogle Scholar |
(g) Z. Yao, Y. Chen, L. Liu, X. Wu, S. Xiong, Z. Zhang, S. Xiang, ChemPlusChem 2016, 81, 850.
| Crossref | GoogleScholarGoogle Scholar |
[9] Y.-L. Wang, J.-H. Fu, Y.-L. Jiang, Y. Fu, W.-L. Xiong, Q.-Y. Liu, CrystEngComm 2012, 14, 7245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCgurbF&md5=0891fcf2b3146d2c7618b3cd9f84bfeaCAS |
[10] A. L. Spek, PLATON: A Multipurpose Crystallographic Tool 2001 (Utrecht University: Utrecht, The Netherlands).
[11] Y. Chen, L. Wang, L. Zhang, D. Zhang, X. Jing, Y. Fan, H. Ren, J. Jiang, P. Zhang, J. Xu, Inorg. Chim. Acta 2010, 363, 3874.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12gtLrF&md5=3fb43dd3712274a06b343cab302cebaaCAS |
[12] A. J. Lan, K. H. Li, H. H. Wu, L. Z. Kong, N. Nijem, D. H. Olson, T. J. Emge, Y. J. Chabal, D. C. Langreth, M. C. Hong, J. Li, Inorg. Chem. 2009, 48, 7165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2lsrc%3D&md5=0256cb8bfdb86ab6221fb9b537a24048CAS |
[13] L. Bastin, P. S. Barcia, E. J. Hurtado, J. A. C. Silva, A. E. Rodrigues, B. Chen, J. Phys. Chem. C 2008, 112, 1575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFOnsQ%3D%3D&md5=db142d091623bf42c7a229cc10a46c66CAS |
[14] J. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2009, 131, 8376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Kntbw%3D&md5=b61e2bc9e8b71cc212cb2e336407a5a8CAS |
[15] A. Demessence, D. M. D’Alessandro, M. L. Foo, J. R. Long, J. Am. Chem. Soc. 2009, 131, 8784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFWqtrY%3D&md5=fdb853828dcf1d3b707fe62890a8ecbaCAS |
[16] (a) Q. Y. Yang, C. L. Zhong, J. Phys. Chem. B 2006, 110, 17776.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Cgs7g%3D&md5=eddc6a8291dc1816a8dbbdcfd2f45e29CAS |
(b) R. Babarao, Z. Q. Hu, J. W. Jiang, S. Chempath, S. I. Sandler, Langmuir 2007, 23, 659.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. L. Myers, J. M. Prausnitz, AIChE J. 1965, 11, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXnvVKmsA%3D%3D&md5=a636b25219690d135b3b1a0b68e6bbc3CAS |
[18] B. Wang, A. P. Côté, H. Furukawa, M. O’Keeffe, O. M. Yaghi, Nature 2008, 453, 207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12msL0%3D&md5=0f02e8b0efd2a401d72d1f2c770bf952CAS |
[19] D. Saha, Z. B. Bao, F. Jia, S. G. Deng, Environ. Sci. Technol. 2010, 44, 1820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslShtb4%3D&md5=af836f3df7e0d9920c2f03195bbdbd48CAS |
[20] Z. H. Xiang, X. Peng, X. Cheng, X. J. Li, D. P. Cao, J. Phys. Chem. C 2011, 115, 19864.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFylurvM&md5=046c33343531833b82183b8b729048c4CAS |
[21] Y.-W. Li, J. Xu, D.-C. Li, J.-M. Dou, H. Yan, T.-L. Hu, X.-H. Bu, Chem. Commun. 2015, 51, 14211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Gmu7vN&md5=070c6a5849363e47326e39e640b4f39aCAS |
[22] F. Akhtar, Q. L. Liu, N. Hedinab, L. Bergström, Energy Environ. Sci. 2012, 5, 7664.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslagu78%3D&md5=649707284524ed5e7554133768d8e6f3CAS |
[23] (a) J. R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H. K. Jeong, P. B. Balbuena, H. C. Zhou, Coord. Chem. Rev. 2011, 255, 1791.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVGgur8%3D&md5=f48b6329db0fddff029c29e722491e74CAS |
(b) T. Panda, P. Pachfule, Y. F. Chen, J. W. Jiang, R. Banerjee, Chem. Commun. 2011, 47, 2011.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, J. Liu, Chem. Soc. Rev. 2012, 41, 2308.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. Mu, D. H. Liu, Q. Y. Yang, C. L. Zhong, Microporous Mesoporous Mater. 2010, 130, 76.
| Crossref | GoogleScholarGoogle Scholar |
[24] APEX2, SADABS and SAINT 2008 (Bruker AXS Inc.: Madison, WI).
[25] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |